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Calculation of the two-photon-annihilation contribution
to the positronium hyperfine interval at order ma
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The two-photon-annihilation contribution to the positronium hyperflne interval is obtained in analytic
form at order ma using the Fried-Yennie gauge. The contribution to the hyperfine interval is
—0.0325m' = —0.606 MHz. This di6'ers from the result of an earlier Feynman gauge evaluation. The
errors in the earlier calculation are identified. The corrected Feynman gauge result agrees with the
Fried- Yennie gauge result.

PACS number(s): 36.10.Dr, 12.20.Ds

I. INTRODUCTION

DEhf, =ma —,', ——
( —,'ln2+ —')CX

+ —,', a ln(a ')+Ra + (2)

The theoretical value, including all contributions through
order ma ln(a '), is [5]

b,Ehf, =203400.287(18) MHz . (3)

The ma term, with a coefficient of 1, would contribute
18.658 MHz. Known contributions to the coefficient K
and to AEhf, are shown in Table I. The theoretical value
for the hyperfine interval, including all known contribu-
tions to It, , is

b,E„f,=203 402. 7(6) MHz .

The error is dominated by the numerical uncertainty in
the calculation of the recoil correction [16]. Other
contributions to K, involving one-photon-annihilation
graphs, remain uncalculated.

In this paper, we show that the largest contribution to

The ground-state hyperfine interval of positronium has
been measured to be [1,2]

AEhf, =203 389. 10+0.74 MHz .

The theoretical result for this interval is [3,4]

K, coming from two-photon-annihilation graphs, is in
fact not correct. The correct contribution from these
graphs is —0.0325mn = —0.606 MHz. The corrected
theoretical value for the hyperfine interval is

bEh&, =203 389.0(6) MHz,
in agreement with the experimental result. We perform
our calculation in the Fried- Yennie gauge [17] in order to
eliminate spurious infrared divergences. The calculation
of Cung, Devoto, Fulton, and Repko [9—ll] (CDFR) for
this term was performed in the Feynman gauge. We deal
with the binding singularity in the ladder graph in the
natural way, by letting the binding energy and nonzero
relative momentum regulate the divergence. CDFR used
a nonphysical photon mass to regulate the singularity.
However, the method of CDFR is correct and should
have led to the correct answer. We identify several mis-
takes in the calculation of CDFR. After correcting these
mistakes, we find their (corrected) answer to be the same
as ours.

The outline of this paper is as follows. In Sec. II, the
two-photon-annihilation contribution at order ma is cal-
culated. We do this in order to establish notation and in-
troduce some techniques that will be useful in the mu
calculation. In Sec. III, we show the details of the order-
ma calculation in the Fried-Yennie gauge. In Sec. IV,
we discuss the ma calculation in the Feynman gauge. In
Sec. V, we present our conclusions. In the Appendix, we
discuss the evaluation of some integrals that come up in
the calculations.

TABLE I. K.nown order-ma contributions to the positronium hyperfine interval.

Origin of contribution

Three-photon annihilation [6—8]
Two-photon-annihilation [9—11]
One-photon-annihilation with fourth- and

higher-order vacuum polarization [12,13]
Radiative-recoil [14,15]
Recoil [16]
Total

Corrected two-photon-annihilation
[this work]

Corrected total

Contribution to K
—0.0519

0.7038

—0.1492
—0.5394(13)

0.17(3)
0.13(3)

—0.0325

—0.60(3)

Contribution to AEhf8
(in Mhz)

—0.969
13.131

—2.783
—10.064(25)

3.1(6)
2.4(6)

—0.606

—11.3(6)
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II. CALCULATION AT ORDER m a

DE=i+ (5K)'I (6)

The reference wave functions 4 and 4 in Eq. (6) are
dependent on the exact bound-state formalism used.
However, for calculations of order-u corrections to a
lowest-order effect, it is sufficient to approximate the
wave functions by

0
+ (p)=(2~)&(p ) 0

0
qi'(p) =(2~)&(p )

1

1

() P(p),
T

0
() 0(p»

(7a)

(7b)

The contribution of the two-photon-annihilation graph
(Fig. 1) to the positronium hyperfine interval at order
m a was first calculated by Karplus and Klein [18] as
part of their complete calculation of the hyperfine inter-
val to that order. We will obtain their result using a
bound-state formalism that can be easily used to obtain
the order-ma contribution as well.

The energy shift due to an interaction kernel 5K has
the form [19]

( )
8cry

Np =00
P

(8)

with

1/2
y ma'V= (9)

The quantity 6K in Eq. (6) is the irreducible interaction
kernel JC minus the reference kernel Eo. For the case at
hand, K is given by the central part of the diagram of Fig.
1, which also (implicitly) includes a similar contribution
with crossed photons. The dependence of 5K on two rel-
ative momenta and two sets of two Dirac indices is impli-
cit. (A detailed description of these conventions can be
found in Ref. [19]).

