Finite-element multiconfiguration Hartree-Fock calculations of the atomic quadrupole moments of excited states of Be, Al, In, Ne, Ar, Kr, and Xe

Dage Sundholm

Department of Chemistry, P.O. Box 19, FIN-00014 University of Helsinki, Finland

Jeppe Olsen

Theoretical Chemistry, Chemical Centre, University of Lund, P.O. Box 124, S-22100 Lund, Sweden

(Received 5 November 1992)

The atomic quadrupole moments Q_{zz} of Be $(2s2p; {}^{3}P_{2})$, Al $(3p; {}^{2}P_{3/2})$, In $(5p; {}^{2}P_{3/2})$, Ne $(2p^{5}3s^{3}P_{2})$, Ar $(3p^{5}4s; {}^{3}P_{2})$, Kr $(4p^{5}5s; {}^{3}P_{2})$, and Xe $(5p^{5}6s; {}^{3}P_{2})$ have been calculated using a finite-element multiconfiguration Hartree-Fock method. The obtained Q_{zz} (Be) of 2.265 a.u. agrees with previously calculated values. The calculated Q_{zz} (A1) and Q_{zz} (In) of 2.579 and 3.165 a.u. are in good agreement with the experimental values of 2.53(15) a.u. and 2.94(10) a.u. A large *s*-*d* polarization contribution to the Q_{zz} of the rare gases is found in the present calculations. The correlation contributions from double (D), triple (T), and quadruple (Q) excitations to the Q_{zz} of the rare gases alternate; the total DTQ correlation contribution is negligibly small for Ne, Ar, and Kr, while the DTQ correlation contribution to the Q_{zz} (Xe) is 25% of the final Q_{zz} . The final values are Q_{zz} (Ne)=-0.0506 a.u., Q_{zz} (Ar)=-0.0553 a.u., Q_{zz} (Kr)=+0.0601 a.u., and Q_{zz} (Xe)=+0.4505 a.u., as compared to the experimental values of -0.048(5) a.u., -0.042(4) a.u., +0.046(5) a.u., and +0.30(3) a.u. for Ne, Ar, Kr, and Xe, respectively.

PACS number(s): 31.20.Di, 31.20.Tz, 31.50.+w, 31.90.+s

I. INTRODUCTION

A direct measurement of atomic quadrupole moments was reported in 1967 by Angel, Sandars, and Woodgate [1] who measured the quadrupole moment of the ${}^{2}P_{3/2}$ state of aluminum using atomic beam resonance apparatus. Using the same apparatus, Sandars and Stewart [2] measured the quadrupole moment of the ${}^{2}P_{3/2}$ state of indium, and the quadrupole moments of the $np^{5}(n+1)s$ ${}^{3}P_{2}$ excited states of the rare-gas atoms neon, argon, krypton, and xenon. Miller and Freund [3,4] have measured the quadrupole moment of the 1s4p and 1s5p ${}^{3}P$ excited states of helium using atomic alignment experiments based on the diamagnetic polarizability anisotropy. To our knowledge there are no other measurements of atomic quadrupole moments.

An experimental apparatus similar to that used for obtaining the quadrupole moments for the excited states of the rare-gas atoms has also been used by Player and Sandars [5] on the $5p^{5}6s^{3}P_{2}$ state of xenon in the search for an electronic dipole moment.

Theoretical estimates for the quadrupole moments of aluminum [1], indium, neon, argon, krypton, and xenon [2] have been obtained using Hartree-Fock and Hartree-Fock-Slater wave functions. The quadrupole shielding factors were determined by comparing calculated quadrupole moments with experimental ones [2]. For aluminum and indium the quadrupole moments obtained in the Hartree-Fock approximation are in reasonable agreement with the measured ones. However, for the rare-gas states the Hartree-Fock and Hartree-Fock-Slater approximations did not provide quadrupole moments in agreement with the experimental ones. In the work of Sandars and Stewart [2] this discrepancy was discussed and they concluded that the excitation of the (n + 1)s electron into a dshell gives rise to significantly modified quadrupole moments of the rare-gas atoms. This polarization is not taken into account in a Hartree-Fock or in a Hartree-Fock-Slater calculation. Sen [6] calculated the quadrupole shielding factors for aluminum and indium using Sternheimer's perturbation approach [7] and obtained a good agreement with experiment. The quadrupole shielding factors for the rare-gas states were calculated by Sternheimer [8,9]. A very good agreement with experimental values was obtained.

Sinanoğlu and Beck [10] and McCavert [11] have calculated the quadrupole moment of the $2s2p {}^{3}P_{2}$ state of beryllium using Hartree-Fock and the "nonclosed shell many electron theory" (NCMET) methods. Recently Ceraulo and Berry [12] calculated, using unrestricted Hartree-Fock (UHF), configuration-interaction (CI), and rotor-vibrator (RV) approaches, the quadrupole moments of the lowest nsnp excited states of the alkaline-earth atoms beryllium, magnesium, calcium, strontium, and barium. They also calculated the quadrupole moments of the singly excited 1s4p and 1s5p ³P states of helium. The discrepancy between the calculated quadrupole moments and those measured by Miller and Freund [3,4] for the excited states of helium was about 30%. For beryllium, the discrepancies between the quadrupole moments calculated by Ceraulo and Berry [12] and those calculated by Sinanoğlu and Beck [10] and by McCavert [11] were up to 16%.

The purpose of this work is to study the quadrupole moments of Be $(2s2p; {}^{3}P_{2})$, Al $(2p; {}^{2}P_{3/2})$, In $(5p; {}^{2}P_{3/2})$, and of the $np^{5}(n+1)s; {}^{3}P_{2}$ (n=2-5 for Ne to Xe) excited states of the rare-gas atoms using the finite-element multiconfiguration Hartree-Fock (MCHF) program

LUCAS [13-18]. The atomic quadrupole moment of Ca(3d4s; ¹D) [13] and the electric field gradient at the nucleus (efg) of Ne($2p^{5}3s$; ³P₂) [14] have previously been studied using the present finite-element (FE) MCHF approach. The efg combined with the nuclear quadrupole coupling constant yielded the nuclear quadrupole moment of the ²¹Ne nucleus [14]. The efg operator has the same angular part as the quadrupole-moment operator but the radial integrals are mainly determined by the inner part of the atom.

