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Intermittent chaos in Hamiltonian systems: The three-dimensional hydrogen atom
in magnetic fields
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The trajectories of the highly excited hydrogen atom with nonvanishing pseudomomentum K are in-

vestigated. As a characteristic feature, we observe the intermittent behavior of the internal as well as of
the center-of-mass motions which consist of alternating phases of strongly chaotic and quasiregular
motion. During these phases, interesting physical phenomena appear. These phenomena as well as the
intermittent behavior of the trajectories can be explained by the observation that, due to the finite nu-

clear mass, an additional confining potential appears. This confining potential has strong impact on the
ionization of the hydrogen atom in general. We also investigate the correlation between the values of the
internal angular momentum L, and the internal coordinate p. In fact, we are able to control intermitten-

cy by choosing di6'erent values of the energy, pseudomomentum, and magnetic-field strength.

PACS number(s): 31.15.+q, 05.45.+b, 32.60.+i

I. INTRODUCTION

The hydrogen atom in a strong homogeneous magnetic
field is one of the simplest physical systems which exhib-
its a transition from regularity to chaos. Classically this
was shown by looking at Poincare sections and Lyapunov
exponents and quantum mechanically by studying the
energy-level statistics of the atom [I]. A large number of
electronic and energy levels even up to the field-free ion-
ization threshold are nowadays known experimentally [2]
as well as theoretically [3,4] to a high degree of accuracy.
However, almost all theoretical investigations on the hy-
drogen atom in a magnetic field deal only with a special
case: they neglect the influence of the collective on the
internal electronic motion of the atom.

The Hamiltonian of a neutral atom in a homogeneous
magnetic field possesses a constant of motion, the pseu-
domomentum [5] K, which is closely related to the col-
lective motion of the atom. By introducing the center-
of-mass coordinate and the pseudomomentum as a
canonically conjugated pair of variables it is possible to
eliminate the center-of-mass coordinate from the Hamil-
tonian and perform a so-called pseudoseparation of the
center-of-mass motion. For a vanishing magnetic field
the hydrogen atom is essentially a one-dimensional radial
problem and cannot exhibit chaos. At a finite field
strength and K=0, which is the case extensively studied
in the literature, we encounter a two-dimensional prob-
lem exhibiting chaos. For KWO, the symmetry is further
reduced, leading to a truly three-dimensional problem re-
lated to the relevant situation of a hydrogen atom in
crossed electric and magnetic fields. This leads to new
phenomena, in particular, as we shall see, to the appear-
ance of intermittency in the classical mechanics of the
system. Intermittency in Hamiltonian systems or
discrete area-preserving maps has so far been investigated
only for a few cases (see, for example, Refs. [6] and [7],
respectively).

The investigation of intermittency in the internal
motion of the hydrogen atom and its illuminating rela-
tion to the motion of the center of mass of the atom is the
central issue of this work. After the pseudoseparation
the center of mass and internal motion of the atom
remain intimately coupled and this coupling leads to in-
teresting physical phenomena. In Refs. [8] and [9] the
classical center-of-mass motion of the hydrogen atom in a
magnetic field has been investigated for the special case
K=O and angular momentum I., ~0. One of the most
striking results of these investigations was the fact that
the center-of-mass motion undergoes a transition from
confinement, i.e., motion in a bounded range of coordi-
nate space, to deconfinement, i.e., unbounded motion, if
the internal motion passes from regularity to chaos. In
particular, it was shown that the chaotic center-of-mass
motion exhibits many properties of a random motion and
obeys a linear diftusion law. In the present paper we in-
vestigate the classical internal relative —and center-of-
mass motion for the general case KWO of the hydrogen
atom, which has not been studied so far in the literature.

II. HAMILTONIAN AND THE INFLUENCE
OF THE FINITE NUCLEAR MASS

The Harniltonian which usually appears in the litera-
ture on the hydrogen atom in a magnetic field reads as
follows:

2
e e

p
——BXr

where (r, p) is the canonical conjugated pair of variables
for the internal relative motion. B is the magnetic-field
vector, which is in the following assumed to point along
the z direction. p was in the literature chosen to be either
the reduced mass of the electron and the nucleus or the
electron mass. For both cases the Harniltonian H, does
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not correctly take into account the effects due to the
finite nuclear mass and is, therefore, not able to describe
the correct two-body behavior of the hydrogen atom in a
magnetic field. The exact Hamiltonian which is derived
by the canonical pseudoseparation of the center-of-mass
motion (see [Refs. [5] and [9]) takes on the following ap-
pearance:
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where K is the constant pseudomomentum.
p=(mM0/M) and p'=[rnMD/(Mo —m)] are different
reduced masses and m, Mo, and M are the mass of the
electron, the nucleus, and the total mass, respectively. It
is only for the special case of vanishing pseudomomen-
tum K and vanishing internal angular momentum L, =0
that the two Hamiltonians H, and H are identical [9].

