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Finite-element multiconfiguration Hartree-Fock calculations of the atomic quadrupole moments
of excited states of Be, Al, In, Ne, Ar, Kr, and Xe
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The atomic quadrupole moments Q„of Be(2 2sp Pz), Al(3p; P3/p), In(5p P3/p), Ne(2p'3s'P2),
Ar(3p 4s P2 ), K r(4p '5s P2 ), and Xe(5p 6s; P2 ) have been calculated using a finite-element
multiconfiguration Hartree-Fock method. The obtained Q„(Be) of 2.265 a.u. agrees with previously
calculated values. The calculated Q„(A1) and Q„(In) of 2.579 and 3.165 a.u. are in good agreement with
the experimental values of 2.53(15) a.u. and 2.94(10) a.u. A large s dpolar-ization contribution to the Q„
of the rare gases is found in the present calculations. The correlation contributions from double (D), tri-
ple (T), and quadruple (Q) excitations to the Q„of the rare gases alternate; the total DTQ correlation
contribution is negligibly small for Ne, Ar, and Kr, while the DTQ correlation contribution to the
Q„(Xe) is 25% of the final Q„. The final values are Q„(Ne)= —0.0506 a.u. , Q„(Ar)= —0.0553 a.u. ,
Q„(Kr)=+0.0601 a.u. , and Q„(Xe)=+0.4505 a.u. , as compared to the experimental values of
—0.048(5) a.u. , —0.042(4) a.u. , +0.046(5) a.u. , and +0.30(3) a.u. for Ne, Ar, Kr, and Xe, respectively.

PACS number(s): 31.20.Di, 31.20.Tz, 31.50.+w, 31.90.+ s

I. INTRODUCTION

A direct measurement of atomic quadrupole moments
was reported in 1967 by Angel, Sandars, and Woodgate
[1] who measured the quadrupole moment of the P3/2
state of aluminum using atomic beam resonance ap-
paratus. Using the same apparatus, Sandars and Stewart
[2] measured the quadrupole moment of the P3/2 state of
indium, and the quadrupole moments of the
np (n+1)s P2 excited states of the rare-gas atoms neon,
argon, krypton, and xenon. Miller and Freund [3,4] have
measured the quadrupole moment of the 1s4p and
1s5p I' excited states of helium using atomic alignment
experiments based on the diamagnetic polarizability an-
isotropy. To our knowledge there are no other measure-
ments of atomic quadrupole moments.

An experimental apparatus similar to that used for ob-
taining the quadrupole moments for the excited states of
the rare-gas atoms has also been used by Player and San-
dars [5] on the 5p 6s P2 state of xenon in the search for
an electronic dipole moment.

Theoretical estimates for the quadrupole moments of
aluminum [1], indium, neon, argon, krypton, and xenon
[2] have been obtained using Hartree-Fock and Hartree-
Fock-Slater wave functions. The quadrupole shielding
factors were determined by comparing calculated quadru-
pole moments with experimental ones [2]. For aluminum
and indium the quadrupole moments obtained in the
Hartree-Fock approximation are in reasonable agreement
with the measured ones. However, for the rare-gas states
the Hartree-Pock and Hartree-Fock-Slater approxima-
tions did not provide quadrupole moments in agreement
with the experimental ones. In the work of Sandars and
Stewart [2] this discrepancy was discussed and they con-

eluded that the excitation of the (n + 1)s electron into a d
shell gives rise to significantly modified quadrupole mo-
ments of the rare-gas atoms. This polarization is not tak-
en into account in a Hartree-Fock or in a Hartree-Fock-
Slater calculation. Sen [6] calculated the quadrupole
shielding factors for aluminum and indium using
Sternheimer's perturbation approach [7] and obtained a
good agreement with experiment. The quadrupole
shielding factors for the rare-gas states were calculated by
Sternheimer [8,9]. A very good agreement with experi-
mental values was obtained.

Sinanoglu and Beck [10] and McCavert [11] have cal-
culated the quadrupole moment of the 2s2p P2 state of
beryllium using Hartree-Fock and the "nonclosed shell
many electron theory" (NCMET) methods. Recently
Ceraulo and Berry [12] calculated, using unrestricted
Hartree-Pock (UHF), configuration-interaction (CI), and
rotor-vibrator (RV) approaches, the quadrupole moments
of the lowest nsnp excited states of the alkaline-earth
atoms beryllium, magnesium, calcium, strontium, and
barium. They also calculated the quadrupole moments of
the singly excited 1s4p and 1s5p P states of helium. The
discrepancy between the calculated quadrupole moments
and those measured by Miller and Freund [3,4] for the
excited states of helium was about 30/o. For beryllium,
the discrepancies between the quadrupole moments cal-
culated by Ceraulo and Berry [12] and those calculated
by Sinanoglu and Beck [10] and by McCavert [11]were
up to 16%.