II. METHODS

The finite-element multiconfiguration Hartree-Fock method used in this work has previously been discussed [15-18]. To facilitate the selection of the configurations, the MCHF method is based on the restricted active space (RAS) [19,20] method which is an adaptation of the complete active space (CAS) method [21]. The active orbital space consists of three subspaces, the RAS I, the RAS II, and the RAS III spaces. In a RAS calculation a lower limit is given for the number of electrons in RAS I, and an upper limit is given for the number of electrons in RAS III, while there is no restriction on the number of electrons in RAS II. The following notations are used for the RAS calculations: inactive orbitals // the orbitals of RAS I {minimum number of electrons in RAS I } / the orbitals of RAS II / the orbitals of RAS III (maximum number of electrons in RAS III). When a hyphen appears in the notation it means that all the orbitals to the left are frozen while those to the right are fully optimized. If it is not otherwise quoted, the frozen shells are always taken from the previous calculation of the table.

For an LS-coupled wave function, the atomic quadrupole moment is usually characterized by the $M_L = L$ component of the wave function [1] and evaluated from

$$Q_{zz} = -\sum_{i,j} \sqrt{(4\pi/5)} \langle Y_{l(i)}^{m(i)} | Y_2^0 | Y_{l(j)}^{m(j)} \rangle \langle \phi_i | r^2 | \phi_j \rangle \Gamma_{ij} .$$
(2.1)

In Eq. (2.1), Y_i^m are the spherical harmonics, ϕ_i is the radial part of the orbital *i*, and Γ_{ij} are the elements of the one-electron density matrix. The relativistic effects are estimated using a quasirelativistic configurationinteraction (QRCI) approach where the Darwin and the mass-velocity integrals are added to the one-electron integrals, and a nonrelativistic CI is performed with the modified integrals.

III. RESULTS AND DISCUSSION

A. Be

The quadrupole moment of $Be(2s2p; {}^{3}P_{2})$, $Q_{zz}(Be)$, was obtained by performing CAS calculations with systematically increased size of the active space. Calculations with the 1s shell inactive yielded a two-electron limit of 2.2996 a.u. for $Q_{zz}(Be)$. The four-electron limit of $Q_{zz}(Be)$ obtained in a 6s5p4d3f CAS calculation (Be-9) became 2.2652 a.u. (see Table I). A comparison between the Be-8 and Be-10 CAS calculations shows that the contributions

TABLE I. The quadrupole moment Q_{zz} and the total energy E_T of Be $(2s2p; {}^{3}P_2)$ as a function of the active space (in a.u.).

Active space ^a	Label	Q_{zz}	E_T^{b}
$\frac{s}{1s} / \frac{1}{1s} / \frac{1}{1p} (1)$	Be-1	2.0478	- 14.511 502
s//2s2p	Be-2	2.0669	-14.513 065
$\frac{1}{2s^2p}$ 1d	Be-3	2.3062	-14.518 265
$\frac{1}{3}s^{2}p^{2}d^{1}f$	Be-4	2.3002	-14.518 632
s//4s4p3d2f1g	Be-5	2.2996	- 14.518 694
3s2p1d	Be-6	2.2435	- 14.553 679
$s_{3p} 2d_{1f}$	Be-7	2.2276	-14.560 524
5s4p3d2f	Be-8	2.2559	- 14.564 109
5s5p4d3f	Be-9	2.2652	- 14.565 581
5s4p3d2f1g	Be-10	2.2558	-14.564 298
$5s4p3d2f1g^{\circ}$	Be-11	2.2557	-14.566 817
$s//5s5p4d3f^{-d}$	Be-12	2.2909	- 14.518 541

^aFor notation see text.

^bThe number of grid points is 201 and the practical infinity is set to 100 a.u. Fourth-order element functions are used.

^cQuasirelativistic calculation. See text.

^dTwo-electron CI in the shells of the Be-9 calculation.

to Q_{zz} (be) from g shells are very small. The changes of Q_{zz} (Be) due to relativistic effects are also small, as expected. In Table II the present quadrupole moments of Be are compared to values from the literature.

The present two-electron value for Q_{zz} (Be) is very close to the NCMET results calculated by Sinanoğlu and Beck [10], and to those calculated by McCavert [11]. Sinanoğlu and Beck [10] found a negligibly small contribution (0.05%) from 1s. However, according to the present calculations the 1s polarization contribution to Q_{zz} (Be) is significantly larger (1.0-1.5%). A corecorrelation contribution to Q_{zz} (Be) of -0.034 a.u. is obtained by comparing the Q_{zz} of the Be-9 and the Be-5 calculations, while the core-correlation contribution becomes -0.026 a.u. when it is estimated as the difference

TABLE II. The quadrupole moment Q_{zz} of Be $(2s2p; {}^{3}P_{2})$ as compared to literature values (in a.u.).

Method	Value	Ref. ^a
Hartree-Fock	2.048	PW
Two-electron limit	2.300	PW
Core-correlation correction	-0.026	PW
Four-electron limit	2.265	PW
Relativistic correction	-0.0001	PW
Extrapolated value ^b	2.274	PW
Hartree-Fock	2.045	[10]
NCMET°	2.296	[10]
NCMET ^c	2.306	[11]
Unrestricted Hartree-Fock	1.833	[12]
Configuration-interaction	2.140	[12]
Rotor-vibrator	1.919	[12]

^aPW denotes present work.

^bObtained by adding the core-correlation correction to the twoelectron limit.