The contribution to AE due to the graph in Fig. 1 is

where the 5 functions represent the sharp peak of the
wave functions near zero relative energy, the matrix fac-
tors (where each entry represents a 2 X 2 matrix) describe
the combination of a spin- —, particle with its antiparticle
to form a spin singlet, and P(p) is the nonrelativistic
Schrodinger-Coulomb wave function

AELo=i( —1) f (dk)'(dp)'(dp')'tr 4 (p)( iey '—
) ( —iey ') Y (k) Y (P —k)y(P/2+p' k) m —— k»~'~ (P —k)'

X g tr ( —iey '") ( iey '")0—(p)y(P/2+p k~~t) ) m
(10)

is part of the Fried- Yennie gauge photon propagator. To
order ma, the relative momenta p' and p in the electron
propagators can be neglected. Then the p' and p in-
tegrals can be performed using the 5 functions and

(12)
(2~)' (p'+y')'k„kY„(k)=g„+2

k
(1 1) The expression for the energy shift becomes

where the i comes from Eq. (6), the (
—1) is due to Fermi

statistics, the integration measure is (dk)'=d k/(2m. ),
the sum is over the two permutations of the photons,
P =(2m, 0) is the (rest-frame) positronium energy-
momentum vector, k, =k, k2=P —k, and

ELo
ma 1 dk 1

5 4 0 0
y

' y(N —k)+1 y
'

;~2 k2(k 2N)2(k2 2kN)2 1 0

0 1
X Y (k)Y„(2N k) g tr y "'[y(N——k ~, ~)+1]y

o ES2
(13)

where a factor of m has been scaled out of k, N=(1, 0),
and now k, =k, k2=2& —k. The trace

T

T ' '(k)=tr y '[y(N —k)+1]y '

2P+V

—,'P+ p' —k )I

—,
' P+p

ir —,'P+ p —k

OV2V ip
p

where e ' = e' " [4], satisfies—

Z. ' '(k) = Z. ' '(2N —k),

(14)

(15)

—
2 P+V' - P —k --' P+ p

FIG. 1. Lowest-order two-photon-annihilation graph with
momentom assignments.
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so the two terms in the permutation sum are equal. Evi-
dently the longitudinal terms in the Y factors do not con-
tribute. One has that

ma' 1 d4k 1

i k (k —2N) (k —2kN)

X(2ie "'"' k )

Xg„g„(2)(2i—e ' '
k&)

III. CALCULATION AT ORDER m a
IN THE FRIED-YENNIE GAUGE

The two-photon-annihilation graphs that contribute to
the parapositronium energy level at order ma are shown
in Fig. 2. The most interesting graph is the ladder graph,
Fig. 2(d). It is a difference graph, with the ladder photon
shown representing the difference between a Fried-
Yennie gauge ladder photon and the reference kernel.

5ma
LO

where

I„=~p d4k 2

im k (k —2N) (k —2kN)

(16)

(17)

A. The vacuum polarization graph

11~{k ),
k k

{23)

The vacuum polarization graph, Fig. 2(a), is the sim-

plest to evaluate. The effect of the vacuum polarization
insertion is to alter the photon propagator by

—k2= —,
' [k (k —2N ) —(k —2kN ) ] . (18)

The individual terms produced by Eq. (18) each have ul-

traviolet divergences, but these are easily regularized
(e.g. , by dimensional regularization). The result for ILQ
1s

l 'lTI„o——ln2
2 2 4

so the energy shift is
T

me' 1 1SE„o— —ln2 ———
2 2

(20)

This is the shift of the parapositronium energy. The con-
tribution to the hyperfine interval (orthopositronium
minus parapositronium) is

~Ehfs
5

( ——,'ln2+ —,
'

) . (21)

The imaginary part gives the lowest-order parapositroni-
um decay rate as

r+Q —2 1m(AELQ) = 2ma (22)
I

An infinitesimal imaginary part is implicit in each
denominator factor (k ~k +is, etc. ) in order to define
the positions of the poles. The i e terms are necessary be-
cause the integral Iio has an imaginary part [coming
from the region in k space where both k =0 and
(k —2N) =0]. The integral Iio is most easily evaluated
by use of the identity

where Ilz(k ) is the renormalized vacuum polarization
factor [20]

11,(k') =— f dx x(1—x)in[1 —x(l —x)k /m ]
7T 0

a k' t1„
3K 0

x (3—8x+4x )

[1—x(1—x )k /m ]
(24)

The second form in Eq. (24) is the result of an integration
by parts. The vacuum polarization (VP) contribution to
the energy shift is

Evp=
d4k —k ( —1)II (m k )

(2)
iver k (k —2N) (k —2kN)

6ma
vp (2&)

The factor of 2 comes because the vacuum polarization
bubble can occur on either photon line. The vacuum po-
larization factor IIit(k ) is gauge invariant, so the energy
shift due to this graph is also independent of gauge.
Since II+ (k ) vanishes when k =0, the vacuum polariza-
tion contribution is purely real. From the first form
given in Eq. (24), it is clear that —II+(k ) is a positive
factor (since k (0 after the Wick rotation done in the
course of evaluating the integral). Consequently, Ivp has
the same sign as the real part of I„Qin Eqs. (17) and (19).
That is Ivp is negative.