The purpose of this work is to study the quadrupole
moments of Be(2s2p; Pz), Al(2p; P3/2), In(5p; P3/2), and
of the np (n+1)s; P2 (n =2—5 for Ne to Xe) excited
states of the rare-gas atoms using the finite-element
multiconfiguration Hartree-Fock (MCHF) program
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LUcAS [13—18]. The atomic quadrupole moment of
Ca(3d4s;'D) [13]and the electric field gradient at the nu-
cleus (efg) of Ne(2p 3s; P2) [14] have previously been
studied using the present finite-element (FE) MCHF ap-
proach. The efg combined with the nuclear quadrupole
coupling constant yielded the nuclear quadrupole mo-
ment of the 'Ne nucleus [14]. The efg operator has the
same angular part as the quadrupole-moment operator
but the radial integrals are mainly determined by the
inner part of the atom.

II. METHODS

The finite-element multiconfiguration Hartree-Fock
method used in this work has previously been discussed
[15—18]. To facilitate the selection of the configurations,
the MCHF method is based on the restricted active space
(RAS) [19,20] method which is an adaptation of the com-
plete active space (CAS) method [21]. The active orbital
space consists of three subspaces, the RAS I, the RAS II,
and the RAS III spaces. In a RAS calculation a lower
limit is given for the number of electrons in RAS I, and
an upper limit is given for the number of electrons in
RAS III, while there is no restriction on the number of
electrons in RAS II. The following notations are used for
the RAS calculations: inactive orbitals // the orbitals of
RAS I I minimum number of electrons in RAS I ] / the
orbitals of RAS II / the orbitals of RAS III (maximum
number of electrons in RAS III). When a hyphen ap-
pears in the notation it means that all the orbitals to the
left are frozen while those to the right are fully opti-
mized. If it is not otherwise quoted, the frozen shells are
always taken from the previous calculation of the table.

For an I.S-coupled wave function, the atomic quadru-
pole moment is usually characterized by the MI =I com-
ponent of the wave function [1]and evaluated from

Q„=—& &(4 /5) ( Y „I"I
Y',

I
Y „',"& & P; lr'I P, & I;, .

(2.1)

TABLE I. The quadrupole moment Q„and the total energy
ET of Be(2s2p; P&) as a function of the active space (in a.u.).

Active space'

1s//1s/1p (1)
1s //2s 2p
1s //2s 2p 1d
1s //3s 3p 2d 1f
ls //4s4p 3d2f 1g
3s2p 1d
4s3p2d 1f
5s4p3d2f
6s5p4d3f
Ss4p3d2f lg
Ss4p3d2f lg
ls //5s 5p4d 3f

Label

Be-1
Be-2
Be-3
Be-4
Be-5
Be-6
Be-7
Be-8
Be-9
Be-10
Be-11
Be-12

2.0478
2.0669
2.3062
2.3002
2.2996
2.2435
2.2276
2.2559
2.2652
2.2558
2.2557
2.2909

b

—14.511 502
—14.513 065
—14.518 265
—14.518 632
—14.518 694
—14.553 679
—14.560 524
—14.564 109
—14.565 581
—14.564 298
—14.566 817
—14.518 541

'For notation see text.
The number of grid points is 201 and the practical infinity is set

to 100 a.u. Fourth-order element functions are used.
'Quasirelativistic calculation. See text.
Two-electron CI in the shells of the Be-9 calculation.

to Q„(be) from g shells are very small. The changes of
Q„(Be) due to relativistic efFects are also small, as expect-
ed. In Table II the present quadrupole moments of Be
are compared to values from the literature.

The present two-electron value for Q„(Be) is very close
to the NCMET results calculated by Sinanoglu and Beck
[10], and to those calculated by McCavert [11].
Sinanoglu and Beck [10] found a negligibly small contri-
bution (0.05%) from ls. However, according to the
present calculations the 1s polarization contribution to
Q„(Be) is significantly larger (1.0—1.5 %). A core-
correlation contribution to Q„(Be) of —0.034 a.u. is ob-
tained by comparing the Q„of the Be-9 and the Be-5 cal-
culations, while the core-correlation contribution be-
comes —0.026 a.u. when it is estimated as the difference

In Eq. (2.1), Yl are the spherical harmonics, P, is the ra-
dial part of the orbital i, and I, are the elements of the
one-electron density matrix. The relativistic effects are
estimated using a quasirelativistic configuration-
interaction (QRCI) approach where the Darwin and the
mass-velocity integrals are added to the one-electron in-
tegrals, and a nonrelativistic CI is performed with the
modified integrals.

III. RESULTS AND DISCUSSION

A. Be

The quadrupole moment of Be(2s2p; P2), Q„(Be), was
obtained by performing CAS calculations with systemati-
cally increased size of the active space. Calculations with
the 1s shell inactive yielded a two-electron limit of 2.2996
a.u. for Q„(Be). The four-electron limit of Q„(Be) ob-
tained in a 6s Sp 4d 3f CAS calculation (Be-9) became
2.2652 a.u. (see Table I). A comparison between the Be-8
and Be-10 CAS calculations shows that the contributions

Method

Hartree-Fock
Two-electron limit
Core-correlation correction
Four-electron limit
Relativistic correction
Extrapolated value
Hartree-Fock
NCMET'
NCMET'
Unrestricted Hartree-Fock
Configuration-interaction
Rotor-vibrator

Value

2.048
2.300

—0.026
2.265

—0.0001
2.274
2.045
2.296
2.306
1.833
2.140
1.919

Ref.'