^cA "nonclosed shell many-electron theory" calculation.

between the Q_{zz} of a two-electron CI calculation (Be-12) and the Q_{zz} of the Be-9 calculation. The Be-12 CI calculation is performed in the shells of the Be-9 calculation.

The configuration-interaction, the unrestricted Hartree-Fock, and the rotor-vibrator calculations by Ceraulo and Berry [12] yielded values for Q_{zz} (Be) which are 19%, 5.5%, and 15% smaller than the present fourelectron limit, respectively. Although Ceraulo and Berry consider the results of the rotor-vibrator method to be sound, it does not seem to be a very accurate method.

B. Al and In

The valence limits for Q_{zz} (Al) and Q_{zz} (In) are obtained by performing valence (three electron) CAS calculations with systematically enlarged active spaces. The largest valence calculations (Al-4 and In-4) yielded a Q_{zz} (Al) of 2.5995 a.u. and a Q_{zz} (In) of 3.1720 a.u. (see Tables III and IV).

The relativistic correction to Q_{zz} (Al) obtained from the QRCI calculation is 0.0004 a.u. For In, the corresponding relativistic correction became -0.021 a.u. These relativistic corrections significantly differ from the ones obtained by comparing Hartree-Fock and Dirac-Fock (DF) calculations. The $\langle r^2 \rangle_{rel} / \langle r^2 \rangle_{nonrel}$ ratio of 1.002 69 for the $3p_{3/2}$ shell of Al yields a relativistic correction of 0.007 a.u. [22], and for In, the $\langle r^2 \rangle_{rel} / \langle r^2 \rangle_{nonrel}$ of 1.017 93 for the $5p_{3/2}$ shell yields a relativistic correction of 0.056 a.u. [22]. The Al(3p; ${}^2P_{3/2}$) and the In(5p; ${}^2P_{3/2}$) states have one dominating configuration and are therefore well described in the HF (DF) model. The relativistic corrections of Table V are the ones deduced from the $\langle r^2 \rangle$ ratios.

The core-correlation and the polarization contributions to $Q_{zz}(Al)$ of -0.028 a.u. were estimated by comparing the result of the valence CAS calculation (Al-6) with that of the 2s//1s2p/2s2p2d-1s1p1d(2) RAS calculation (Al-9). The contributions from most of the triple, quadruple, and higher excitations are not considered in the Al-9 RAS calculation. These contributions are estimated as the difference between the $Q_{zz}(Al)$ of the Al-7 and

TABLE III. The quadrupole moment Q_{zz} and the total energy E_T of Al(3p; ${}^2P_{3/2})$ as a function of the active space (in a.u.).

Active space ^a	Label	Q_{zz}	$E_T{}^{b}$
3s 1p / / 1p	Al-1	2.8012	-241.876710
2s1p//2s2p1d	Al-2	2.5256	-241.930931
2s1p//3s3p2d1f	A1-3	2.5917	-241.934 195
2s1p//4s4p3d2f1g	A1-4	2.5995	-241.934 839
$2s1p//4s4p3d2f1g^{-c}$	A1-5	2.5999	-242.369 851
2s 1p / / 3s 3p 2d	Al-6	2.5767	-241.932 375
2s1p//4s4p3d	Al-7	2.5835	-241.932 554
2s 1p / / 1s 1p / 3s 3p 3d-(2)	A1-8	2.5808	-241.932 199
$2s//1s2p/2s2p2d-1s1p1d(2)^{d}$	A1-9	2.5456	-242.107 318

^aFor notation see text.

^bSee footnote b of Table I.

^cQuasirelativistic calculation. See text.

^dThe frozen shells are taken from the Al-6 calculation.

Al-8 calculations. The core-correlation correction in Table V is estimated as $Q_{zz}(Al-9)-Q_{zz}(Al-6)+Q_{zz}(Al-7)-Q_{zz}(Al-8)$. The 1s and 2s shells are uncorrelated in all Al calculations and therefore do not contribute to the final $Q_{zz}(Al)$. The contribution to $Q_{zz}(Al)$ from the contracted 1s and 2s is expected to be very small.

Valence correlation effects reduce the size of $Q_{zz}(Al)$ by 7.2% and core correlation and polarization reduce it further by about 1% of the Hartree-Fock value. The final $Q_{zz}(Al)$ is in an excellent agreement with the experimental result [1]. The uncertainty in the calculated value is estimated to be less than 1% as compared to the experimental error of 6% [1]. The Al and In results are compared to literature values in Table V.

For In, valence correlation reduces Q_{zz} (In) with only 4.7% as compared to 7.2% for Al. The core-valence correlation contribution of -0.063 a.u. to Q_{zz} (In) was estimated as the difference between the Q_{zz} of the In-10 RAS calculation and the Q_{zz} of the In-11 valence CI calculation and correcting for a core-valence correlation fshell contribution of -0.010 a.u. estimated as Q_{zz} (In- $12) - Q_{zz}(In-8) - Q_{zz}(In-13) + Q_{zz}(In-9)$ (see Table IV). In the core-valence RAS calculations (In-7, In-8, In-10, and In-12), only single excitations are allowed from the 4dshell to the shells of the RAS III space, and only the core-valence spd shells of the RAS III space are optimized. The 4d polarization contribution to Q_{77} (In) became only 2% of the HF value. The final calculated value for Q_{77} (In) of 3.165 a.u. is 4–11 % larger than the experimental result of 2.94(10) a.u. [2]. The main reason for the discrepancy is probably the neglect of the corecore (4d) correlation in the MCHF calculations.

C. Ne, Ar, Kr, and Xe

The computational procedure for the MCHF determination of the quadrupole moments of the excited states of the rare-gas atoms is slightly different from that of the Be, Al, and In calculations. The (n+1)s shell is diffuse $(\langle r \rangle_{3s,Ne} = 4.39 \text{ a.u.}, \langle r \rangle_{4s,Ar} = 5.43 \text{ a.u.}, \langle r \rangle_{3s,Kr} = 5.78$ a.u., and $\langle r \rangle_{4s,Xe} = 6.45$ a.u.) and soft. The (n+1)s shell is polarized by the hole in the *np* shell [2]. The first step in the computational procedure is to design the orbitals that give the *s*-*d* polarization of the (n + 1)s shell.