For the actual calculation of Ivp, we let k ~2X —k in

Eq. (25) (or equivalently, we let the bubble be on the pho-
ton carrying momentum 2N —k), and use the second
form of II+ in Eq. (24). We find that [21]

d k —k 1 fid x (3—8x+4x )

ivr2 k2(k2 —2kN) 3 o [1—x(1—x)(2N —k)2]

2 i x(3—8x+4x ) f dk g2
dx

3 0 (1—x) l&
k~(k2 —2kN) k 4kN+4—1

x (1—x)

= f dx dzds x (3—8x+«) z(1 —s)
s(1 —2x ) +zx(1 —x )(1+s)

= —
—,'g(2), (26)
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(a) (b)

2

AD/7.
2 k2(k —2N) (k —2kN)

3 X 1X — dx dz-
k2 —2kN—

(1 —x)z
= [ ——'g(2)+ —', ln 2 ——', ln2+ —']

+i m. ( ——,
' ln2+

~ ) . (33)

(4)

FIG. 2. Two-photon-annihilation graphs with one-loop
corrections: (a) is the vacuum polarization graph, (b) is the
self-energy graph, (c) is the vertex graph, and (d) is the ladder
graph. The wave-function factors are implicit here.

where g(n) is the Riemann zeta function [g(2)=n l6,
g(3)=1.20205690. . . , etc.]. Our result is negative, as
expected. It differs from the corresponding result of
CDFR by a minus sign.

B. The self-energy graph

The self-energy graph, Fig. 2(b), is also easy to evalu-
ate. The renormalized Fried-Yennie gauge self-energy
function is [22]

In this case, we found it convenient to use

—k =
—,'[(2—k )k +k (k —2kN)] (34)

y A~ (35)

and multiplication by 4, where A~ is the renormalized
Fried- Yennie gauge vertex correction factor. By analogy
with Eqs. (13) and (16), one has

ma 1 dk 1

i mk( k.—2N ) ( k —2kN )

to split IsE into two terms, each simpler than IsE itself.

C. The vertex graph

The vertex graph is shown in Fig. 2(c). The vertex con-
tribution is obtained from the lowest-order graph by the
replacement

&„(p)= (yp —m )'ypC(p'),

where [23]

(27)

C(p )= — d d
[m x+(m —p )(1—x)z]

(28)
The electron propagator has the expansion

0 1
XA~'(N —k, N)

(36)
1 1

yp —m —X (p) yp —m

+ 1 1

pp m pp m

1
+ypC(p )+

yp —m

+ ~ ~ ~

(29)

ypC(p»)2
pp m p

so to compute the self-energy (SE) contribution, one sim-

ply makes the replacement

where the factor of 4 rejects the fact that the vertex
correction can act on any of the four vertices. Again, all
factors of the electron mass have been extracted from
A~. Now any factor of N or k in A~ gives zero be-
cause of the other trace, any factor of yN —1 on the right
in Az gives zero because of the spin-matrix part of the
wave function, and any factor of [y(N k) —1]y in A—z
gives zero because the corresponding trace vanishes.
With these simplifications, the effective vertex correction
is [21,22]

A~(N —k, N)

in one trace of AELO and multiplies by 2. This replace-
ment is equivalent to

1 2

p —m

since only the yp term in yp +m contributes in the trace.
After extracting all factors of the electron mass, we can
use p =N —k and write

j dxdu dt
4m.

—4x(1 —x)S 2R
H

+
H

+ 2y"x (H —x)
H

+ 6y x(M —x)
H

(37)

ma

GEESE

2 ISE

with

(32)
where

H = —ur k —2kN
1 —x

ur
(38a)



2644 ADKINS, AKSU, AND BUI 47

H —x = —xu(1 —u )k —(1 —x )u(k —2kN), (38b) with r = 1 —xu [24]. Because of the trace relation

2 1 —xH = —urt k —2k%
urt

(38c)

T

p 0 1
tr y '[y(N —k)+1]io '

kp

S'=y k [u(1 —u )(2+k )
—1 j

+y (k —2kN)[ —u(1+k )+1],

Ov~viP

p

0 1= —2tr y '[y(N —k)+l]y ' (39)

R =y k [
—2+3x —x u(1 —u)]

-+ y (k —2kN) [2—3x —x (1—x)u ]