PW
PW
PW
PW
PW
PW
[10]
[10]
[11]
[12]
[12]
[12]

'PW denotes present work.
Obtained by adding the core-correlation correction to the two-

electron limit.
'A "nonclosed shell many-electron theory" calculation.

TABLE II. The quadrupole moment Q„of Be(2s2p Pz) as
compared to literature values (in a.u. ).
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between the Q„of a two-electron CI calculation (Be-12)
and the Q„of the Be-9 calculation. The Be-12 CI calcu-
lation is performed in the shells of the Be-9 calculation.

The configuration-interaction, the unrestricted
Hartree-Fock, and the rotor-vibrator calculations by
Ceraulo and Berry [12] yielded values for Q„(Be) which
are 19%, 5.5%, and 15% smaller than the present four-
electron limit, respectively. Although Ceraulo and Berry
consider the results of the rotor-vibrator method to be
sound, it does not seem to be a very accurate method.

B. Al and In

TABLE III. The quadrupole moment Q„and the total ener-
gy ET of Al(3p; P3/p) as a function of the active space (in a.u.).

Active space'

3s 1p //1p
2s 1p //2s2p 1d
2s 1p //3s 3p 2d 1f
2s lp //4s4p3d2f lg
2s lp//4s4p3d2f lg
2s 1p //3s3p2d
2s 1p //4s4p 3d
2s 1p //1s 1p /3s 3p 3d-(2)
2s //1s 2p /2s 2p 2d-1s 1p 1d (2)"

Label

Al-1
Al-2
Al-3
Al-4
Al-5
Al-6
Al-7
Al-8
Al-9

2.8012
2.5256
2.5917
2.5995
2.5999
2.5767
2.5835
2.5808
2.5456

E b

—241.876 710
—241.930931
—241.934 195
—241.934 839
—242.369 851
—241.932 375
—241.932 554
—241.932 199
—242. 107 318

'For notation see text.
See footnote b of Table I.

'Quasirelativistic calculation. See text.
The frozen shells are taken from the Al-6 calculation.

The valence limits for Q„(A1) and Q„(In) are obtained
by performing valence (three electron) CAS calculations
with systematically enlarged active spaces. The largest
valence calculations (Al-4 and In-4) yielded a Q„(A1) of
2.5995 a.u. and a Q„(In) of 3.1720 a.u. (see Tables III and
IV).

The relativistic correction to Q„(Al) obtained from the
QRCI calculation is 0.0004 a.u. For In, the correspond-
ing relativistic correction became —0.021 a.u. These rel-
ativistic corrections significantly differ from the ones ob-
tained by comparing Hartree-Fock and Dirac-Fock (DF)
calculations. The (r )„& /(r )„„„&ratio of 1.00269 for
the 3p3/2 shell of Al yields a relativistic correction of
0.007 a.u. [22], and for In, the ( r )„&/( r )„,„„& of
1.01793 for the Sp3/2 shell yields a relativistic correction
of 0.056 a.u. [22]. The Al(3p; P3/z) and the In(5p; P3/2)
states have one dominating configuration and are there-
fore well described in the HF (DF) model. The relativis-
tic corrections of Table V are the ones deduced from the
(r') ratios.

The core-correlation and the polarization contributions
to Q„(A1) of —0.028 a.u. were estimated by comparing
the result of the valence CAS calculation (Al-6) with that
of the 2s //ls 2p /2s 2p 2d - ls lp 1d (2) RAS calculation
(Al-9). The contributions from most of the triple, qua-
druple, and higher excitations are not considered in the
Al-9 RAS calculation. These contributions are estimated
as the difference between the Q„(A1) of the Al-7 and

Al-8 calculations. The core-correlation correction in
Table V is estimated as Q„(A1-9)—Q„(A1-6)+Q„(AI-
7) —Q„(A1-8). The ls and 2s shells are uncorrelated in all
Al calculations and therefore do not contribute to the
final Q„(A1). The contribution to Q„(A1) from the con-
tracted 1s and 2s is expected to be very small.

Valence correlation effects reduce the size of Q„(A1) by
7.2% and core correlation and polarization reduce it fur-
ther by about 1% of the Hartree-Fock value. The final
Q„(A1) is in an excellent agreement with the experimen-
tal result [1]. The uncertainty in the calculated value is
estimated to be less than 1% as compared to the experi-
mental error of 6% [1]. The Al and In results are com-
pared to literature values in Table V.

For In, valence correlation reduces Q„(In) with only
4.7% as compared to 7.2% for Al. The core-valence
correlation contribution of —0.063 a.u. to Q„(In) was es-
timated as the difference between the Q„of the In-10
RAS calculation and the Q„of the In-11 valence CI cal-
culation and correcting for a core-valence correlation f
shell contribution of —0.010 a.u. estimated as Q„(In-
12)—Q„(In-8)—Q„(In-13)+Q„(In-9) (see Table IV). In
the core-valence RAS calculations (In-7, In-8, In-10, and
In-12), only single excitations are allowed from the 4d
shell to the shells of the RAS III space, and only the
core-valence spd shells of the RAS III space are opti-
mized. The 4d polarization contribution to Q„(In) be-
came only 2% of the HF value. The final calculated
value for Q„(In) of 3.165 a.u. is 4—11% larger than the
experimental result of 2.94(10) a.u. [2]. The main reason
for the discrepancy is probably the neglect of the core-
core (4d) correlation in the MCHF calculations.