In order to design polarization shells, polarization and core-valence correlation calculations (pol+CV) were performed. In the pol+CV calculations, the HF shells were frozen, and single excitations from the *nsnp* shells in RAS I to the shells of RAS II were included. All RAS II shells but the HF (n + 1)s shell were optimized. In the HF reference the *np* shell contains five electrons, and in a pol+CV calculation there must be at least four electrons in the *nsnp* shells or alternatively, with *ns* correlated, at least six electrons in the *nsnp* shells. Obviously, there are one or two electrons in RAS II. All configurations which have RAS II singly occupied are polarization configurations, while those with two electrons in RAS II are core-valence correlation configurations.

The pol+CV spd limit for the Q_{zz} 's of Ne, Ar, Kr, and Xe were obtained by systematically augmenting the RAS II space with s, p, and d shells (Ne-2 to Ne-8 of Table VI,

Active space ^a	Label	Q_{zz}	E_T^{b}
5s3p2d//1p	In-1	3.3294	- 5740.169 221
4s3p2d//2s2p1d	In-2	3.0924	- 5740.213 529
4s 3p 2d / / 3s 3p 2d 1f	In-3	3.1615	- 5740.216 646
4s3p2d//4s4p3d2f1g	In-4	3.1720	- 5740.217 424
$4s 3p 2d / / 4s 4p 3d 2f 1g^{\circ}$	In-5	3.1507	- 5870.695 171
4s 3p 2d / / 3s 3p 2d	In-6	3.1474	- 5740.214 744
$4s 3p 1d / / 1d \{9\} / 3s 3p 2d - 1s 1p 1d$	In-7	3.0934	- 5740.237 918
$4s 3p 1d / / 1d \{9\} / 2s 2p 1d / -1s 1p 1d (2)^{d}$	In-8	3.0683	- 5740.236 124
$4s 3p 2d / / 2s 2p 1d / 1s 1p 1d - (2)^{e}$	In-9	3.1111	- 5740.214 409
$4s 3p 1d / / 1d \{9\} / 2s 2p 1d / -2s 2p 2d (2)^{d}$	In-10	3.0741	- 5740.238 099
$4s 3p 2d / / 2s 2p 1d / 2s 2p 2d - (2)^{e}$	In-11	3.1276	- 5740.214 737
$4s 3p 1d / / 1d \{9\} / 2s 2p 1d / -1s 1p 1d 1f (2)^{d}$	In-12	3.0586	- 5740.283 919
$4s 3p 2d / / 2s 2p 1d / 1s 1p 1d 1f - (2)^{e}$	In-13	3.1109	-5740.214833

TABLE IV. The quadrupole moment Q_{zz} and the total energy E_T of $In(5p; {}^2P_{3/2})$ as a function of the active space (in a.u.).

^aFor notation see text.

^bThe number of grid points is 401 and the practical infinity is set to 1000 a.u. Fourth-order element functions are used.

°Quasirelativistic calculation. See text.

^dThe frozen shells are from the In-2 calculation.

^eValence CI in the shells of the previous calculation in the table.

Ar-2 to Ar-7 of Table VII, Kr-2 to Kr-7 of Table VIII, and Xe-2 to Xe-7 of Table IX). The core-polarization contribution to the Q_{zz} 's (from 1s, 2s1p, 3s2p1d, and 4s3p2d for Ne to Xe) is small and neglected. The f- and g-shell contributions to Q_{zz} were estimated by adding optimized f and g shells to the RAS II space and comparing this Q_{zz} with that of the corresponding spd calculation. The shells of the spd calculation (Ne-8, Ar-7, Kr-7, and Xe-5) were frozen. For Ne, also the f shells were frozen in the g-shell calculation.

The effect of double and triple excitations from the *ns*, *np*, and (n + 1)s orbitals on Q_{zz} was estimated by performing multireference CI (MRCI) calculations in the shells of the pol+CV RAS calculations. The change in Q_{zz} due to quadruple excitations was estimated by comparing MR SDT and MR SDTQ CI calculations with the *ns* shell doubly occupied in all configurations.

The polarization calculations (Ne-21, Ar-20, Kr-19, and Xe-20) were performed as follows. The HF shells

were frozen. The np shell was set in RAS II and the (n + 1)s shell in RAS III. The RAS III space was augmented by one d shell which was optimized. There is only one electron in RAS III. The most important excitation of the polarization calculations is the (n + 1)s to d excitation mimicking the s-d polarization.

The HF values for Q_{zz} of the rare gases are close to the Hartree-Fock-Slater (HFS) ones [2], while they significantly differ from the experimental results. The *spd* limits of -0.0500, -0.0740, +0.0376, and ± 0.5064 a.u. for the Q_{zz} 's of Ne, Ar, Kr, and Xe, respectively, obtained in the pol+CV calculations are reminiscent of the experimental values. (See Table X). In the *spd*-limit calculations, the first set of *spd* shells hardly affects the Q_{zz} . For Ne, Ar, and Kr, the third and fourth sets of *spd* shells significantly reduce them. These *spd* shells are also very unimportant for the energies. The lowering in the total energy due to the addition of the third and fourth sets of *spd* shells is -0.0759, -0.782, and -0.890 mH

TABLE V. The quadrupole moment Q_{zz} of the ${}^{2}P_{3/2}$ states of Al and In as compared to literature values (in a.u.).

