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Nonmonotonicity of the atomic electron momentum density

Robin P. Sagar, Rodolfo O. Esquivel, Hartmut Schmider, Awadh N. Tripathi, and Vedene H. Smith, Jr.
Department of Chemistry, Queen's Uniuersity, Kingston, Ontario, Canada K7L3N6

(Received 15 October 1992)

The observed nonmonotonic behavior of the atomic electron momentum density of neon and some
members of its isoelectronic sequence at the Hartree-Fock level is investigated. Further evidence is pro-
vided by showing that the nonmonotonicity observed for the neon series at the Hartree-Fock level is still
present when a cusp condition and the correct asymptotic behavior are imposed onto the Hartree-Fock
wave function. This re ult is also observed for the results obtained from highly correlated
configuration-interaction wave functions. Furthermore, we substantiate the argument that the observed
nonmonotonicities are most probably due to higher-order terms in the Z perturbation theory.

PACS number(s): 31.10.+z, 31.20.Tz

I. INTRODUCTION

Momentum-space properties, and in particular
momentum-space densities, II(p), are gaining increasing
interest since the advent of techniques such as Compton
scattering [1] and (e, 2e) or electron momentum spectros-
copy (EMS) [2] which allow the experimental determina-
tion of this property. Hence, besides the theoretical in-
terest, there is a need for a complete characterization of
these densities in order to substantiate experimental re-
sults.

One interesting aspect of the atomic ground-states'
spherically averaged momentum densities is the non-
monotonic behavior for some elements of the periodic
table. This is quite unlike the more familiar position
space-charge density where, although not formally prov-
en, except for some regions of space [3,4], there is numer-
ical evidence at the Hartree-Fock level for ground states
to suggest monotonicity [5—7].

There have been several investigations [8—11] into the
nature of the nonmonotonicities in the spherically aver-
aged momentum density, II(p), which has led to the
analysis of related quantities such as the radial momen-
tum distribution function, I(p)=4vrp II(p) [8,12], and
the Laplacian V' II(p) [13], in the context of shell struc-
ture analysis.

Analysis into the nature of the nonmonotonicity at the
Hartree-Fock (HF) level [9] revealed that it is the orbitals
of the two outermost shells which are responsible for the
nonmonotonicities. Furthermore, the maxima may be
classified into two distinct types; i.e., those that occur in
the slow region (0.0, 0.6) ciao

' and those in the fast region
(0.7, 1.6) Aao ' [9]. Also, the appearance of nonmonoto-
nicities in II(p) of atoms seems to be dependent on the
basis set used [8] with nonmonotonicities appearing in
better-quality wave functions at the HF level while the
lesser-quality wave functions produce monotonic momen-
tum densities. Indeed, these results raise interesting ques-
tions about the physical validity of these nonmonotonici-
ties and the possibility that this efFect is an artifact of the
basis set or of a wave function that does not obey known
constraints such as the cusp condition [14] and asymptot-
ic behavior [3,4]. We hope to address these conjectures
in this paper.

Smith, Robertson, and Tripathi [15] have shown that
for the bare Coulomb potential model [16], Ze /r, t—he
total electronic momentum density for an arbitrary num-
ber of closed shells, II&(p), is a monotonically decreasing
function of p. Since all closed-shell systems (with the ex-
ception of helium) display nonmonotonicities at the HF
level, it was suggested that the observed nonmonotonici-
ties were due to higher-order terms occurring in the Z
perturbation expansion [15,17], i.e.,

II(p) =IIO(p)+Z 'IIi(p)+Z II2(p)+

for 2, 10,18, . . . electron systems, where the bare
Coulomb model for X closed shells corresponds to the
zeroth-order term, IIO(p). Therefore as Z~ ao, the con-
tribution from IID(p) should dominate, and the nonmono-
tonicity disappears. This claim was substantiated by cal-
culations at the HF level for the neon isoelectronic se-
quence, by noting that the degree of nonmonotonicity as
characterized by II(p,„)/II(0) decreased towards one as
Z increases. Likewise, p „becomes smaller as Z is in-
creased for Z ~ 11, and p,„/Z decreases to zero as Z in-
creases for Z ~ 10 [15].