C. Ne, Ar, Kr, and Xe

The computational procedure for the MCHF deter-
mination of the quadrupole moments of the excited states
of the rare-gas atoms is slightly different from that of the
Be, Al, and In calculations. The (n+1)s shell is diffuse
(( r )3, N,

=4. 39 a.u. , ( r )&, &,=5.43 a.u. , ( r )3, &,=5.78
a.u. , and (r )&, x,=6.45 a.u. ) and soft. The (n +1)s shell
is polarized by the hole in the np shell [2]. The first step
in the computational procedure is to design the orbitals
that give the s-d polarization of the (n + 1)s shell.

In order to design polarization shells, polarization and
core-valence correlation calculations (pol+CV) were per-
formed. In the pol+CV calculations, the HF shells were
frozen, and single excitations from the nsnp shells in RAS
I to the shells of RAS II were included. All RAS II shells
but the HF (n +1)s shell were optimized. In the HF
reference the np shell contains five electrons, and in a
pol+CV calculation there must be at least four electrons
in the np shell or alternatively, with ns correlated, at least
six electrons in the nsnp shells. Obviously, there are one
or two electrons in RAS II. All configurations which
have RAS II singly occupied are polarization
configurations, while those with two electrons in RAS II
are core-valence correlation configurations.

The pol+CV spd limit for the Q„'s of Ne, Ar, Kr, and
Xe were obtained by systematically augmenting the RAS
II space with s, p, and d shells (Ne-2 to Ne-8 of Table VI,
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TABLE IV. The quadrupole moment Q„and the total energy ET of In(5p; P3/2) as a function of the
active space (in a.u.).

Active space'

5s 3p2d //1p
4s 3p2d//2s2p 1d
4s3p2d//3s3p2d 1f
4s3p2d//4s4p3d2f lg
4s3p2d //4s4p3d2f lg
4s3p2d //3s3p2d
4s3p ld//ld [9I /3s3p2d-ls lp ld
4s 3p Id // Id [ 9 ] /2s 2p 1d /- 1s lp 1d ( 2 )

4s 3p2d //2s2p 1d /1s 1p 1d-(2)'
4s3pld//ld [9]/2s2p ld/-2s2p2d(2)
4s 3p 2d //2s 2p 1d /2s 2p 2d-(2)'
4s3p ld//ld [9I /2s2pld/-lslp ld 1f(2)~
4s 3p 2d //2s 2p ld /ls lp 1d 1f-(2)'

Label

In-1
In-2
In-3
In-4
In-5
In-6
In-7
In-8
In-9
In-10
In-11
In-12
In-13

3.3294
3.0924
3.1615
3.1720
3.1507
3.1474
3.0934
3.0683
3.1111
3.0741
3.1276
3.0586
3.1109

b

—5740.169 221
—5740.213 529
—5740.216 646
—5740.217 424
—5870.695 171
—5740.214 744
—5740.237 918
—5740.236 124
—5740.214 409
—5740.238 099
—5740.214 737
—5740.283 919
—5740.214 833

'For notation see text.
The number of grid points is 401 and the practical infinity is set to 1000 a.u. Fourth-order element

functions are used.
'Quasirelativistic calculation. See text.
The frozen shells are from the In-2 calculation.

'Valence CI in the shells of the previous calculation in the table.

Ar-2 to Ar-7 of Table VII, Kr-2 to Kr-7 of Table VIII,
and Xe-2 to Xe-7 of Table IX). The core-polarization
contribution to the Q„'s (from ls, 2slp, 3s2pld, and
4s3p2d for Ne to Xe) is small and neglected. The f and-
g-shell contributions to Q„were estimated by adding op-
timized f and g shells to the RAS II space and comparing
this Q„with that of the corresponding spd calculation.
The shells of the spd calculation (Ne-8, Ar-7, Kr-7, and
Xe-5) were frozen. For Ne, also the f shells were frozen
in the g-shell calculation.

The effect of double and triple excitations from the ns,
np, and (n+1)s orbitals on Q„was estimated by per-
forming multireference CI (MRCI) calculations in the
shells of the pol+CV RAS calculations. The change in
Q„due to quadruple excitations was estimated by com-
paring MR SDT and MR SDTQ CI calculations with the
ns shell doubly occupied in all configurations.

The polarization calculations (Ne-21, Ar-20, Kr-19,
and Xe-20) were performed as follows. The HF shells

were frozen. The np shell was set in RAS II and the
(n +1)s shell in RAS III. The RAS III space was aug-
mented by one d shell which was optimized. There is
only one electron in RAS III. The most important exci-
tation of the polarization calculations is the (n +1)s to d
excitation mimicking the s-d polarization.