Method	Al	In	Ref.
Hartree-Fock	2.801	3.329	PW
MCHF valence limit	2.600	3.172	PW
Core-valence correlation correction		-0.063	PW
Core-correlation correction ^a	-0.028		PW
Relativistic correction	0.007	0.056	PW
Final value	2.579	3.165	PW
Hartree-Fock	2.801	3.329	[23]
Hartree-Fock	2.8	3.32	[1.2]
Experiment	2.53(15)	2.94(10)	[1,2]

^aIncludes both core-core and core-valence correlation corrections.

for Ne, Ar, and Kr, respectively. For Xe, the second and third sets of *spd* shells change the Q_{zz} by 1.6005 a.u., yet their contribution to the total energy is only 5.109 mH.

The f-shell contributions, estimated as Ne-12–Ne-8, Ar-11–Ar-7, Kr-9–Kr-7, and Xe-10–Xe-5, are all positive, and they are larger for the heavier rare gases. For Xe, the f-shell contribution is about 30% of the final Q_{zz} .

The g-shell contributions are estimated as the Q_{zz} differences Ne-13–Ne-12, Ar-12–Ar-8, Kr-10–Kr-8, and Xe-12–Xe-9. For Ne and Ar, the g-shell contributions are very small and negative, for Kr it is +0.0043 a.u. and for Xe +0.0700 a.u., i.e., about half of the f-shell contribution.

The s-d polarization is not obtained in the HF model, and the relativistic contributions to Q_{zz} cannot be reliably estimated from DF (HF) calculations. The relativistic corrections to Q_{zz} (Ne) (Ne-14-Ne-8) and to Q_{zz} (Ar) (Ar-13-Ar-7) are negligibly small. The relativistic corrections are all negative and become as expected, in absolute value, larger with increasing nuclear charge. For Xe, the relativistic correction (Xe-13-Xe-7) is -0.1612 a.u. or 36% of the final Q_{zz} (Xe), and for Kr (Kr-11-Kr-7) it is about one order of magnitude smaller than for Xe. The quasirelativistic method (QRCI) used in this work which is based on relativistic perturbation expansions does not consider spin-orbit splittings. The QRCI method becomes less reliable for heavier systems. However, for Kr and Xe the discrepancy between the nonrelativistic and the experimental Q_{zz} values is reduced by the relativistic corrections. For the ground state of Xe, the difference in $\langle r^2 \rangle$ of $5p_{1/2}$ and $5p_{3/2}$ is 0.6 a.u. [22]. The spin-orbit effects which are not considered in the QRCI calculations may be responsible for a large fraction of the discrepancy between the final Q_{zz} (Xe) and the experimental value.

A comparison of the Q_{zz} obtained in the pol+CV RAS calculations and those of the MRSD CI calculations in the same shells show that the s-d polarization of the (n+1)s is lost in the MRSD CI calculation. The Q_{zz} 's contained in the MRSDT CI calculations are very close to the pol+CV values. The triple excitations introduce polarization of the doubly excited configurations. The quadruple excitations contribute one to two orders of magnitude less than double and triple excitations. Quadruple excitations are also found to be more important for the heavier rare gases. The total correlation contribution to Q_{zz} from D, T, and Q are -0.0019, -0.0007, and -0.0005 a.u. for Ne, Ar, and Kr, respectively. Note that we use here the notation D, T, and Q to indicate the number of excitations from RAS I. For Xe, the total DTQ correlation contribution is -0.1087 a.u., which is about 25% of the final Q_{xx} (Xe). For Xe, a larger radial overlap between the (n + 1)s orbital and the nsnp semicore orbitals makes higher-order excitation effects more important.

TABLE VI. The quadrupole moment Q_{zz} and the total energy E_T of Ne $(2p^{5}3s; {}^{3}P_2)$ as a function of the active space (in a.u.).

Active space ^a	Label	Q_{zz}	E_T^{b}
2s / / 1p 1s	Ne-1	-0.1984	- 127.992 315
$1s//1s1p{6}/1s-1s1p1d$	Ne-2	-0.2120	-128.023386
$1s//1s1p{6}/1s-2s2p2d$	Ne-3	-0.1931	- 128.025 905
$1s//1s1p{6}/1s-3s3p3d$	Ne-4	-0.1043	-128.026 531
$1s//1s1p{6}/1s-4s4p4d$	Ne-5	-0.0579	- 128.026 664
$1s//1s1p{6}/1s-5s5p5d$	Ne-6	-0.0553	-128.026720
$1s//1s1p{6}/1s-6s6p6d$	Ne-7	-0.0516	-128.026737
$1s//1s1p{6}/1s-7s7p7d$	Ne-8	-0.0500	-128.026743
$1s//1s1p{6}/8s7p7d-1f$	Ne-9	-0.0460	-128.031 178
$1s//1s1p{6}/8s7p7d-2f$	Ne-10	-0.0476	-128.031 406
$1s//1s1p{6}/8s7p7d-3f$	Ne-11	-0.0477	-128.031 449
$1s//1s1p{6}/8s7p7d-4f$	Ne-12	-0.0477	-128.031 461
$1s//1s1p{6}/8s7p7d4f-1g$	Ne-13	-0.0481	-128.031 521
$1s//1s1p{6}/8s7p7d^{-c}$	Ne-14	-0.0505	-128.165 229
$1s / / 2s 1p / 3s 3p 3d - (2)^d$	Ne-15	-0.1478	-128.187460
$1s / / 2s 1p / 4s 4p 4d - (2)^{e}$	Ne-16	-0.1331	-128.195 604
$1s / / 2s 1p / 3s 3p 3d - (3)^d$	Ne-17	-0.1075	-128.190 810
$1s / / 2s 1p / 4s 4p 4d - (3)^{e}$	Ne-18	-0.0596	-128.199 227
$2s / / 1s 1p / 3s 3p 3d - (3)^d$	Ne-19	-0.1176	-128.118670
$2s / / 1s 1p / 3s 3p 3d - (4)^d$	Ne-20	-0.1178	-128.119 688
$2s / / 1p / 1s - 1d (1)^{f}$	Ne-21	-0.0335	- 127.992 602

^aFor notation see text.

^bThe number of grid points is 201 and the practical infinity is set to 100 a.u. Fourth-order element functions are used.