The coupling term between the collective and internal
relative motion of the hydrogen atom is given by the
motional Stark term (e/M)(BX K) r. Due to its collec-
tive motion the hydrogen atom experiences an additional
constant electric field which is oriented perpendicular to
the magnetic field. As already mentioned in the Intro-
duction the hydrogen atom with KAO is, therefore,
closely related to the relevant situation of the H atom in
crossed electric and magnetic fields. The Hamiltonian
H2 used in the literature to describe the hydrogen atom
in crossed fields can be obtained from the Hamiltonian
Hi by simply adding the Stark term H2=H, +eE.r,
where E is the electric field.

There exists now an important difference between the
Hamiltonian H2 in crossed fields, which does not correct-
ly take into account the effects due to the finite nuclear
mass, and the exact two-body Hamiltonian H. In H2, the
potential for the internal motion is V2= —e /~r~+eE r
and the corresponding kinetic energy is given by the first
term on the right-hand side (rhs) of Eq. (1) [10]. In H the
kinetic energy of the internal motion has a slightly
different appearance [second term on the rhs of
Eq. (2)], but more importantly the acting potential
V= —e /~r~+eE r+(e /2M)(BXr) +K /2M, where
E= ( 1/M)( BX K ), has an additional potential term
(e /2M)(BXr) which arises from the first quadratic
term on the rhs of Eq. (2). This potential does not appear
in the Hamiltonian H2 and vanishes for infinite nuclear
mass. Taking into account the effects due to the finite nu-
clear mass, therefore, changes the potential for the atom-
ic motion and is, as we shall see below, the origin of the
intermittent behavior of the trajectories.

In Fig. 1 we have illustrated the potential energies for
the two Hamiltonians H2 and H. Figure 1(a) shows an
intersection of the potential energy V2 of the Hamiltoni-
an H2 along the direction of the external electric field.
First we observe the well-known fact [10,11] that this po-
tential possesses a so-called Stark saddle point. Below
the saddle-point energy the relative motion of the system
is bounded and above this threshold energy the system is
unbounded and can, at least in principle, ionize. Figure
1(b) shows the exact potential curve V for the hydrogen

FICi. 1. (a) Combined potential V2 for a Coulomb and exter-
nal electric field shown along the direction of the electric field.
For the field strength of the external field we have taken the
same value and direction as for the motional Stark field of (b),
i.e., E=(1/M)(K X B). (b) Combined potential V of the
Coulomb, the motional Stark field, and the diamagnetic poten-
tial term {e /2M)(BX r) . Values of the pseudomomentum and
field strength are K =(0.0, 1.0,0.0) and B = 10 ' a.u. (The con-
stant term K /2M is not included. )

Rz = K— (BXr),
M M

r= —p—,(BXr),1 e

p 2p
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(3b)

(BXK)—,(BXp)+ BX(BXr)—e
M 2p 4p
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atom with KWO in a magnetic field which includes all
effects due to the finite nuclear mass. In addition to the
Stark and Coulomb potential [see Fig. 1(a)] a diamagnetic
potential term (e /2M)(BXr) is now present. This
leads to the fact that for energies above the new diamag-
netic Stark saddle-point energy the relative motion is still
bounded, i.e., confined to some finite coordinate range.
The hydrogen atom in a magnetic field, therefore, cannot
ionize in the direction perpendicular to the magnetic
field. We shall see later on that only for energies above
the new diamagnetic Stark saddle-point energy the inter-
mittent behavior of the trajectories of the atom can be
observed. We mention that the saddle point of the poten-
tial shown in Fig. 1(b) does not persist for all values of the
pseudomomentum, magnetic-field strength, and energies.
By increasing the field strength it is always possible to
destroy the saddle-point structure of the potential. Also
then intermittency may occur because of the available ex-
tended range of the coordinates perpendicular to the
magnetic field.

The impact of the finite nuclear mass is drastic. As
discussed above, the electron can only escape (ionize) in
the direction of the magnetic field due to the finite mass
of the nucleus. At infinite separation the Coulomb term
disappears and the total energy is semipositive definite
[see Eq. (2)]. For KAO, the ionization threshold of the
hydrogen atom, i.e., the minimal energy to achieve an
infinite separation of the electron and the nucleus, is at
E =0. This obviously corresponds to z —+ ~ and finite x
and y [see Eq. (2); B is parallel to the z axis]. Finally we
present the equations of motion belonging to the Hamil-
tonian H
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during the time interval of chaotic internal motion. This
is precisely the time period during which the center of
mass performs a purely translational motion. The time
periods of quasiregular circular internal motion corre-
spond to the periods of circular center-of-mass motion.
Intermittency, therefore, shows up in the center-of-mass
motion by alternating phases of more or less straight-
lined and circular motion.

