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Polarizabilities and susceptibilities from high-angular-momentum Rydberg states
of halogen and inert-gas isoelectronic sequences
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We have developed perturbative expressions for the energies of high-angular-momentum Rydberg
states of halogen and inert-gas isoelectronic sequences. These expressions allow us to determine polar-
izabilities and estimate susceptibilities of the cores. They also provide simple expressions for the quan-
tum defects.

PACS number(s): 35.10.Di

I. INTRODUCTION

Rydberg states have attracted considerable attention
because of their resemblance to hydrogenic states. How-
ever, there are some differences between the two. These
differences are related to the interaction of the Rydberg
electron, i.e., the electron in the highly excited state, with
the core. An analysis of these differences can yield im-
portant information about the properties of the core.

E(J,K, l, n) =b (J, l, n)+f (J,K, l)d (l, n)

for n ))l ))1 . (1.4)

The expressions for f (J,K, l) are as follows [9,10].

1. Halogen isoelectronic sequences

A. A brief review

The subject of Rydberg atoms has been reviewed many
times [1—4]. The energy levels of these atoms or ions are
conveniently described by the Rydberg formula

RZ,
n ))1,

(n —5)

1 2I +12
20 2I +3

1 (2l —3)(2l +5)
10 (2l —1)(2l +3)

f (2, l+ 1,l)=—

f (2, l, l)=—

f (2, 1+2,l)= 1 2I

where R is the Rydberg constant, Z, is the charge of the
core in units of e, and 5 is the quantum defect which is
expected to be independent of n for n ))I. The case of
Rydberg states of alkali-metal atoms has attracted special
attention. Here the quantum defect in the leading ap-
proximation for n ))l )) 1 is related [5] to the polariza-
bilities of the core. It has been found [6] that even the
small quadrupolar polarizability term is needed to pro-
vide a satisfactory explanation of the accurate experimen-
tal observations [7] of the energy levels for l = 3,4, 5.

For the halogen and inert-gas isoelectronic sequences,
the situation is considerably more complicated. In this
case, the analysis for large-I Rydberg states is carried out
within the framework of pair coupling [8] where the lev-
els are formed in groups of close-lying pairs. The I of the
Rydberg electron couples with the J of the parent giving
rise to a K which then couples with the spin of the Ryd-
berg electron giving Jz„,&.

f(2, l —1, l) =—

j"(2, l —2, 1)=
10 2I —1

f ( 1, l + 1,1)=—1 2I

I(1,1, /) = 1

f ( 1, 1 —1,l) =—1 2I+2
20 2t —1

f (0, l, l) =0 .

2. Inert-gas isoelectronic sequences

(1.5)

(J,l)~K,

(K, —,')~J„„„.
(1.2)

(1.3)
with

6h +3h —2J(J+1)l(l+1)
8J(J +1)(2l —1)(2l +3) (1.6)

The energy levels of the Rydberg states of halogen and
inert-gas isoelectronic sequences with large I are given by 2h =K(K+1)—J(J+1)—l(1 +1) .
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Exchange interactions and mixing with other states then
give rise to finer corrections including the splitting of
each pair with a given K.

B. An outline of our work

where P2, 0 are the parent states of the halogen isoelec-
tronic sequences.

2. Inert-gas isoelectronic sequences

The main purpose of our work is to analyze the large-
angular-momentum Rydberg levels of halogen and inert-
gas isoelectronic sequences within a perturbative ap-
proach. The unperturbed states are taken to be the pair-
coupling states with the Rydberg-electron spin not taken
into account. The successive perturbation corrections to
the energy levels are related to the properties of the core,
such as the dipolar polarizability and the diamagnetic
susceptibility. Comparison of the energies with the ob-
served energies allows us to predict the polarizabilities
and susceptibilities of the parent core. These predictions
are found to be in good agreement with the results of
Hartree-Fock calculations I 1 1]. Reversing the argument,
if we have good estimations for the input values of the
polarizabilities and susceptibilities, we can predict fairly
accurately the energy levels of all Rydberg states with
large /, for all halogen and inert-gas isoelectronic se-
quences, in terms of a single parameter.

II. PERTURBED RYDBERG ENERGIES

Here we develop perturbative expressions for the ener-
gies of high-angular-momentum Rydberg states, and dis-
cuss their limitations.