+io~kpx. (1 —x),

one has that effectively

&z'~&r '

(38e) where

(40)

f dx du dt jk [u(1 —u)(2+k )
—1]+(k —2kN)[ —u(1+k )+1]j

—4x (1 —x)
4~ H

+—[k [ —2+3x —x u(1 —u)]+(k —2kN)[2 —3x —x(1—x)u j —2x(1 —x)IH

+ —2
+2x (H —x) 6x(H —x)

H H
(41)

The vertex contribution to the energy shift is

ma' d4k —k A
(4)

'ji i' k (k —2N) (k —2kN)

The result of a lengthy calculation is that

6ma I (42)

Iv = [—'„'g(3)——,'g(2)ln2+ —'g(2) —2 ln 2+21n2+ —', j+i m[
——,'g(2)+2 ln2 —1] . (43)

D. The ladder graph

The ladder graph is shown in Fig. 2(d), and with momentum labeling in Fig. 3. The ladder graph requires more care
than the others because of the infrared sensitivity in the l integral due to the "binding singularity. " We will not be able
to set ip ~

~0 and P ~2m in the part of the ladder graph containing the l integral.
The ladder contribution to the energy shift, by analogy with Eqs. (13) and (16), is

m '1 d4k
(2ie ' ' k )g g (2)(2)

i
' k'(k —2N)'(k' —2kN)

X f (dp)' f$0 4~ i~ [(l —WN) 1][(l+WN) ——1]

( / )
AvpviK

(l —p) [(I+ WN —k )~ —1]

trI y '[y(p+ WN k)+1]y 'v'2@0—(p)][(p+ WN —k) —1]
(44)

where one factor of 2 comes from the two permutations
of the annihilation photons, and the other from the two
places for the ladder photon to appear. Equation (44)
represents the difference between a graph with a Fried-
Yennie gauge ladder photon and one with the reference
kernel Ko. In the first term, we made use of the approxi-
mation Eq. (7a) for the wave function. In the second
term, the reference bound-state equation

CXW=m 1 — +O(u )
8

(46)

SK,%,=%, , (45)
where S equals (or approximately equals) the propagation
factor for a free electron and a positron was used to elimi-
nate the integral over I. The quantity 8' that appears in
Eq. (44) is half of the positronium energy



CALCULATION OF THE TWO-PHOTO¹ANNIHILATION. . .

2 P+p' —,'P+ 5 z P+p

—,'P+ p' —k
lk

)r 2tp+8 —k 8 —p

p + / —P —k ——'P+8 —
2 P+p

FIG. 3. Ladder graph with momentum assignments.

the infrared. If the / integral is done by poles, closing
the l contour, say, in the lower half-plane, the infrared
singularities are associated with poles at positions l =

~1~

from the photon propagator and 1 =(1 + 1)' —1 from a
fermion propagator. The first singularity is cured by the
Fried- Yennie gauge factor Yz . The second (binding)
singularity remains.

The first term in Eq. (44) has a naive order of ma .
However, because of the binding singularity this is re-
duced to order ma . The ma part of the first term can
be separated out by writing

and P=(2W, 0). The trace term is

' ' (l)=tr y [y(l —WN)+1]y '

X [y(l + WN —k )+ 1]y '

0 1
X [y(l + WN)+ l)y (47)

The binding singularity occurs in the 1 integral

In the limit p~0 and 8'~1, this integral is singular in

d4l
~~.(p)= f . ,i7r [(I—WN) —1][(l+WN) —1](l —p)2

(4&)

A ' '(l)
[(l+ WN —k) —1]

' ' (o)
[( WN —k) —1]

+
[(i+ WN —k) —1]

' ' (o)
(49)

[( WN k) —1—]

The order-ma contribution is contained in the first term
of Eq. (49), since the binding singularity is associated
with small l. We designate the difference between the
contributions of the first term of Eq. (49) and the second
term of Eq. (44) the binding part of b,EL. We designate
the contribution of the second term of Eq. (49) the free
part of EEL. Both the binding and free parts of EEL
have order mcx .

We consider first the binding part of EEL . It is

1 d kgEbinding (2i~ +1+2 k ) (2)(2)
i ' k'(k —2N)'(k' —2kN)

1 a d 1 1

$0 4~ i vr [(/ —WN )
—1][(l+ WN ) 1]—

( $ )
i.V2V)K

(l —p) [( WN k)~ —1]—
«[y '[y(p+ WN —k)+1]y 'v'2+o(p)]

[(p+ WN k) —1]—
(50)

In the first term, since we are only calculating order-a
corrections to the lowest-order energy shift, we can set

kv2v)KW~ 1 in the trace factor 2 (0) and in the denomi-
nator [(WN —k) —1]. In the second term, we can ig-
nore the p dependence in the electron propagator, set
W —+1, and use the approximation Eq. (7a) for the wave
function. These approximations for the second term are
safe for nonrelativistic ~p~. However, for relativistic ~p~,
we are leaving out contributions of order ma . For-
tunately, these contributions are identical, but opposite in