The HF values for Q„of the rare gases are close to the
Hartree-Fock-Slater (HFS) ones [2], while they
significantly differ from the experimental results. The spd
limits of —0.0500, —0.0740, +0.0376, and +0.5064 a.u.
for the Q„'s of Ne, Ar, Kr, and Xe, respectively, ob-
tained in the pol+CV calculations are reminiscent of the
experimental values. (See Table X). In the spd-limit cal-
culations, the first set of spd shells hardly affects the Q„.
For Ne, Ar, and Kr, the third and fourth sets of spd
shells significantly reduce them. These spd shells are also
very unimportant for the energies. The lowering in the
total energy due to the addition of the third and fourth
sets of spd shells is —0.0759, —0.782, and —0.890 mH

TABLE V. The quadrupole moment Q„of the P3&2 states of Al and In as compared to literature
values (in a.u.).

Method

Hartree-Fock
MCHF valence limit
Core-valence correlation correction
Core-correlation correction'
Relativistic correction
Final value
Hartree-Fock
Hartree-Fock
Experiment

Al

2.801
2.600

—0.028
0.007
2.579
2.801
2.8
2.53(15)

3.329
3.172

—0.063

0.056
3.165
3.329
3.32
2.94(10)

Ref.

PW
PW
PW
PW
PW
PW
[23]
[1,2]
[1,2]

'Includes both core-core and core-valence correlation corrections.
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for Ne, Ar, and Kr, respectively. For Xe, the second and
third sets of spd shells change the Q„by 1.6005 a.u. , yet
their contribution to the total energy is only 5.109 mH.

The f-shell contributions, estimated as Ne-12 —Ne-8,
Ar-11 —Ar-7, Kr-9 —Kr-7, and Xe-10—Xe-5, are all pos-
itive, and they are larger for the heavier rare gases. For
Xe, the f-shell contribution is about 30% of the final Q„.

The g-shell contributions are estimated as the Q„
di6'erences Ne-13 —Ne-12, Ar-12 —Ar-8, Kr-10 —Kr-8,
and Xe-12—Xe-9. For Ne and Ar, the g-shell contribu-
tions are very small and negative, for Kr it is +0.0043
a.u. and for Xe +0.0700 a.u. , i.e., about half of the f-
shell contribution.

The s-d polarization is not obtained in the HF model,
and the relativistic contributions to Q„cannot be reliably
estimated from DF (HF) calculations. The relativistic
corrections to Q„(Ne) (Ne-14 —¹8)and to Q„(Ar)
(Ar-13 —Ar-7) are negligibly small. The relativistic
corrections are all negative and become as expected, in
absolute value, larger with increasing nuclear charge.
For Xe, the relativistic correction (Xe-13—Xe-7) is—0.1612 a.u. or 36% of the final Q„(Xe), and for Kr
(Kr-11 —Kr-7) it is about one order of magnitude smaller
than for Xe. The quasirelativistic method (QRCI) used in
this work which is based on relativistic perturbation ex-
pansions does not consider spin-orbit splittings. The
QRCI method becomes less reliable for heavier systems.

However, for Kr and Xe the discrepancy between the
nonrelativistic and the experimental Q„values is reduced
by the relativistic corrections. For the ground state of
Xe, the difference in (r ) of 5p, /2 and Sp3/~ is 0.6 a.u.
[22]. The spin-orbit effects which are not considered in
the QRCI calculations may be responsible for a large
fraction of the discrepancy between the final Q„(Xe) and
the experimental value.

A comparison of the Q„obtained in the pol+ CV RAS
calculations and those of the MRSD CI calculations in
the same shells show that the s-d polarization of the
(n +1)s is lost in the MRSD CI calculation. The Q„'s
contained in the MRSDT CI calculations are very close
to the pol+CV values. The triple excitations introduce
polarization of the doubly excited configurations. The
quadruple excitations contribute one to two orders of
magnitude less than double and triple excitations. Qua-
druple excitations are also found to be more important
for the heavier rare gases. The total correlation contribu-
tion to Q„ from D, T, and Q are —0.0019, —0.0007, and—0.0005 a.u. for Ne, Ar, and Kr, respectively. Note that
we use here the notation D, T, and Q to indicate the num-
ber of excitations from RAS I. For Xe, the total DTQ
correlation contribution is —0.1087 a.u. , which is about
25% of the final Q,„(Xe). For Xe, a larger radial overlap
between the (n +1)s orbital and the nsnp semicore orbit-
als makes higher-order excitation e6'ects more important.

TABLE VI. The quadrupole moment Q„and the total energy ET of Ne(2p'3s P, ) as a function of
the active space (in a.u.).