A. General perturbative approach

Consider an atom or ion with 1V electrons and atomic
number Z. Ignoring exchange contributions, one has for
the perturbed energy of the Rydberg state (we use atomic
units e=k=m, =1)

K = l + —,', l —
—,
' (P, q2 ),

(2.5)

where P3&2, &z are the parent states of the inert-gas
isoelectronic sequences. We wi11 be neglecting the sma11

splitting of these states due to the spin of the Rydberg
electron.

For Rydberg states, the region of importance is R &) 1,
so that the following expansion is useful in the evaluation
of the matrix elements:

V(R, r, )= g 1 1 B(r, —R)
r, R

oo r~
+ g, , Pi(cos9; ) (2.6)

B. First-order contribution

In evaluating the first-order contribution to 5E, we
note that only the 1=2 term in Eq. (2.6) contributes to
the states with Pz & 0 parents for halogen isoelectronic se-
quences and P3/2 ]/2 parents for inert-gas isoelectronic
sequences. The general form of the first-order contribu-
tion neglecting penetration or R & r; region, is

cosO; =R r;,
where r& (r& ) is the smaller (larger) of (R, r;). The first
term gives rise to what is known as the penetration term
which is generally quite small for high-angular-
momentum Rydberg states I6] and will be neglected.

5E= Voo+ g + .
t(%0)

(2.1)

(2.2)

SE"'=V00

=g,f(J,K, l) jR IR„((R)I R dR, (2.7)

where Vis the perturbing interaction

(2.3)

where g, depends only on the spatial properties of the
core, f (J,K, /) is given in Eqs. (1.5) and (1.6), and R„& are
the Coulombic radial wave functions. Carrying out the
integrations we get

1. Halogen isoelectronic sequences

K =1+1,l, l —1,l+2, 1 —2 (P2),
K =I —1,l +1,1 (Pi ),
K =l (Po),

(2.4)

R is the position of the Rydberg electron. Contribution
of the degenerate or nearly degenerate states is discussed
later. In the following discussion we confine ourselves to
the problem of Rydberg states in halogen and inert-gas
isoelectronic sequences. For these, the pair-coupling
scheme is appropriate, which means that our states will
be characterized as follows.

8Z, (21 —1)!6E"'=g,f (J,K, l)
n (2l+2)!

(2.8)

''~r&i)&(r&)Pz '(r, ),r, ))r, , i&1, (2.9)

where i)&(r& ) does not depend on angles, and Pz
' is the

where Z, is the charge of the core, Z, =Z —%+1. To
obtain any further information about g, we need detailed
knowledge about the structure of the wave function. For
this we consider the asymptotic wave function of the
core.

It follows from the quantum numbers of the various
halogen ions that the core wave function for halogen
isoelectronic sequences is of the form [13]
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ground-state wave function of the (N —2) electron sys-
tern with vanishing total orbital angular momentum.
Then the contribution of this domain to the energy is

5E'''=f(J, K, l)f r ~(/(o "!r dr(

d'r; f, I&.,((&)l'&'«,
(+$ 2) R

r& ))r2))r;, i%1,2 . (2.13)

5E"'=f(J,K, l)f (r +r )~PO "~ r dr&r dr2

Following the same arguments as for halogens, we get

r())r, , i%1 . (2.10)
SZ, (2/ —1)!5E'"=A(y~ (

—y„3)f(J,K, /)
n (2/+2)!

(2.14)

The expectation value of r
&

in Eq. (2.10) represents the
contribution of the outer electron in the (N —1)-electron
system to 6y, where y is the diamagnetic susceptibility of
the system. However, in this integral, the contribution is
only from the large-r, region. Since this contribution is
an important part of the expectation value of r „we ex-
pect it to be proportional to but somewhat smaller than
6(y~ (

—y~ 2) where g, is the diamagnetic susceptibili-
ty of the i-electron system. Therefore we may replace it
by A (g(v (

—y~ 2) where A is expected to be somewhat
less than 6. This leads to

SZ, (21 —1)!5E'"= A(X~ ( X~ 2)f (J—,K, /)
n (21+2)!