6

gE binding y binding

7T

with

(51)

sign, to the order-ma contributions that were neglected
in going from Eq. (10) to Eq. (13) for b,FLo [25]. We did
not calculate these (bound-state, formalism-dependent)
contributions, but in order to keep things straight we will

give them a name. With the approximations mentioned,
we have
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d kIb'"d'"g= 1 d k 1 (2' ~'~'~k
) (2)(2)

l ~' k'(k —2N)'(k' —2kN)2

d'p Sly . 1 d41 1

(2m ) (p +y ) 4 iver [(I —WN)2 1]—[(l+ WN)2 1]—

' ' (0) —T—' '(k) .—I"'
(/ —p) CX

(yN+1)y ~2N (53a)

y ( —yN+1)~ —2N (53b)
A, VPV 1

K
in A ' ' (0) because of the spin-matrix part of the wave
function. One has

where I"' is the uncalculated relativistic contribution
mentioned above. %'e can make the replacements

B(p)=—Boo(p)

d4/ —1

iver [(I—WN) —1][(l+WN) 1](l ——p)
T

Iolo
X 1+2

(/ —p )' (56)

Now B(p) was evaluated in the Appendix to [26], with
the result

2 i (0) 4N2NKT (54) B(p)= arctan
p y

—3 (57)

so that The p integral in Eq. (55) can be done using Eq. (12) and

dIbinding 2I P y B( ) Irel
(2')3 ( 2+ 2)2

where

One 6nds that

Ibinding 6I Irel
LO

The free part of EEL, from Eqs. (44) and (49), is

(59)

d'k
i~ k (k —2N) (k —2kN)

~ " ' (o)
(k —2kN)

a d4l 1 A ' ' (I)
im (I 2/N)(l +2/N—)1 [(I+N k) —1]—

where we have set W —+1 and p~o (outside of the wave function), and have done the p integral using Eq. (12). The
term containing the traces can be written as

[(/+N —k ) —1]
~ " ' (o)
(k —2kN)

21
[ ~ vjKv(2/) ~ kv

K(20vi) ]
I +21(N —k) Xv2viK

[(I+N —k ) —1] (k —2kN)

(61)

A, V2V1K
Now the traces (with W~ 1 in 2 ) are

Y,.(/)(~ ''(/) —~ ''(o))

and

4iE ' ' —— (I 21N)(l +2/—N)N, /—
13

+(I 21N)(N k/3+ , /, k—i3)+(/ +2/N)(—N,k/3 N, /I3 ,'/, k/3)— ——
$2

(62a)

p 2I
Y2, (/)A ' ' (0)= 4ie ' '

( ——2) 1+
2 N, kg .

J2 (62b)



47 CALCULATION OF THE TWO-PHOTON-ANNIHILATION. . .

So with

6
AEfre = I ree

L 2 L
1T

one has

d4k (N'kP NP—k') d41 1

(k —2N) (k~ —2kN) im'~ /~(/~ 21N)(1 +21N)[1 +21(N k)+k 2kN]

(1 21N—)(l +2/N)
N

21(N —k)
N k

l2 (k' —2kN)

+ (1~ 21N)—N, k p+ ,' l,k p —~— N, k p
lk

(k —2kN )

+(1 +21N) N, kp N, /p
—,'l, kp—+—~ N, kp

2+ 1 (2N —k)
(k —2kN)

(63)

4lk

(k —2kN)
(64)

where we have used

and

2l o2

( —2) 1+

= (N'k P NPk ') (6—5)

1 —2/N=21N —(2+21N )
/2

(1 —21N )(1 +21N )

l2 2'

=
—,'g(2) —

—,
' . (68)

The second and third terms in the large square brackets
of Eq. (64) can be combined by use of the change of vari-
ables

-After performing the l integral, the contribution of the
first term in the large square brackets of Eq. (64) is

d k —k
iver k (k —2N) (k —2kN)

k2 —2kN+2
du

k 2kN (1——u ) /u—

—
—,'(1 +2/N) —2 . (66) k~2N —k, l —+ —l (69)

(N'k Nk )N k =——kp (67)
I

Now the (N'kP NPk') factor k—ills all N, Np and k,kp
terms in the large square brackets of Eq. (64). So, after
the l integral is done, only N, k& terms survive, and

in the third term. For this change of variables, one finds
that k (k —2N), (k 2kN), and —[1 +21(N —k)
+k —2kN] are unchanged, while (N'kP NPk )—
gets a minus sign. The contribution of the second and
third terms is

d k (N'kP NPk')
/

—d 1 1

i~ k (k —2N) (k —2kN) i~ 1 (1 +21N)(l +21(N —k)+k —2kN)