Active space'

2s//1p 1s
ls//1s lp I6] /ls-1s 1p1d
1s //1s 1p [ 6 ) /1s-2s 2p 2d
1s //1s 1p I 6 ) /1s-3s 3p 3d
1s//1s lp I 6] /1s-4s4p4d
1s//1s 1p I6] /1s-5s5p5d
1s //1 s 1p I 6 I /1s-6s 6p 6d
1s //1s 1p I 6 ) / ls-7s 7p 7d
1s//1s 1p{6I/Ss7p7d 1f-
1s//1s 1p I6I /Ss7p7d 2f-
1s //1s 1p t 6 J /8s 7p 7d3f-
1s //1s 1p t 6 I /Ss 7p 7d4f-
1s//1s 1p t 6I /Ss7p7d4f-1g
1s //1s lp t 6 I /Ss7p 7d-'
1s //2s 1p /3s 3p 3d-(2)
1s //2s 1p /4s4p4d-(2)'
1s //2s 1p /3s 3p 3d-(3)
1s //2s 1p /4s4p4d-(3)'
2s //1s 1p /3s 3p 3d-(3)"
2s //1s 1p /3s 3p 3d-(4)
2s//1p/1s-1d (1)

Label¹1
Ne-2¹3¹4
Ne-5¹6
Ne-7
Ne-8
Ne-9
Ne-10
Ne-11
Ne-12
Ne-13
Ne-14
Ne-15
Ne-16
Ne-17
Ne-18
Ne-19
Ne-20
Ne-21

—0.1984
—0.2120
—0.1931
—0.1043
—0.0579
—0.0553
—0.0516
—0.0500
—0.0460
—0.0476
—0.0477
—0.0477
—0.0481
—0.0505
—0.1478
—0.1331
—0.1075
—0.0596
—0.1176
—0.1178
—0.0335

E b

—127.992 315
—128.023 386
—128.025 905
—128.026 531
—128.026 664
—128.026 720
—128.026 737
—128.026 743
—128.031 178
—128.031 406
—128.031 449
—128.031 461
—128.031 521
—128.165 229
—128.187 460
—128.195 604
—128.190 810
—128.199227
—128.118670
—128.119688
—127.992 602

'For notation see text.
"The number of grid points is 201 and the practical infinity is set to 100 a.u. Fourth-order element
functions are used.
'Quasirelativistic CI in the shells of the Ne-8 calculation.
CI in the shells of the Ne-4 calculation.

'CI in the shells of the Ne-5 calculation.
'Polarization calculation.
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TABLE VII. The quadrupole moment Q„and the total energy Er of Ar(3p'4s P2) as a function of
the active space (in a.u.).

Active space'

3s 1p //1p 1s
2s lp // ls lp [ 6 I /ls-ls lp ld
2s lp //ls lp {6I /ls-2s2p2d
2s lp//ls lp [6I /ls-3s3p3d
2s lp//ls lp [6I /ls-4s4p4d
2s lp//ls lp {6I/ls-5s5p5d
2s lp //ls lp {6I /ls-6s6p6d
2s lp//ls lp [6I /7s6p6d-1 f
2s lp//ls lp {6)/7s6p6d-2f
2s lp//ls lp [6J /7s6p6d-3 f
2s lp//ls lp [6I /7s6p6d-4f
2s lp//ls lp {6I /7s6p6d-1 f lg
2s lp //1 s lp [ 6 I /7s 6p 6d-'
25 1p //2s 1p /3s 3p 3d-(2)
2s 1p //2s 1p /4s4p4d-(2)'
2s 1p //2s 1p /3s 3p 3d-(3)
2s 1p //2s 1p /4s4p4d-(3)'
3s 1p //1s 1p /3s 3p 3d-(3)
3s 1p //1s 1p /3s 3p 3d-(4)
3s 1p //1p /1s-1d (1)'

Label

Ar-1
Ar-2
Ar-3
Ar-4
Ar-5
Ar-6
Ar-7
Ar-8
Ar-9
Ar-10
Ar-11
Ar-12
Ar-13
Ar-14
Ar-15
Ar-16
Ar-17
Ar-18
Ar-19
Ar-20

—0.5800
—0.5973
—0.4730
—0.1384
—0.0787
—0.0740
—0.0740
—0.0511
—0.0570
—0.0552
—0.0540
—0.0512
—0.0746
—0.3719
—0.3600
—0.1338
—0.0712
—0.1304
—0.1386
+0.0907

E b

—526.416 746
—526.454 638
—526.458 198
—526.458 848
—526.458 980
—526.459 012
—526.459 024
—528.466 371
—526.466 787
—526.466 848
—526.466 860
—526.466 418
—528.262 049
—526.585 598
—526.588 696
—526.591 437
—526.594 847
—526.533 506
—526.536 331
—526.417 590

'For notation see text.
Th~ number of grid points is 301 and the practical infinity is set to 100 a.u. Fourth-order element

functions are used.
'Quasirelativistic CI in the shells of the Ar-7 calculation.
CI in the shells of the Ar-4 calculation.

'CI in the shells of the Ar-5 calculation.
Polarization calculation.

TABLE VIII. The quadrupole moment Q„and the total energy Er of Kr(4p'Ss Pz) as a function of
the active space (in a.u. ).