(2.11)

where g&(r& ) and r/2(r2) do not depend on angles, and
3' is the ground-state wave function of the (N —3)-

electron system with vanishing total orbital angular
momentum. Then the contribution of this domain to the
energy is

For the inert-gas isoelectronic sequences, the core wave
function has the form

"~r,Xr2q((ri)q2(r2)yo '(r;)

(2.12)

A (y~ (
—y~ 3) for inert-gas sequences .

(2.15)

The usefulness of this relation is that since —,
' A represents

the fraction of the contribution of the asymptotic domain
to the susceptibility of the outer electrons, we expect 3
to have approximately the same value for all the systems.
Therefore we can use the values of g, to deduce the rela-
tive values of (yz, —y~ 2) for different halogen cores
and (y~, —y~ 3) for different inert-gas cores and their
isoelectronic sequences.

C. Second-order contribution

The leading term in the second-order contribution to
the energy is

5E(2)
t (%0)

r;.R /R
l

(2.16)

In the adiabatic approximation, i.e., neglecting the
Rydberg-electron energy in the denominator, one can
write

Comparison of Eqs. (2.11) and (2.14) with Eq. (2.8) im-
plies that effectively we have taken g, to be

A (y(v, —
y(v 2) for halogen sequences

E(2)
t (%0)

(y('v "~yr ~y(& (()

R„I r R dR
0

((9~ r X r; g, )
—

(gr X(r R(/R' g, )
(2.17)

We now obtain an estimation for the second term in Eq. (2.17), 5E' ', and argue that it is small. For this we replace
E, in the denominator by an average value E, to get

gE(2)' (2.18)

For simplifying this expression we again use the asymp-
totic structure in Eqs. (2.9) and (2.12), which leads to

4Z, (3n —1 —1)

5E'" 3(EO E, )n (2/+3)(21 ——1)
(2.20)

gE(2)'

so that

p 2

Pr(r; k( (9r) (2.191
(Eo E); 3 R— which is quite small for I 3. Therefore, identifying the

coefficient of the first term in Eq. (2.17) with the polariza-
bility az &

of the core, we get
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5E(2) 1~
N —1

16Z, (3n —/ —/)(2/ —2)!

n (2/+3)!
(2.21)

K. Total perturbed energy

Collecting the various terms, we obtain for the per-
turbed energy

D. OA'-diagonal terms

There are two classes of off-diagonal terms. In one
class, they arise from the matrix elements between Ryd-
berg states with the same n but different I. These terms
involve overlap integrals of the type

ViI~2- J R R„ l(R)R„ (+2(R)R dR, (2.22)

8Z, (2/ —1)!5E= A (by)f(J, K, /)
n (2/+2)!

16Z, ( 3n —/ —/)(2/ —2)!
2+N —1

n (2/+3)!
+5E(J,K, /, n), (2.28)

which turn out to be zero.
Another class of off-diagonal terms arises from the

mixing between different states of the parent core. These
states have slightly different energies. The energy shifts
due to these terms, correct to the third order, are

5E(J,K, /, n) = (gJ J )'

J' (+J) b J J +5E"'( J) 5E"'( J—' )

(2.23)

b,j J.=EJ(n ~oo ) —EJ.(n~ co ), (2.24)

5E"'(J) is the first-order energy shift for a given J,K, /, n

as in Eqs. (2.11) and (2.14), and

where 6J J. is the difference in the energies of the parents
J,J',

where by is (y)v, —y~ 2) for halogen isoelectronic se-
quences and (y)v, —

y)v 3) for inert-gas isoelectronic se-
quences, y; being the diamagnetic susceptibility of the i-
electron system, f (J,K, /) is given in Eqs. (1.5) and (1.6),
uN 1 is the dipolar polarizability of the core, and the
contribution 5E(J,K, /, n) from the off-diagonal terms is
given in Eq. (2.23). Before we use this expression, it is
worth considering the various terms left out. As men-
tioned earlier, we have neglected all the exchange and
penetration terms. These terms are expected to be quite
small for /+3. For example, in the analysis [6,12] of
alkali-metal-atom Rydberg states, they contribute only a
few percent of the polarizability terms. While we have
included the effect of off-diagonal terms coming from
different parents, we have neglected higher multipolar
and higher-order perturbation terms. These terms are ex-
pected to be small [6].