2 —2lk
X 2N, k, +l.k,+, N, k,

(k —2kN)

d k g2 —1 2 —2x(k u kN)—
dx du 2 —x+

i~ k (k —2N) (k —2kN) H (k —2kN)

= [ ——'„'g(3)+—,
' g(2)ln2 —

—,'g(2)+in~2+ —,
' ]+im [—,'g(2) —ln2] . (70)

Note that the denominator factor H that results from the 1 integral also occurred in the vertex correction function [see
Eq. (38a)]. The contribution of the fourth term in Eq. (64) is

p d4k 2
p d4l —4lk

in k (k —2N) (k —2kN) iver 1 (I 21N)(l +21N)[l +—21(N k)+k —2kN]—
= [ ~«' g( 3 ) ——', g(2 )ln2 ——'g(2) —

—,
' ln 2+ —,

'
] +i n [ ——', g(2) + —,

' ln2] . (71)
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This is the most dificult integral in this calculation. The
evaluation of Iz'4' is discussed in the Appendix.

The total result for IP" is obtained from Eqs. (68), (70),
and (71). It is

Iz"'= [ ——', g(2)+ —,'ln 2 —
—,']+im( —

—,'ln2) . (72)

And finally, combining the results of Eqs. (59) and (72),
we obtain the total contribution of the ladder graph:

IL = [ ——,'g(2)+ —,'ln 2 —3 ln2+ —,
' ]

+in( —
—,'ln2+ —', ) I"' —. (73)

E. Results

It is now a simple rnatter to tabulate the results. The
total energy shift to order ma is

mn
~+tot 2 Itot (74)

where

I =Ivy +IsE +I~+IL +I (75)

The I"' term is the relativistic contribution of the
lowest-order graph. Performing the sum, we find

I,= [ 2' g(3)——'g(2)ln2 ——"g(2)——' ln2+ —"]

We agree with the CDFR result for the self-energy
contribution. It is

IsE(Feynman) = [ —
—,
' g(2)+ ln 2+ —,'ln2 —

—,
'

]

+i m( —. ln2 —
—,
' )+2ILo ink, , (78)

where m A, is a fictitious photon mass added to the theory
in order to allow the usual mass-shell renormalization
scheme to be implemented.

CDFR combined the vertex and ladder contributions
together. However, in their analysis of the vertex correc-
tion, they wrote down a vertex "integrand" [their Eq. (17)
in Ref. [10]]. This formula has a sign error before the in-
tegral on the second line. The sign should be plus. This
sign error also appears in Devoto's dissertation [11],Eq.
(3.77), but not in his previous Eq. (3.71). This error is evi-
dently simply a misprint, since the combined expression
for the vertex and ladder contributions [Eq. (22) in Ref.
[10]]is correct. Another misprint appears in Eq. (21) of
Ref. [10]; the (p —k)& in the numerator of the first term
of the integral Iz should be (p —kx)z. This factor is
correct in the dissertation [Eq. (3.87)]. There are two
mistakes in the table of integrals "Table I" of Ref. [10].
The first integral there should have the value

21 7T2 7T2
I&(CDFR) = g(3) —6 ln2 — —21n 2+2

4 6 6

+i'[ ——', g(2)+ —,'] . (76) 3 ~'
+)m —— +2 ln2

2 6
(79)

The contribution to the hyperfine interval is—0.0325m a = —0.606 MHz. This result di6'ers by—13.74 MHz from the result of CDFR [9—11].
As a partial check of our result, we can use it to obtain

the order-a correction to the parapositronium decay rate:

I = —2Im(AE)
6=

—,'ma —2 [ ——3g(2)+ —,']

This integral is just four times our IL'4' of Eq. (71). The
sixth integral in "Table I" is also incorrect. It should be

2

I6(CDFR) = —9 + (80)

The evaluation of these two integrals is discussed in the
Appendix. Using the corrected values of I, (CDFR) and
I6(CDFR), we obtain

5 2ma o.

2 ~ 4
(77)

Iv+1 (Feynman) = [ —'„'g(3)——,'g(2)ln2 ——', g(2)

—ln 2 —3 ln2+6]
This agrees with the result of Harris and Brown [27]. As
a more detailed check, we have verified that the partial
decay rates due to each of the contributing diagrams
agree with the Fried- Yennie gauge results for the partial
decay rates previously obtained by Adkins [28].

IV. CALCULATION AT ORDER ma
IN THE FEYNMAN GAUGE

Because of the discrepancy between our Fried-Yennie
gauge result and the old Feynman gauge result of CDFR,
we recalculated the correction using the Feynman gauge.
In the process, we uncovered several mistakes in the
work of CDFR. After correcting these mistakes, the two
calculations agreed.

The vacuum polarization contribution is gauge in-
dependent. We found the CDFR result for this graph to
be missing an overall minus sign. The correct result is
given in Eq. (26).