Let us now look at the motion of the electron and the
nucleus in a plane perpendicular to the magnetic field in
the laboratory coordinate system. During the quasiregu-
lar phases of motion the electron is localized in a small
range of coordinate space whereas the nucleus performs
the large amplitude motion on the circle shown in Fig. 2.
At first glance this statement seems to contradict the
traditional physical picture in which the light electron
moves around the heavy nucleus while the latter per-
forms only tiny vibrations. However, since the Coulomb
energy provides only a small perturbation to the magnet-
ic interaction during the quasiregular phase of motion we
expect the nucleus and the electron to perform their indi-
vidual cyclotron motions which are more or less per-
turbed by the Coulomb interaction. The radius of the cy-
clotron motion for the nucleus is due to its bigger mass,
much larger than that of the electron. The strong locali-
zation of the electron and the large amplitude motion of
the nucleus is, therefore, a characteristic feature for the
case of a strongly dominating magnetic field. Before
entering the investigation of the intermittent motion we
brieAy discuss some additional properties of the intermit-
tent trajectories.

According to our extensive numerical study intermit-
tent trajectories occur over a wide range of values of the
energy and the pseudomomentum and can be obtained
for the highly excited bounded hydrogen atom, i.e., for
E &0, as well as for unbounded energies of this system,
i.e., for E & 0. Intermittency is, therefore, not a property
of the trajectories of the strongly bound hydrogen atom
but a phenomenon which occurs slightly below or above
the ionization threshold which lies at E =0. According
to the potential picture discussed in Sec. II the intermit-
tent behavior of trajectories can only be observed for en-
ergies larger than the diamagnetic Stark saddle-point en-
ergy. For energies below this point the motion is
confined to a small range of relative coordinates where
the Coulomb and magnetic forces are both relevant.
Above this threshold the allowed coordinate space per-
pendicular to the magnetic field [see Fig. 1(b)j is greatly
extended and the particles can depart from each other re-
ducing thereby their mutual interaction. This coincides
with our observation of the occurrence of the quasiregu-
lar phase of motion. Because of the confinement poten-
tial V, the particles are bound to return to each other and
this gives rise to the observed chaotic phase of motion. It
is possible to predict whether intermittency will occur or
not depending on the values of the energy, the pseu-
domomentum, and the magnetic-field strength.

In the following we would like to discuss the properties
of the intermittent trajectories from the point of view of
the behavior of the internal relative angular momentum
L, . For nonvanishing pseudomomentum only the total

angular momentum component X„butnot the relative
angular momentum L„is a conserved quantity. The an-
gular momentum L„therefore, varies with time and can,
in particular, take on negative and positive values. The
phase space which is available for the trajectories, howev-
er, depends now strongly on the value of the angular
momentum L, . In order to understand this point and the
above-mentioned "reversed roles" of the electron and the
nucleus let us begin our discussion by considering a free
electron in a magnetic field. Then L, is a conserved
quantity. The minimal (kinetic) energy the electron can
have depends on the sign of the angular momentum L, :
for L, )0 it is E;„=(~e~B/m)L„whereas for L, (0 we
obtain E;„=0(m is the electron mass). E;„=0means
that the electron is fixed in phase space. Therefore, in a
magnetic field the electron can possess no kinetic energy
at all and still have a finite negative angular momentum
L, &0. This already shows that negative values of the an-
gular momentum are distinct for the electron.

As a next step we consider the ionization thresholds
for the hydrogen atom with K=0. For positive values of
the conserved relative angular momentum we obtain
E,h =(~e~B/m)L„whereas for negative values we obtain
E,h

= —
( ~

e
~
B /Mo )L„where Mo is the mass of the nu-

cleus. If we compare these results with the above-
discussed minimal kinetic energy of a free electron (nu-
cleus) in a magnetic field we immediately realize that for
positive relative angular momentum L, the threshold ki-
netic energy E,h is due to the motion of the electron and
the nucleus stands still whereas for negative values of L,
the energy E,h is due to the motion of the nucleus and the
electron is frozen.

More formally this result can also be derived by in-
specting the equation of motion of the azimuthal angle y
which is the canonical coordinate belonging to the
momentum L,

L,+ (6)
2p pp

where p=(x +y )'~ . At the ionization thresholds we
have p=p;„=(2~L,~/~e~B)' and consequently

&0 for L, &0
Mo

+ &0 for L, &0.