8Z, (2/ —1)!
gJ J = A(by)

n (2/+2)!
(2.25)

III. RESULTS

with b,y =yN, —
yN 2 for halogen and

3 for inert-gas isoelectronic sequences.
The nonzero, off-diagonal elements of the symmetric fJ J
are, for halogen isoelectronic sequences [9],

1/2

We can use the expression for the energy 5E given in
Eq. (2.28) and the experimental values of 5E to determine
Ahy and aN, . A pair of energy shifts for any two
states will allow us to determine these two quantities.
Consistency of the results from different pairs will justify
the correctness of Eq. (2.28).

2, 1

3 /(/+2)
10 (2/ +3 )(2/ +3 )

5K, I +1 A. Simpli6ed equations and input data

1/2
3 (/ —1)(/+ 1)
10 (2/ —1)(2/ —1)

1/2
3 3
10 (2/ —1)(2/+3)

1 2/(/+1)
5 (2/ —1)(2/+3)

1/2
(2.26)

and for inert-gas isoelectronic sequences,

1/2
1 2(2/)

20 (2/+3) 5K, I + 1/2

1/2

+ 1 2(2/ —1)(2/ +2)
2() (2/ + 1)(2/+ 1)

(2.27)

The correction due to 5E in Eq. (2.23) is quite small for
cores with Z, = 1, but becomes significant for Z, & 1.

For halogen isoelectronic sequences, the pair-coupling
states are

K =/+1, /, / —1,/+2, / —2 (J =2),
K =/ —1,/+1, / (J=1),
K=/ (J=O) .

(3.1)

We will designate the states by the index i = 1, . . . , 5 for
J=2, i =6,7, 8 for J =1, and i =9 for J =0, and the cor-
responding perturbed energies by 5E, . There will be mix-
ing between i = 1 and 7 states, i =2, 8, and 9 states, and
i =3 and 6 states. However, the mixing leaves the sum of
the eigenenergies unchanged. Therefore to simplify the
calculations we consider Eq. (2.28) for 5E i + 5E7,
5E2+5E8+5E9, 5E3+5E6, 5E4, 5E, , for which 5E =0,
and we need to consider only the first two terms in Eq.
(2.28) with suitable sums over appropriate states.

For inert-gas isoelectronic sequences, the pair-coupling
states are
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TABLE I. Input data for the energies —5E; in cm ' for E = l + 1, l, l —1,1+2,1 —2 states with P2
as the parent, of Clt, Br I, It, Nett, Nattl, Ar tt, and Kr tt.

=l+1 l+2 l —2

Clt

Brt

Ne tt

Na III
Ar II

Kr II

3,4
5
6
7

4,5
3,4

5
6
7

4,5
3,4

5
6

4,5
6
7

3,4
4,5

6
7

3,4
5
6

65.5
35.7
21.3
13.3
10.6
86.5
49.2
28.6
18.9
13.7

129.7
74.4
46.2
20.4
12.2
7.8

326.9
58.6
47.7
30.9

941.2
565.9
321.3

58.3
31.7
18.6
12.6
10.2
7S.4
44. 1

16.9
13.2

126.1

59.6
40.6
19.5
11.6
7.5

293 ~ 1

75.8
46.0
29.7

821.3
485.1

28.7
16.3
9.8

3.9
58.5
26.0
14.8
10.3
5.6

78.4
68.1

29.0
6.3
4.0
2.7

159.4
40.5
24.6
16.5

619.3
377.2

19.9
12.9
8.4
5.6
0.3

34.1

21.5
13.9
9.2
1.8

74.1

46.4
29.6

—2.4
—0.9
—0.4
55.9
16.9
12.7
9.1

559.7
367.6
237.0

—6.7
—0.9

0.4

—4.1

0.9
4.1

3.7
2.8

—3.7
31.0
24.0
20.3

—12.0
—6.5
—3.9

—69.3
—10.4
—3.3
—1.1
368.5
249.4
160.5

K = l —
—,
' l + —,', l —

—,', l + —,
' (J=—,'),

K=1+—' l ——' (J=—') (3.2)

We will designate the states by the index i =1, . . . , 4 forJ=—'„ i =5,6 for J=—,'. There will be mixing between

i =3 and 6 states, and i =4 and 5 states. Since the sums
of eigenenergies are unchanged by the mixing, we consid-
er Eq. (2.28) for 5E„5Ez, 5E3+5E6, and 5E4+5E5 for
which 6E =0.