°Quasirelativistic CI in the shells of the Ne-8 calculation.

^dCI in the shells of the Ne-4 calculation.

^eCI in the shells of the Ne-5 calculation.

^fPolarization calculation.

Active space ^a	Label	Q_{zz}	E_T^{b}
3s 1p / / 1p 1s	Ar-1	-0.5800	- 526.416 746
$2s 1p / / 1s 1p \{6\} / 1s - 1s 1p 1d$	Ar-2	-0.5973	- 526.454 638
$2s 1p / / 1s 1p \{6\} / 1s - 2s 2p 2d$	Ar-3	-0.4730	- 526.458 198
$2s 1p / / 1s 1p \{6\} / 1s - 3s 3p 3d$	Ar-4	-0.1384	- 526.458 848
$2s 1p / / 1s 1p \{6\} / 1s - 4s 4p 4d$	Ar-5	-0.0787	- 526.458 980
$2s 1p / / 1s 1p \{6\} / 1s - 5s 5p 5d$	Ar-6	-0.0740	-526.459012
$2s 1p / / 1s 1p \{6\} / 1s - 6s 6p 6d$	Ar-7	-0.0740	- 526.459 024
$2s 1p / / 1s 1p \{6\} / 7s 6p 6d - 1f$	Ar-8	-0.0511	- 528.466 371
$2s 1p / / 1s 1p \{6\} / 7s 6p 6d - 2f$	Ar-9	-0.0570	- 526.466 787
$2s 1p / / 1s 1p \{6\} / 7s 6p 6d - 3f$	Ar-10	-0.0552	- 526.466 848
$2s 1p / / 1s 1p \{6\} / 7s 6p 6d - 4f$	Ar-11	-0.0540	- 526.466 860
$2s1p//1s1p{6}/7s6p6d-1f1g$	Ar-12	-0.0512	- 526.466 418
$2s 1p / / 1s 1p \{6\} / 7s 6p 6d^{\circ}$	Ar-13	-0.0746	- 528.262 049
$2s 1p / / 2s 1p / 3s 3p 3d - (2)^d$	Ar-14	-0.3719	- 526.585 598
$2s \frac{1}{p} \frac{1}{2s \frac{1}{p}} \frac{4s 4p 4d}{4s 4p 4d}$	Ar-15	-0.3600	- 526.588 696
$2s \frac{1}{p} \frac{1}{2s \frac{1}{p}} \frac{3s 3p 3d}{3s 3p 3d}$	Ar-16	-0.1338	- 526.591 437
$2s \frac{1}{p} \frac{1}{2s \frac{1}{p} \frac{4s 4p 4d}{4s 4p 4d}}$	Ar-17	-0.0712	- 526.594 847
$3s \frac{1}{p} / \frac{1}{1s \frac{1}{p} / 3s \frac{3}{p} 3d}{(3)^d}$	Ar-18	-0.1304	- 526.533 506
$3s \frac{1p}{1s \frac{1p}{3s \frac{3p}{3d}}} = (4)^d$	Ar-19	-0.1386	-526.536331
$3s_{1n}/(1n/1s_{1d}(1)^{f})$	Ar-20	+0.0907	- 526.417 590

TABLE VII. The quadrupole moment Q_{zz} and the total energy E_T of Ar($3p^{5}4s$; $^{3}P_2$) as a function of the active space (in a.u.).

^aFor notation see text.

^bThe number of grid points is 301 and the practical infinity is set to 100 a.u. Fourth-order element functions are used.

°Quasirelativistic CI in the shells of the Ar-7 calculation.

^dCI in the shells of the Ar-4 calculation.

^eCI in the shells of the Ar-5 calculation.

^fPolarization calculation.

TADLEVIII	701	0 141 4 4 1		55 30 0 00 00
TABLE VIII.	I ne quadrupole moment	Q_{zz} and the total	energy E_T of Kr(4 μ	$(5s; P_2)$ as a function of
the active space (in a.u.).			

Active space ^a	Label	Q_{zz}	E_T^{b}
4s2p1d//1p/1s(1)	Kr-1	-0.7952	-2751.701 567
$3s2p1d//1s1p{6}/1s-1s1p1d$	Kr-2	-0.8105	-2751.734276
$3s2p1d//1s1p{6}/1s-2s2p2d$	Kr-3	-0.5086	-2751.738 187
$3s2p1d//1s1p{6}/1s-3s3p3d$	Kr-4	-0.0213	-2751.738 958
3s2p1d//1s1p(6)/1s-4s4p4d	Kr-5	+0.0292	-2751.739077
$3s2p1d//1s1p{6}/1s-5s5p5d$	Kr-6	+0.0353	-2751.739 105
$3s2p1d//1s1p{6}/1s-6s6p6d$	Kr-7	+0.0376	-2751.739113
3s2p1d//1s1p(6)/7s6p6d-1f	Kr-8	+0.0759	-2751.747078
$3s2p1d//1s1p{6}/7s6p6d-2f$	Kr-9	+0.0724	-2751.747 567
$3s2p1d//1s1p{6}/7s6p6d-1f1g$	Kr-10	+0.0802	-2751.747 145
$3s2p1d//1s1p{6}/7s6p6d^{-c}$	Kr-11	+0.0205	-2786.877 527
$3s2p1d//2s1p/3s3p3d-(2)^d$	Kr-13	-0.4422	-2751.837 573
$3s2p1d//2s1p/4s4p4d-(2)^{e}$	Kr-14	-0.4409	-2751.840043
$3s2p1d//2s1p/3s3p3d-(3)^{d}$	Kr-15	-0.0118	-2751.842276
$4s2p1d//1s1p/3s3p3d-(3)^{d}$	Kr-16	-0.0128	-2751.795 609
$4s2p1d//1s1p/4s4p4d-(3)^{e}$	Kr-17	+0.0430	-2751.796 849
$4s2p1d//1s1p/3s3p3d-(4)^{d}$	Kr-18	-0.0271	-2751.797 721
$4s2p1d//1p/1s-1d(1)^{f}$	Kr-19	+0.3031	-2751.702 880

^aFor notation see text.