The purpose of this paper is to investigate numerically
the nonmonotonicities in the momentum density of the
neon isoelectronic sequence with the aid of highly accu-
rate configuration-interaction (CI) wave functions that
have recently become available [18]. These functions
represent the final stage of a convergent sequence in the
position-space charge density. This type of procedure, re-
cently used in the construction of beryllium and lithium
isoelectronic sequences, has been shown to yield highly
accurate one-electron momentum-space quantities
[19,20]. In this manner, we hope to ascertain the effects
of electron correlation, beyond the HF framework, on the
nonmonotonic behavior. We will also examine the claim
(with the CI functions) that the nonmonotonicities arise
from higher-order terms in the Z ' perturbation expan-
sion.

II. RESULTS

We have computed the positions of the maximum in
II(p), p,„, along with the quantity, II(p,„)/II(0) from
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TABLE I. Values ofp, x and II(p, x )/II(0) computed from HF and CI wave functions for the neon
isoelectronic sequence.

Atom pmax

Hartree-Fock

II(p,„)/II(0) pmax

Configuration interaction

II(p,x )/II(0)

F
Ne
Ne'
Ne"
Na+

Mg +

Al'+

0.441 76
0.546 26
0.553 60
0.542 85
0.588 62
0.552 68
0.423 07

1.587 5
1.173 4
1.168 1

1.158 1

1.068 0
1.021 5
1.003 6

0.435 31
0.542 34

0.59044
0.552 10
0.422 12

1.662 71
1.184 54

1.073 2
1.022 1

1.003 6

'Values obtained from a wave function constructed [22] with the addition of difFuse p orbitals to the
Clementi and Roetti basis set [21].
Values obtained from a wave function constructed [22] with the cusp condition and asymptotic behav-

ior imposed as constraints.

the self-consistent-field (SCF) functions of Clementi and
Roetti [21] for members of the neon isoelectronic se-
quence. In addition, with the ATOMscF computer pro-
gram in the MOTEcc package [22], we have constrained a
neon HF wave function to satisfy the cusp [14] and
asymptotic behavior [3] conditions. We have also ob-
tained an extended neon HF wave function by adding to
the basis set [21] two diff'use p-type orbitals. The p
and II(p,„)/II(0) values were also obtained from these
functions. These values were also calculated from highly
correlated CI wave functions. The CI wave function for
neon has been previously documented [23]. For the other
members of the sequence, the wave functions were built
in [7s,7p, 4d, 4f, 2g ( basis sets which produce CI expan-
sions of 723 terms (with single and double excitations) ac-
counting for over 92% of the correlation energy [18].

The results are presented in Table I. Note that for the
higher-Z members of the sequence (Si +,P +, S +,Cl +

),
nonmonotonicities in either the HF or CI wave functions
were not found.

First of all, the nonmonotonicity present at the HF lev-
el in neon is still present when the cusp and asymptotical-
ly constrained HF wave function is used. This is also ob-
served with the extended HF wave function that includes
diffuse p orbitals. The values of p,„and II(p,„)/II(0)
do not change significantly among the three wave func-
tions. These results thus support the argument that the
nonmonotonicity is neither a problem of the basis set nor
of wave-function quality at the near-HF level. Addition-
ally, in consideration of all members, one can see that the
nonmonotonicities present at the near HF level are al-
ways present at the CI level. Also, the positions of the
maxima and II(p,„)/II(0) show small changes on com-
parison of HF and CI values, indicating a small depen-
dence on electron correlation for these values. The
II(p,„)/II(0) value is slightly larger for the CI than in
the HF case. These results serve to substantiate our ar-

gument that these nonmonotonicities are not just a conse-
quence of the HF framework, but rather are also present
when dynamic electron correlation is taken into account.

The degree of nonmonotonicity as characterized by
II(p,„)/II(0) is seen to decrease (a value of one means a
monotonic momentum density) as Z increases. This be-
havior, present at the HF level, is also present at the CI
level and lends weight to the argument [15] that the non-
monotonicity is a result of higher-order terms in Z
perturbation theory. The p „and p „/Z values at the
CI level are also observed to display similar trends to the
HF case when going across the isoelectronic sequence.

III. SUMMARY

We have attempted to establish that the nonmonotoni-
cities in II(p) of the neon atom, present at the HF level,
are not a consequence of the basis set or wave-function
quality. We have shown this by comparison of results ob-
tained from a cusp and asymptotically constrained wave
function and one where diffuse orbitals have been includ-
ed in the basis set. We have gone beyond the HF level
and shown that the nonmonotonicities are also present
with CI quality wave functions, thus establishing that this
behavior is not an artifact of the HF model. Lastly, our
results support the argument that the nonmonotonicities
arise from the higher-order terms in the Z ' perturba-
tion expansion of II(p).
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