Experimentally, the energies are generally given with
respect to the ground-state energy. Hence we have

TABLE II. Input data for the energies —5E; in cm ', for J(K)=1(l—1),1(l+1),1(l),0(l) states
with PJ, J= 1,0 as the parents, of Cl?, Br I, I t, Ne tt, Na ttt, Ar tt, and Kr tt.

Clt

Brt

It
Ne It

Na ttt
Ar II

Kr II

l, n

3,4
5
6
7

4,5

3,4
5

4,5

4,5

4,5
6
7

3,4
4,5
6
7

3,4
5
6

J(K)= 1(l —1)

55.3
32.0
20.3
12.5
9.4

80.0
43.8
14.7
16.3
16.5
10.3
6.7

213.7
65.7
41.8
27.8

847.7
510.5

1(l + 1)

45.0
26.3
16.6
10.5
7.1

65.7
37.1

12.2
13.7.

12.0

5.1

172.1

54.8
35.1

23.4
761.9
491.6
302.2

9.5
7.6
5.5

—1 ' 5
18.5
13.9
2.2
3.8

—6.2
—3.1
—1.8

3.0
5.3
6.1

5.2
447.9
325.3

0( l)

35.9
21 ~ 8
13.0

4.7

32.6
9.4

11.1
7.0
4.6
3.1

128 ~ 3
41.4
27.6
18.6

673.9
497.2
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TABLE III. Input data for the energies —6E;, for (J,E) Rydberg states of Ne?, Ar?, Kr I, and Xe I.

Ne I

Ar I

Xe I

l, n

3,4
5
6
7
8
9

4,5

3,4
5
6
7
8
9

4,5

3,4
5
6
7
8
9

3,4
5
6
7
8
9

18.71
9.89
5.82
3.66
2.45

3.43
63.09
34.35
20.61
13.27
9.06
7.49

11.19
90.85
49.03
29.72
19.2
13.2
9.1

130.8
79.9
49.6
32.5
22.5
16.2

(3,l+ 3)

11.06
6.01
3.63
2.28
1.58
1.16
2.08

44.37
24.92
15.17
9.89
7.10
4.90
7.75

67.07
37.94
23.1

15.0
10.3
7.2

114.3
66.6
41.2
27.0
18.6
13.4

2.29
1.43
0.92
0.17

0.21
—0.41
21.62
12.57
10.29
5.47
4.32
2.64
1.08

34.63
21.42
13.7
9.3
6.6
3.8

66.8
41.7
26.6
17.8
12.4
9.1

( —', l+ —,
'

)

—5.63
—2.65
—1.38
—1.08
—0.56
—0.29
—1.89

1.61
2.74
3.55
1.85
1.68
1.09

—2.50
8.34
7.97
5.85
4.2

31.3
23.6
16.2
11.2
8.0
6.0

( —,') l+ —,
'

)

5.27
3.07
2.23
1.14
0.86

0.62
29.84
16.84
10.72
7.25

3.90
47.22
29.2
17.5

84.0
52.0
33.0
22.0

5.03
3.00
2.01
1.10
0.86

0.62
28.70
14.84
10.12
7.10

3.68
44.64
29.2
17.5

84.0
52.0
33.0
22.0

z,'
oE; = E;(n, l) —E;( ~ )+

2n (1+m, lm~)
(3.3)

where E; ( ~ ) takes different values for different J states,
and mz is the mass of the nucleus. One also observes
that the experimental energies are given in cm ' and
should be multiplied by 4.556 335 X 10 to convert them
into atomic units.

The data for Rydberg energy levels are scattered and

are of varying accuracy. Therefore for the sake of
definiteness and ready reference, we have presented in
Tables I—IV what we believe to be the most accurate data
for 6E, for different isoelectronic sequences, which we
have used in our calculations. The data for Cl I are from
Ref. [14], for Br I from Refs. [15,16], for It from Refs.
[16,17], for Ne tt from Ref. [18], for Na ttt from Ref. [19],
for Arts from Refs. [14,20,21], and for Kr tt from Ref.
[22]. For inert-gas isoelectronic sequences, the data for

TABLE IV. Input data for the energies —6E; for (J,K) Rydberg states of charged isoelectronic se-
quences of inert-gas atoms.