^bThe number of grid points is 401 and the practical infinity is set to 1000 a.u. Fourth-order element functions are used.

^cQuasirelativistic CI in the shells of the Kr-7 calculation.

^dCI in the shells of the Kr-4 calculation.

^eCI in the shells of the Kr-5 calculation.

^fPolarization calculation.

Active space ^a	Label	Qzz	E_T^{b}
5s3p2d / / 1p1s	Xe-1	-1.1377	-7231.829 651
$4s3p2d//1s1p{6}/1s-1s1p1d$	Xe-2	-1.1439	-7231.859 552
$4s 3p 2d / / 1s 1p \{6\} / 1s - 2s 2p 2d$	Xe-3	-0.1413	-7231.863800
$4s 3p 2d / / 1s 1p \{6\} / 1s - 3s 3p 3d$	Xe-4	+0.4566	-7231.864 661
$4s 3p 2d / / 1s 1p \{6\} / 1s - 4s 4p 4d$	Xe-5	+0.4981	-7231.864767
$4s 3p 2d / / 1s 1p \{6\} / 1s - 5s 5p 5d$	Xe-6	+0.5041	-7231.864 790
$4s 3p 2d / / 1s 1p \{6\} / 1s - 6s 6p 6d$	Xe-7	+0.5064	-7231.864 797
$4s_{3p}2d/(1s_{1p})6)/(5s_{4p}4d-1)f$	Xe-8	+0.5926	-7231.874 116
$4s_{3p}2d/(1s_{1p})6)/(5s_{4p}4d-2f)$	Xe-9	+0.6331	-7231.874 701
$4s 3p 2d / / 1s 1p \{6\} / 5s 4p 4d - 3f$	Xe-10	+0.6421	-7231.874773
$4s 3p 2d / / 1s 1p \{6\} / 5s 4p 4d - 1f 1g$	Xe-11	+0.6526	-7231.874 231
$4s_{3p}2d/(1s_{1p}\{6\})/(5s_{4p}4d-2f_{2g})$	Xe-12	+0.7031	-7231.875031
$4s_{3p}2d//1s_{1p}\{6\}/7s_{6p}6d^{-c}$	Xe-13	+0.3452	- 7429.144 546
$4s 3p 2d / / 2s 1p / 3s 3p 3d - (2)^d$	Xe-14	-0.5306	-7231.944 360
$4s 3p 2d / / 2s 1p / 4s 4p 4d - (2)^{e}$	Xe-15	-0.5413	-7231.946 243
$4s 3p 2d / / 2s 1p / 3s 3p 3d - (3)^d$	Xe-16	+0.4324	- 7231.949 170
$5s 3p 2d / / 1s 1p / 3s 3p 3d - (3)^d$	Xe-17	+0.4543	-7231.910686
$5s3p2d//1s1p/4s4p4d-(3)^{e}$	Xe-18	+0.5033	-7231.911 610
$5s 3p 2d / / 1s 1p / 3s 3p 3d - (4)^d$	Xe-19	+0.4113	-7231.912 706
$5s_{3p}2d//1p/1s_{1d}^{f}$	Xe-20	+1.0962	-7231.831784

TABLE IX. The quadrupole moment Q_{zz} and the total energy E_T of Xe($4p^{55s}$; $^{3}P_2$) as a function of the active space (in a.u.).

^aFor notation see text.

^bThe number of grid points is 601 and the practical infinity is set to 1000 a.u. Sixth-order element functions are used.

^cQuasirelativistic CI in the shells of the Xe-7 calculation.

^dCI in the shells of the Xe-4 calculation.

^eCI in the shells of the Xe-5 calculation.

^fPolarization calculation.

The D corrections given in Table X are estimated as the Q_{zz} differences Ne-16–Ne-5, Ar-15–Ar-5, Kr-14–Kr-5, and Xe-15–Xe-5. The T corrections of Table X are analogously obtained as Ne-18–Ne-16, Ar-17–Ar-15, Kr-17–Kr-16+Kr-15–Kr-14, and Xe-18–Xe-17+Xe-16–Xe-15, while the Q correction is simply the differences Ne-20–Ne-19, Ar-19–Ar-18, Kr-18–Kr-16,

and Xe-19-Xe-17. The final Q_{zz} 's of Table X are obtained by adding the corrections to the MCHF CV spd-limit values in Table X.

Multireference single and double (MRSD) RAS calculations with the *ns*, *np*, and (n + 1)s shells (n = 2-5 for Ne to Xe) in RAS II, and with at most two electrons in the orbitals of RAS III are not capable of reproducing

Method ^a	Ne	Ar	Kr	Xe	Ref.
HF	-0.1984	-0.5800	-0.7952	-1.1377	PW
MCHF CV spd limit	-0.0500	-0.0740	+0.0376	+0.5064	PW
f contribution	+0.0023	+0.0200	+0.0348	+0.1440	PW
g contribution	-0.0004	-0.0001	+0.0043	+0.0700	PW
D correction	-0.0752	-0.2813	-0.4701	-1.0394	PW
T correction	+0.0735	+0.2888	+0.4849	+1.0227	PW
Q correction	-0.0002	-0.0082	-0.0143	-0.0920	PW
Relativistic correction	-0.0005	-0.0006	-0.0171	-0.1612	PW
Final value	-0.0506	-0.0553	+0.0601	+0.4505	PW
Polarization calc.	-0.0335	+0.0907	+0.3031	+1.0962	PW
HFS	-0.234	-0.613	-0.822	-1.15	[2]
Sternheimer	-0.0428	+0.0098	+0.0962	+0.380	[8]
Sternheimer	-0.0447	-0.0049	+0.0649	+0.303	[9]
Experiment	-0.048(5)	-0.042(4)	+0.046(5)	+0.30(3)	[2]

TABLE X. The quadrupole moment Q_{zz} of the rare-gas atoms in $np^{5}(n+1)s^{3}P_{2}$ state as compared to literature values (in a.u.).