Active space'

4s2p 1d //1p /1s (1)
3s2p ld//ls lp [6I /ls-ls lp ld
3s2p ld//ls lp [6I /ls-2s2p2d
3s 2p 1d //ls lp [ 6 I / ls-3s 3p 3d
3s2p ld//ls lp [6}/ls-4s4p4d
3s2p ld//ls lp {6J/ls-5s5p5d
3s2p 1d //1 s lp [ 6 J / 1s-6s 6p 6d
3s2p ld//ls lp [6I /7s6p6d-If
js2p ld//ls lp [6I /7s6p6d-2 f
3s2p ld//ls lp [6J /js6p6d-If lg
3s2p ld//ls lp [6I /7s6p�6-'
d3s�1d //2s 1p /3s 3p 3d-(2)
3s2p 1d //2s 1p /4s4p4d-(2)'
3s2p 1d //2s 1p /3s 3p 3d-(3)"
4s2p 1d //Is 1p /3s 3p 3d-(3)
4s2p ld//1s lp/4s4p4d-(3)'
4s2p 1d //1s lp /3s 3p 3d-(4)"
4s2p 1d //1p /1s-1d ( 1)

Label

Kr-1
Kr-2
Kr-3
Kr-4
Kr-5
Kr-6
Kr-7
Kr-8
Kr-9
Kr-10
Kr-11
Kr-13
Kr-14
Kr-15
Kr-16
Kr-17
Kr-18
Kr-19

—0.7952
—0.8105
—0.5086
—0.0213
+0.0292
+0.0353
+0.0376
+0.0759
+0.0724
+0.0802
+0.0205
—0.4422
—0.4409
—0.0118
—0.0128
+0.0430
—0.0271
+0.3031

E b

—2751.701 567
—2751.734 276
—2751.738 187
—2751.738 958
—2751.739 077
—2751.739 105
—2751.739 113
—2751.747 078
—2751.747 567
—2751.747 145
—2786.877 527
—2751.837 573
—2751 ~ 840 043
—2751.842 276
—2751.795 609
—2751.796 849
—2751.797 721
—2751.702 880

'For notation see text.
The number of grid points is 401 and the practical infinity is set to 1000 a.u. Fourth-order element

functions are used.
'Quasirelativistic CI in the shells of the Kr-7 calculation.
CI in the shells of the Kr-4 calculation.

'CI in the shells of the Kr-5 calculation.
Polarization calculation.



2678 DAGE SUNDHOLM AND JEPPE OLSEN 47

TABLE IX. The quadrupole moment Q„and the total energy Er of Xe(4p'Ss Pz) as a function of
the active space (in a.u. ).

Active space'

5s 3p 2d //1p 1s
4s 3p 2d //1s 1p [ 6) /1s-1s 1p 1d
4s3p2d//1s 1p [6) /1s-2s2p2d
4s3p2d//1s 1p [6) /1s-3s3p3d
4s3p2d //1s 1p {6) /1s-4s4p4d
4s3p2d//1s 1p (6) /1s-Ss5pSd
4s3p2d//1s 1p [6) /1s-6s6p6d
4s3p2d//1s 1p [6) /5s4p4d 1f-
4s3p2d//1s 1p [6) /Ss4p4d-2f
4s3p2d//1s1p [6) /Ss4p4d 3f-
4s3p2d //1s 1p {6}/Ss4p4d 1f1g-
4s3p2d//1s 1p [6) /5s4p4d 2f2g-
4s3p2d//1s 1p (6) /7s6p6d-'
4s 3p2d //2s 1p /3s 3p 3d-(2)
4s 3p 2d //2s 1p /4s4p4d-(2)'
4s 3p 2d //2s 1p /3s 3p 3d-(3)
5s 3p2d //1s 1p /3s 3p 3d-(3)
5s3p2d//1s 1p/4s4p4d-(3)'
5s 3p 2d //1s 1p /3s 3p 3d-(4)
Ss 3p 2d //Ip /1s-1d

Label

Xe-1
Xe-2
Xe-3
Xe-4
Xe-5
Xe-6
Xe-7
Xe-8
Xe-9
Xe-10
Xe-11
Xe-12
Xe-13
Xe-14
Xe-15
Xe-16
Xe-17
Xe-18
Xe-19
Xe-20

Q-
—1.1377
—1.1439
—0.1413
+0.4566
+0.4981
+0.5041
+0.5064
+0.5926
+0.6331
+0.6421
+0.6526
+0.7031
+0.3452
—0.5306
—0.5413
+0.4324
+0.4543
+0.5033
+0.4113
+ 1.0962

E b

—7231.829 651
—7231.859 552
—7231.863 800
—7231.864 661
—7231.864 767
—7231.864 790
—7231.864 797
—7231.874 116
—7231.874 701
—7231.874 773
—7231.874 231
—7231.875 031
—7429.144 546
—7231.944 360
—7231.946 243
—7231.949 170
—7231.910686
—7231.911610
—7231.912 706
—7231.831 784

'For notation see text.
The number of grid points is 601 and the practical infinity is set to 1000 a.u. Sixth-order element func-

tions are used.
'Quasirelativistic CI in the shells of the Xe-7 calculation.
CI in the shells of the Xe-4 calculation.

'CI in the shells of the Xe-5 calculation.
'Polarization calculation.