Negative values of the sense of rotation can only be ob-
tained by the rotation of a positive charge, i.e., the nu-
cleus around the magnetic-field axis, whereas positive
values of y have their origin in the motion of the elec-
tron. We therefore conclude that for negative angular
momentum values L, &0 and for energies near the ioniza-
tion threshold the nucleus of the atom performs the
motion and the electron is localized in space. This is in
strong contrast to the traditional physical picture of the
hydrogen atom which tells us that the electron moves
around the nucleus. This picture is, as we have seen, in
general only correct for positive values of the angular
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momentum L, .
We return to our discussion of the intermittent trajec-

tories for the hydrogen atom with KWO. We prove now
that the large amplitude motion of the quasiregular
phases of the internal motion (see Fig. 2) is always associ-
ated with large negative values of the angular momentum
L, . According to the above discussion, the large ampli-
tude motion can then only be performed by the nucleus
whereas the electron is localized in space. As a first step
we transform the underlying Hamiltonian from Cartesian
to cylindrical coordinates (p, y, z). The Hamiltonian is
then a function of the three canonical pairs of internal

I

relative variables ( jp,p ], jy, L, ], jz,p, ] ) and depends on
two parameters: the pseudomomentum and the
magnetic-field strength. In order to obtain the
allowed range of angular momentum values L, for
fixed energy, pseudomomentum, and magnetic-field
strength we express the angular momentum as L,
=L, (p, y, z;p,p„E,B,K) using the Hamiltonian func-
tion. The extremal values L, with respect to (y, z;p, p, )

are then obtained by setting the corresponding partial
derivatives equal to zero. The result is p =p, =0, z =0,
and y= n .m, where n is an integer. L, remains a function
of the distance p and takes on the following appearance:

~ p2.+p ~ ~2+2pE
' 1/2

(8)

x1 0

N —'10-

—15—

0 5 10 15 x'I 0

FIG. 4. Range of (L„p)values on the energy shell for the en-

ergy value E = —5 X 10 . Pseudomomentum and magnetic-
field strength are K„=0.3 and B=10 '. All values in atomic
units.

where we have, without loss of generality, assumed that
the pseudomomentum points along the positive y direc-
tion, i.e., K=(O, K,O) and K )0. In order to obtain a
real value for the angular momentum L, the argument of
the square root in Eq. (8) must be positive and this cri-
terion gives us the allowed range of (L„p)pair values on
the energy shell. In Fig. 4 we show this range, which has
the form of a club exemplary for the energy
E = —5 X 10, and the pseudomomentum K =0.3.
[These values are different from those of the trajectory
shown in Figs. 2, 3, and 5. However, the shape of the
(L„p)phase-space diagram is similar for both cases but
can be illustrated more easily for K =0.3 and
E = —5 X 10 .] We immediately realize that large p
values are always associated with large negative values of
the angular momentum L„which extend in our example
of Fig. 4 down to approximately —1750. In contrast to
this, positive values of the angular momentum L, are re-
stricted to a small range of relatively small values of p.

The quasiregular and chaotic phases of the intermittent

trajectories (see Fig. 2) can now also be discussed in the
context of our phase diagram of Fig. 4. During the
quasiregular phases of the trajectory, i.e., the large ampli-
tude motion in the coordinate p, we have always large
negative values of the angular momentum L, and the
magnetic interaction dominates strongly over the
Coulomb energy. According to our above arguments on
the threshold behavior of the hydrogen atom for positive
and negative values of the angular momentum, this large
amplitude motion in the x,y plane of the laboratory coor-
dinate system is performed by the nucleus, whereas the
electron is strongly localized. During the chaotic phase
of the intermittent trajectory the electron and the nucleus
are close together and interact strongly via the Coulomb
potential. According to the shape of the phase-space dia-
gram in Fig. 4 both small negative and small positive
values of the angular momentum L, are then allowed.
The trajectory will show chaotic behavior until it finds its
"way out" to regions of phase space with large negative
values of L„where it behaves quasiregular.

With the help of Eq. (8) and the resulting (L„p)plot
or, equivalently, with the aid of the acting potential V
[note that E —V is essentially what appears in the square
root in Eq. (8)] it is therefore in general, i.e., for given
values of the energy, pseudomomentum, and magnetic-
field strength, possible to predict whether a trajectory of
the highly excited hydrogen atom has phases of quasireg-
ular motion and, in particular, to what extent a large am-
plitude motion in the coordinate p is allowed. Or, in oth-
er words, by choosing appropriate values of the pseu-
domomentum, energy, and magnetic-field strength, we
can control the intermittent behavior of our trajectory.

To complete our picture of intermittent trajectories we
present in Figs. 5(a) and 5(b) the internal relative z coor-
dinate and L, as a function of time for the same typical
trajectory whose internal x,y motion and center-of-mass
motion are shown in Figs. 2 and 3. During the chaotic
phases of the trajectory the z coordinate is relatively
small which corresponds to the picture that the electron
and the nucleus are close together. During the quasireg-
ular phases, i.e., the phases for which the internal x,y
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