+i sr[ ——', g(2)+1n2+ —', ] —2ILolnk, .

(81)

The sum of the correct vacuum polarization contribution,
the Feynman gauge self-energy contribution of Eq. (78),
and the correct Feynman gauge vertex and ladder contri-
bution of Eq. (81) is the same as the Fried-Yennie gauge
result of Eq. (76).

For the record, the Feynrnan gauge vertex and ladder
contributions individually are

Iz(Feynman) = [ —"
, g(3) —

—,
' g(2)ln2 ——'g(2)

—ln 2 —21n2+ —', ]

+i~[ ——', g(2)+ln2+ 1]—4ILolnA, (82)
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IL (Feynman) = [ —
—,'g(2) —ln2+ —', ]+in. ( —,

' )+2ILolnA, .

(83)

V. CONCLUSION

We have obtained the analytic result for the two-
photon annihilation contribution to the positronium
hyperfine interval at order ma . Our result, given in Eqs.
(74) and (76), is a contribution —0.0325ma = —0.606
MHz to the hyperfine interval. A previous calculation of
this quantity contained several errors. Once these errors
are corrected, the two calculations agree. This result is
now quite secure, since it has been obtained in two
different gauges.

Our experience with these corrections confirms the
general principle that QED calculations, and other calcu-
lations of importance, should be done by at least two in-
dependent groups. The work of CDFR has great value in
providing the basis for one calculation of these correc-
tions.

The corrected theoretical result for the hyperfine inter-
val, given in Eq. (5), is in agreement with the experimen-
tal value. This leads us to expect that the remaining
order-ma corrections will be small. What remains to be
done at this order is to evaluate the one-photon-
annihilation contributions and to check results that have
not yet been confirmed. Also, the numerical error on the
recoil corrections [16] should be reduced.
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APPENDIX: EVALUATION OF SELECTED
INTEGRALS

In this appendix, we describe the evaluation of some
momentum space integrals. We choose the integrals
I, (CDFR) and I6(CDFR), since they are representative
of the integrals that occur in the calculation, and they are
the ones that were evaluated incorrectly by CDFR. We

read these integrals off of Eq. (22) of CDFR [10], and
make the alterations necessary to convert to our notation.
Their parameters x and y we call u and x. Their p is our
mX. They use a dimensional k vector while ours is di-
mensionless (a factor of the electron mass has been ex-
tracted). They use a spacelike metric while ours is time-
like. Consequently, their factor

3 =(k —2kp)x —(kx —p) y

translates to our

(A1)

1 xH= —ur k~ —2k%
ur

—= —urR (A2)

[see Eq. (38a)), where r = 1 —xu, as before.
The first integral we look at is

4 4kI6(CDFR) =
iver k (k 2N) (k——2kN)

—(k —2N) ( —' —2x)
X f dxdu

urR

= f dx du( —', —2x) 1

ur

d4k —4k'
X

in k (k —2kN) R
(A3)

to break this integral into simpler parts. The breakup
generates ultraviolet divergences in the first two terms.
We use dimensional regularization, with n =4—2e di-
mensions of space-time, to deal with these. We find

I6(CDFR)= f dx du( —,
' —2x) 1

ur

d "k 1

~n/2 (k2 2kN)g
1

k'R

2(2 —k )

(k —2kN) R
(A5)

The k integral is done using a Feynman parameter s, al-
ways associating s with R and (1—s) with the other
denominator factor. One obtains

This integral is real because the numerator [of the first
form of Eq. (A3)) vanishes when (k —2N) =0. We use
the identity

—4k =k (k —2kN) —(k —2kN) +2(2 —k )k (A4)

I6(CDFR)= f dx du( —,
' —2x) f ds 1 (e)—ln

z

1 T
ur ur

ds I e —ln
$T'

ur

co urds1 —s2 2 ——
r T

dx du —,
' —2x ds

ur
1

1
sT' (1—s)(co —2r)

1n +2
T

(A6)
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where

co=r —sx(1 —u), (A78)

adaptive Monte Carlo multidimensional integration rou-
tine vEGAs [29]. It is essential to get a numerical evalua-
tion of an integral as soon as possible in order to mini-
mize the chance of making mistakes. We obtain

T= u co +xsl' (Ajb)
IA(CDFR) = —4.304 411(11), (AS)

T' =xr +su ( 1 —x ) (A7c)

The ultraviolet divergences cancel, as they must. At this
stage, we evaluate the integral numerically using the

I

using approximately 100 million function evaluations.
Continuing with the analytic evaluation, we perform the s
integral, saving the x and u integrals until the end. Keep-
ing the two terms in the curly brackets separate, we find

I6(CDFR)= f dx du( —,
' —2x) .

u (1—x)
ln

1
ln

x(1 —u)

e 1+ lnr
xu2

e

x (1—u)
ln

e + 1
1 + 1

ur x u xu(1 —u)

where

= [g(2)—4]+ [ —10$(2)+ —"] = —9g(2)+ —" (A9)

e=x+u —2xu .