The D corrections given in Table X are estimated as the
Q„differences Ne-16 —Ne-5, Ar-15 —Ar-5, Kr-14 —Kr-
5, and Xe-15—Xe-5. The T corrections of Table X are
analogously obtained as Ne-18 —¹-16,Ar-17 —Ar-15,
Kr-17 —Kr-16+ Kr-15 —Kr-14, and Xe-18—Xe-
17+Xe-16—Xe-15, while the Q correction is simply the
differences ¹-20—¹ 19, Ar-19 —Ar-18, Kr-18 —Kr-16,

and Xe-19—Xe-17. The final Q„'s of Table X are ob-
tained by adding the corrections to the MCHF CV spd-
limit values in Table X.

Multireference single and double (MRSD) RAS calcu-
lations with the ns, np, and (n+1)s shells (n =2—5 for
Ne to Xe) in RAS II, and with at most two electrons in
the orbitals of RAS III are not capable of reproducing

TABLE X. The quadrupole moment Q„of the rare-gas atoms in np'(n+1)s 'P2 state as compared
to literature values (in a.u. ).

Method'

HF
MCHF CV spd limit

f contribution

g contribution
D correction
T correction
Q correction
Relativistic correction
Final value
Polarization calc.
HFS
Sternheimer
Sternheimer
Experiment

'For details, see the text.

Ne

—0.1984
—0.0500
+0.0023
—0.0004
—0.0752
+0.0735
—0.0002
—0.0005
—0.0506
—0.0335
—0.234
—0.0428
—0.0447
—0.048(5)

Ar

—0.5800
—0.0740
+0.0200
—0.0001
—0.2813
+0.2888
—0.0082
—0.0006
—0.0553
+0.0907
—0.613
+0.0098
—0.0049
—0.042(4)

—0.7952
+0.0376
+0.0348
+0.0043
—0.4701
+0.4849
—0.0143
—0.0171
+0.0601
+0.3031
—0.822
+0.0962
+0.0649
+0.046(5)

Xe

—1.1377
+0.5064
+0.1440
+0.0700
—1.0394
+ 1.0227
—0.0920
—0.1612
+0.4505
+ 1.0962
—1.15
+0.380
+0.303
+0.30(3)

Ref.

PW
PW
PW
PW
PW
PW
PW
PW
PW
PW
[2]
[8]
I:9]
[2]
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the s-d polarization. In the MRSD RAS calculations, the
inactive shells and the shells in RAS II were frozen HF
shells, while the shells in RAS III were optimized.

The s-d polarization contribution was separately es-
timated by performing the polarization calculations Ne-
21, Ar-20, Kr-19, and Xe-20. The Q„obtained in the po-
larization calculations are qualitatively correct but the s-
d polarization effect is exaggerated. The CV correlation
contributions estimated as the difference between the Q„
of the polarization and the Q„obtained in the pol+CV
calculations become —0.02, —0.17, —0.27, and —0.58
a.u. for Ne to Xe, respectively.

For Xe, the DTQ correlation and relativistic correc-
tions, and the contributions from higher angular momen-
tum functions (f and g functions) are of the same magni-
tude as the experimental Q„. These effects are not taken
into account in Sternheimer's perturbation potential
method for estimating the quadrupole polarization effects
[7—9]. This shows that the agreement between the exper-
imental Q„and the Q„calculated by Sternheimer using
his perturbation method [8,9] is fortuitous.

The electric field gradient at the nucleus which was cal-
culated previously for Ne using the same MCHF pro-
gram [18] is not very sensitive to the s-d polarization.
The efg operator weights the inner region of the atom,
and the major contributions to the efg come from the
hole in the np shell and from an s dpolariza-tion of the
inner ns shell. The s dpolariza-tion of the outer (n +1)s
shell hardly contributes to the efg.

of Ne, Ar, Kr, and Xe have been determined using a
finite-element multiconfiguration Hartree-Fock method.
The values obtained for Q„(Be), Q„(Ne), Q„(A1), and
Q„(In) were in good agreement with previous calculated
and experimental results. See Tables II, V, and X. The
final Q„(Ar) and Q„(Kr) are in absolute value only 0.013
and 0.014 a.u. larger than the experimental results. For
Q„(Xe), the discrepancy between calculated and experi-
mental quadrupole moments is 0.15 a.u. A large s-d po-
larization contribution to the Q„of the rare gases is
found in the present calculations. For Ne, Ar, and Kr,
contributions from doubles, triples, and quadruples to Q„
alternate but the sum is negligibly small, while for
Q„(Xe) they also alternate but the net contribution to
Q„(Xe) is 0.1 a.u. Contributions from f shells are
significant for Q„(Ar), Q„(Kr), and Q„(Xe). For
Q„(Xe), the g-shell contribution is half of the f-shell con-
tribution, and may not be neglected in an accurate deter-
mination of Q„(Xe). It is also shown that core-valence
correlation contributions to the Q„of the rare gases are
very important, and a simple polarization model in a lim-
ited basis is not able to yield accurate quadrupole mo-
ments. Hence the agreement between the experimental
Q„of the rare gases and the ones obtained by Sternhei-
mer using his perturbation potential method [7—9] must
be considered fortuitous.
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