Ca iii

Sc Iv

Sr III

l, n

4,5
6
7

4,5

6
5,6
7

6,7
4,5
6
7
8

4,5
6
7

5,6

234.9
145.8
94.1

498.5
318.5
117.6

36.8
121.2
73.8
49.0

391.0
244.5

89.4

(3,l+ 3)

179.8
113.4
75.0

390.1

252.6
91.1
59.4
29.0
93.8
59.1

39.1

27. 1

314.3
201.9
134.5
69.9

76.1

51.6
34.8

194.6
136.0
18.8
13.4

—0.53
36.2
26.4
17.5
13.1

152.6
101.7

14.1

( 3, l+ —')

16.5
18.4
14.7
75 ~ 3
68.2

—10.3
—3.23

—10.4
6.3
8.9
7.0

68.3
56.5
46. 1

—7.1

(1 l+ 1)

116.3
77.8
48.0

266.2
184.6
52.3
37.3
14.4
68.3
46.6

231.7
154.2

44.4

111.8
76.3
52.2

255.9
183.0
51.0
37.3
14.4
67.1

45.4

225.7
150.0

43.0
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TABLE V. The average values of aN &
for different (I,n) states, obtained from solutions to Eq.

(2.28), for appropriate combinations of 5E, as described in Sec. III A, their average value 6N &
along

with the predictions of HF calculations from Ref. [11]. The value given for a~, of Kr n is the value
corrected as discussed in Sec. III C.

I, n

3,4
5

6
7

4,5
6
7

+N —1

HF

Clr

9.09
9.26
9.31
9.38
8.71

9.15
9.7

BrI

13.3
13.6
14.8
14.8
14.6

14.2
14.4

25.7
26.7
25.3

25.9
25.4

Ne II

0.841
0.845
0.848
0.845
0.81

Na III

0.47

0.47
0.41

Ar II

4.82
4.82
4.84
4.83
5.1

Kr II

10.5
11.7
12.1

9.6
8.3

TABLE VI. The average values of AAy for different (I,n) states, obtained from solutions to Eq.
(2.28) for appropriate combinations of 5E; as described in Sec. III A, their average value 3hy, average
value of Ay taking A =3.9 along with the predictions of HF calculations from Ref. [11], where

,. We have used HF value ofyN &

—
yN 2 for Nerr to obtain A =3.9.

I, n

34
5

6
7

4,5

6
7

Ahy
~i

(g+)HF

ClI

3.29
3.30
3.37
3.10
3.22

3.26
0.84
0.87

Brr

4.55
4.03
4.51
4.50
4.03

4.32
1.11
1.09

5.66
5.74
4.12

5.17
1.33
1.49

Ne II

0.875
0.877
0.881
0.878
(0.225)
0.221

Na III

0.65

0.65
0.167
0.153

Ar II

2.38
2.37
2.37
2.37
0.61
0.60

Kr II

3.36
3.41
3.53

3.43
0.88
0.80

TABLE VII. The average values of uN &
obtained from solutions to Eq. (2.28) for (I,n) states, their average value KN &

along with

the predictions of HF calculations from Ref. [11].

3,4
5
6
7
8
9

4,5
6
7
8

5,6
7

6,7
N —1

HF

Ner

1.323
1.327
1.387
1.448
1.385
1.216
1.184

1.28
1.35

Ar I

7.30
7.13
7.88
7.69
8.39
7.73
7.06

7.60
7.9

Kr I

11.43
12.12
12.15
12.26
12.61
11.58

12.0
12.8

Xe I

21.1

22.2
22.8
23.3
23.2
23.7

22.7
23.2

Ca rrr

2.63
2.69
2.71

2.68
2.57

1.91
2.02

1.79
1.75
1.80
1.85
1.69

7.15
7.42
7.08
7.24

7.2
7.6

Sr II

5.00
5.12
5.28

4.47

5.0
49
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Nel are from Refs. [14,23], for Art from Ref. [14], for
Krl from [24,25], for Xel from Refs. [24,26], for Calli
from Refs. [14,27], for Sc IV from Ref. [14],for Rb ll from
Ref. [28], and for Sr III from Ref. [29].

B. Polarizabilities and susceptibilities

In Tables V —VIII, we have given the average values of
a& &

and 3 (hg) for different (n, l) states of halogen and
inert-gas isoelectronic sequences. The average of these
values is recommended as being correct to within 10%.
These values are given in Tables V —VIII along with the
predictions of Hartree-Fock (HF) calculations [11]. We
have also given the values of Ag with

A =3.9 (3.4)

chosen so as to give HF value of gN, —
gN 2 for

Ne'er.