The second integral that we will consider here is

(A10)

d k 4k 4

ink(k —2.N) (k —2kN) i~ / (/ —2/N)(/ +2/N)[/ +2/(N —k)+k —2kN]

This integral is four times II'4' of Eq. (71). It has an imaginary part, so the implicit i e factors in the denominators have
to be maintained. We use the identity [Eq. (D.3) in Devoto [11]]

1 1 1 1

(/ 2/N)(/ +2—/N) 2/ / +2/N / 2/N—
to reduce the number of denominator factors. One has

d k 4k dI 1 1 1 2lk

iver k (k —2N) (k —2kN) in / / +2/N / 2/N [/ +2—/(N —k)+k —2kN]

d k 4k (ku N)k [ku+—N(1 2u )]k-
im k (k 2N) (k —2k—N) H H'

(A12)

(A13)

where the / integral has been done using the Feynman parameters x and u [associating factors of 1 —x, x(1—u), and xu
with the three denominators], H is given in Eq. (A2), and

H = —ur k —2k'z xa
uT

(A14)

with

a =1—2u,

g = 1+xa

(A15a)

(A15b)

In this form, it is clear that I, (CDFR) is in fact the first integral of Table I of CDFR [10].
In order to evaluate Ii(CDFR), we take k~2N —k in the second term of Eq. (A13). Under this transformation,

H''~H, so

I, (CDFR)=4 f f dx du(1 —x)
i ~2 k 2( k —2N )2(k 2 —2kN )

(1—x) d k —1

(ur) iver (k —2kN) k (k —2N)
(ku —N )(k N)—

R
(A16)
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The integral corresponding to the first term (term "A") in the curly brackets is real, and is evaluated using the same pa-
rameters as for I6(CDFR). Writing (ku —N )(k N—) as (k —ZkN )u + [1—(1 —u)k ], one has

I,„(CDFR)=4 f dx du (1—x) f ds —+

=4 f dxdu ',"

=2.

1 e
ln

(1—u) a ur
1 1 e

lnr + ln
u a a

x
ua

(A17)

[Actually, a simpler way to evaluate I,„(CDFR)is to do
the k integral before the l integral. This alternate evalua-
tion serves as a check. ] The integral corresponding to the
second term (term B) in the curly brackets of Eq. (A16) is
complex. It is

I,q(CDFR)

"B2")in the numerator of Eq. (A18) is

I,ii~(CDFR) =4 f dx du
(ur)

X fd k [1—(1+u)k ]
im k (k —2N) R

(A21)

(1—x) f d k k u+[1 —(1+u)k ]dx du
(ur)2 jrr2 k2(k 2N)2R2

The integral corresponding to the first term (term "B1")
in the numerator here is relatively simple to evaluate. It
1S

Ii»(CDFR)= 4f—dx du ds

We do the k integral using Feynman parameters z and s
[associating factors of 1 —z, z(1 —s), and zs with the three
denominators], and obtain

Ii~q(CDFR)

=4 f dx du dz ds(1 —x )rs[r —q(1+u)z] 1

8'
(A22)

where

where

= —4f dxdu ln
ug xra

= —2g(3)+24/(2)ln2 —24/(2), (A19)

q =2r sg

8 =uq z+D,

D=xrs 4ur (1—s)——ie .

(A23a)

(A23b)

(A23c)

Y=xra +usg (A20)

The integral corresponding to the second term (term
I

We cannot perform a numerical evaluation at this point,
since the integral is complex. We do the z integra1, and
obtain

I iiz(CDFR) =4 f dx du ds(1 —x )r + (1+u )182 YD
1 s SY

uqY uzq3
"

D
(A24)

Both 1/D and the logarithm give rise to complex contributions. The real and imaginary parts of Eq. (A24) can be
separated, but the resulting integrals are numerically ill-behaved. Consequently, we were not able to obtain a numerical
value for this integral before reducing it to two-dimensional form. Continuing with the analytical evaluation, we per-
form the s integral, and obtain

I,biz(CDFR) = f dx du (1 —x )
— ln

1+u
u (1 —x)

e 1+u
ln

xr u g

e 4u
1

xra h

4ue

x a
4u

l 7T
Q

2

= [—"g(3)—30$(2)ln2+ 23/(2) —2 ln 2]+in[ ——', g(2)+ 2 ln2], (A25)

where h =2u +xa. On summing Eqs. (A17), (A19), and (A25), we obtain the final result

I, (CDFR) = [ —"g(3)—6$(2)ln2 —g(2) —21n 2+2]+i m [ —
—,'g(2)+21n2] . (A26)
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