^aFor details, see the text.

the *s*-*d* polarization. In the MRSD RAS calculations, the inactive shells and the shells in RAS II were frozen HF shells, while the shells in RAS III were optimized.

The s-d polarization contribution was separately estimated by performing the polarization calculations Ne-21, Ar-20, Kr-19, and Xe-20. The Q_{zz} obtained in the polarization calculations are qualitatively correct but the sd polarization effect is exaggerated. The CV correlation contributions estimated as the difference between the Q_{zz} of the polarization and the Q_{zz} obtained in the pol+CV calculations become -0.02, -0.17, -0.27, and -0.58a.u. for Ne to Xe, respectively.

For Xe, the DTQ correlation and relativistic corrections, and the contributions from higher angular momentum functions (f and g functions) are of the same magnitude as the experimental Q_{zz} . These effects are not taken into account in Sternheimer's perturbation potential method for estimating the quadrupole polarization effects [7-9]. This shows that the agreement between the experimental Q_{zz} and the Q_{zz} calculated by Sternheimer using his perturbation method [8,9] is fortuitous.

The electric field gradient at the nucleus which was calculated previously for Ne using the same MCHF program [18] is not very sensitive to the *s*-*d* polarization. The efg operator weights the inner region of the atom, and the major contributions to the efg come from the hole in the *np* shell and from an *s*-*d* polarization of the inner *ns* shell. The *s*-*d* polarization of the outer (n + 1)sshell hardly contributes to the efg.

IV. CONCLUSION

The Q_{zz} of the 2s2p ${}^{3}P_{2}$ excited state of Be, the ${}^{2}P_{3/2}$ states of Al and In, and the np(n+1)s ${}^{3}P_{2}$ excited states

- J. R. P. Angel, P. G. H. Sandars, and G. K. Woodgate, J. Chem. Phys. 47, 1552 (1967).
- [2] P. G. H. Sandars and A. J. Stewart, in *Atomic Physics 3*, Proceedings of the Third International Conference on Atomic Physics, 1972, edited by S. J. Smith and G. K. Walters (Plenum, New York, 1973), p. 429.
- [3] T. A. Miller and R. S. Freund, Phys. Rev. A 4, 81 (1971).
- [4] T. A. Miller and R. S. Freund, Phys. Rev. A 5, 588 (1972).
 [5] M. A. Player and P. G. H. Sandars, J. Phys. B 3, 1620
- (1970).
- [6] D. K. Sen, Phys. Rev. A 18, 1327 (1978).
- [7] R. M. Sternheimer, Z. Naturforsch, Teil A 41, 24 (1986), and references therein.
- [8] R. M. Sternheimer, Phys. Rev. A 7, 887 (1973).
- [9] R. M. Sternheimer, Phys. Rev. A 8, 685 (1973).
- [10] O. Sinanoğlu and D. R. Beck, Chem. Phys. Lett. 21, 247 (1973).
- [11] P. McCavert, Chem. Phys. Lett. 35, 21 (1975).
- [12] S. C. Ceraulo and R. S. Berry, Phys. Rev. A 44, 4145

of Ne, Ar, Kr, and Xe have been determined using a finite-element multiconfiguration Hartree-Fock method. The values obtained for Q_{zz} (Be), Q_{zz} (Ne), Q_{zz} (Al), and Q_{zz} (In) were in good agreement with previous calculated and experimental results. See Tables II, V, and X. The final $Q_{zz}(Ar)$ and $Q_{zz}(Kr)$ are in absolute value only 0.013 and 0.014 a.u. larger than the experimental results. For Q_{77} (Xe), the discrepancy between calculated and experimental quadrupole moments is 0.15 a.u. A large s-d polarization contribution to the Q_{zz} of the rare gases is found in the present calculations. For Ne, Ar, and Kr, contributions from doubles, triples, and quadruples to Q_{zz} alternate but the sum is negligibly small, while for $Q_{zz}(Xe)$ they also alternate but the net contribution to $Q_{zz}(Xe)$ is 0.1 a.u. Contributions from f shells are significant for $Q_{zz}(Ar)$, $Q_{zz}(Kr)$, and $Q_{zz}(Xe)$. For Q_{77} (Xe), the g-shell contribution is half of the f-shell contribution, and may not be neglected in an accurate determination of Q_{77} (Xe). It is also shown that core-valence correlation contributions to the Q_{zz} of the rare gases are very important, and a simple polarization model in a limited basis is not able to yield accurate quadrupole moments. Hence the agreement between the experimental Q_{zz} of the rare gases and the ones obtained by Sternheimer using his perturbation potential method [7-9] must be considered fortuitous.

ACKNOWLEDGMENT

The research reported here has been supported by The Academy of Finland, the Swedish Natural Science Research Council (NFR), and the Nordic Council of Ministers.

(1991).

- [13] D. Sundholm and J. Olsen, Chem. Phys. Lett. 198, 526 (1992).
- [14] D. Sundholm and J. Olsen, J. Phys. Chem. 96, 627 (1992).
- [15] D. Sundholm and J. Olsen, Phys. Rev. A 42, 1160 (1990).
- [16] D. Sundholm and J. Olsen, Phys. Rev. A 42, 2614 (1990).
- [17] D. Sundholm and J. Olsen, Chem. Phys. Lett. 177, 91 (1991).
- [18] D. Sundholm and J. Olsen, J. Chem. Phys. 94, 5051 (1991).
- [19] J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89, 2185 (1988).
- [20] J. Olsen, P. Jørgensen, and J. Simons, Chem. Phys. Lett. 169, 463 (1990).
- [21] B. O. Roos, Adv. Chem. Phys. **69**, 339 (1987), and references therein.
- [22] J. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).
- [23] C. Froese-Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1977).