The agreement between the two is generally good. How-
ever, it may be noted that the HF values themselves may
be subject to serious errors.

For positively charged ions which are isoelectronic se-
quences of halogen and inert-gas atoms, the radii of the
Rydberg electron get reduced more than the reduction in
the size of the core. As a result we prefer to use larger
values of l for the penetration and other effects to be
negligible.

C. Discussion

We have obtained an expression for the energies of
high-angular-momentum Rydberg states of halogen and
inert-gas isoelectronic sequences in terms of dipolar po-
larizability aN &

of the core, and difference Ag between
the susceptibility of the core and the susceptibility of the
core from which one (for halogens) or two (for inert
gases) electrons are removed. We have also included the
correction due to mixing of some parent states, leading to
the final expression in Eq. (2.28). Using experimental
values of energies and A =3.9 chosen so as to give the

exact 9 6+N —I (3.6)

which is the value we have suggested in Table V.
One may reverse the arguments to state that if we have

reliable values for hy and a~ „Eq. (2.28) gives a one-
parameter description of all the high-angular-momentum
Rydberg energies of all halogen and inert-gas isoelectron-
ic sequences. A satisfactory description is obtained for
A =3.9. In particular we note that for large n, we have a
quantum defect

8Z, (21 —1)!
5(J,K, l)= —A (by)f (J,K, /)

(2l +2)!
24Z, (2l —2)!

+Q~ i, n &&l &&121+3 !
(3.7)

HF value of Ag for Ne II, we have obtained the polariza-
bilities aN, and Ag. These predictions are in good
agreement with the results of HF calculations [11]. It
may be emphasized that the predictions for the polariza-
bilities nN, are independent of the assumption that A is
approximately the same for all systems.

There is an important source of error in the experimen-
tal input. It may be noted that even a small error in
E;( ~ ) can lead to significant errors in the results. If b,

cm ' is the error in E, (ac), i.e., E;(ec)=E "'"(ac)+6,
czN, predicted is

n (2I +3)!(4.556X 10 )

8Z, (3n —I —1 )(2I —2) !

The error due to the last term would increase rapidly as n
and I increase. The fact that our predictions for nN &

do
not vary significantly with n or I is an indication that b is
quite small for most cases. The exception appears to be
Kr II where o.N &

predicted does increase rather
significantly when we go from (l, n)=(3, 4) to (3,6). Us-
ing the values in Table IV we get 6=57 crn '. This also
means that a&'"& is a little smaller for Kr II,

TABLE VIII. The average values of A hg obtained from solutions to Eq. (2.28) for (I, n) states, their average value A hy, average
value of hy taking A =3.9 along with the predictions of HF calculations from Ref. [11],where hy=y~

I, n

3,4
5
6
7
8
9

4,5
6
7
8

5,6
7

6,7
Ab, y
Mx

( g+)HF

Ne I

2.04
2.05
1.97
2.11
1.97
1.99
2.03

2.02
0.52
0.52

Ar I

5.14
5.24
4.94
5.08
4 94
6.07
5.19

5.23
1.34
1.35

Kr I

6.86
6.54
6.69
6.73
6.45
7.32

6.77
1.75
1.78

Xe I

8.42
9.17
9.34
9.40
9.80
9.82

9.33
2.41
2.50

Ca iii

3.09
3.10
3.21

3.13
0.80
0.75

Sc Iv

2.54
2.58

2.51
2.44
2.50
2.51
0.64

Rb II

5.21
4.97
5.46
5.66

5.32
1.36
1.37

Sr III

4.43
4.39
4.61

4.35

4.45
1.14
1.10
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Using the values of A (by) and a~, given in the tables
and the expression for f (J,K, /) in Eqs. (1.5) and (1.6),
this expression allows us to obtain the quantum defect for
halogen isoelectronic sequences. For example, for Cl I,
this expression gives

5(2,4, 3 ) =0.0223, (3.8)

5'"~'(2, 4, 3)=0.0224 . (3.9)

whereas the experimental value of —5E=9.7 cm ' for
J=2, K =4, 1=3, n =8 gives
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