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The eigenvalues of a quantum system depending on two parameters become degenerate at isolated
points in the parameter space, which are called diabolical points because of their double-cone struc-
ture. Varying one parameter produces near-degeneracies termed avoided crossings. Some results on
the density of these objects in parameter space can be obtained by requiring consistency with the
level repulsion exhibited by the distribution of energy-level spacings. The density of diabolical points
and the distribution of their ellipticities are obtained exactly for the Gaussian orthogonal ensemble
random-matrix model. The distribution of their separations in parameter space is also investigated.

PACS number(s): 03.65.Sq, 05.45.4+b

I. INTRODUCTION

It is well known that if the energy levels of a quan-
tum system with a discrete spectrum are plotted as a
function of a parameter, the curves for levels of the same
symmetry class do not cross. The curves can, however,
approach each other at events called “avoided crossings,”
where the separation of the energy levels becomes small
compared to the mean level spacing: the energy-level
curves have a universal structure in the neighborhood
of an avoided crossing which can be determined from de-
generate perturbation theory. If we consider the energy
levels of a system (which we assume has time-reversal
symmetry) as a function of two parameters, pairs of lev-
els typically become degenerate at isolated points in the
parameter space [1]. These points have been termed “di-
abolical points” [2] because of the double-cone structure
of the intersecting energy-level surfaces, which was first
described by Teller [3]. These degeneracies and near-
degeneracies are physically significant because they can
facilitate nonadiabatic (Landau-Zener) transitions in sys-
tems where the parameters are a slowly varying function
of time [4]. These effects are important in “radiation-
less transitions” between potential surfaces of molecules
(5], and it has also been proposed that they can act as a
mechanism for dissipation in nuclear collisions [6].

The spectra of systems which have a large number
of levels typically have the same short-ranged statistical
properties as the eigenvalues of certain random-matrix
ensembles. Significant exceptions, which we will not con-
sider further, occur when there are symmetries, quanti-
zation conditions due to tori in the classical phase space
[7], or when states are Anderson localized [8]. We con-
sider a system with time-reversal invariance and in which
the Hamiltonian does not depend on spin, for which the
spectral statistics typically resemble those of the Gaus-
sian orthogonal ensemble (GOE). The properties of the
GOE and other random-matrix models are described in
detail in a reprint volume by Porter [9]. Motivated largely
by the desire to understand the response of complicated
quantum systems to time-dependent changes of their pa-
rameters [10,11], this statistical approach has been ex-
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tended to consider the parameter dependence of energy
levels. The density in the parameter space of avoided
crossings can be calculated analytically for a parameter-
dependent GOE model, and for semiclassical systems the
parameters of the model can be related to a classical
correlation function [12]. Some other statistical aspects
of the parameter dependence of energy levels have been
considered by Gaspard et al. [13], using an equation-of-
motion description of a parameter-dependent GOE de-
vised by Pechukas [14]. The parametrized GOE model
has been shown to give a very good description of both
the statistics of the matrix elements and the parameter
dependence of the energy levels in a chaotic quantum bil-
liard system [15]. In this paper we extend the analysis of
the parametrized GOE model to two-parameter systems.
We calculate the density of diabolical points in param-
eter space, and also the joint distribution of the slopes
and eccentricities of the associated conical intersections
of pairs of energy levels. The results greatly extend a
very simple estimate for the density of diabolical points
obtained previously [2].

As well as giving useful information about two-

. parameter systems, this calculation also helps to clar-

ify a point connected with the density of avoided cross-
ings. Recently some numerical results have been re-
ported which are at variance with a prediction of the
parametrized GOE model. This model predicts that the
density of avoided crossings with minimal separations of
successive levels less than A is proportional to A in the
limit A — 0; it has been claimed [16,17] that this dis-
tribution vanishes faster than linearly as A — 0. In
Sec. II of this paper we discuss the relationship between
the avoided crossings and nearby diabolical points, and
show that the scaling of the density of avoided crossings
in this limit can be derived from the same very minimal
assumptions as used by Wigner [18] (also reprinted in
the volume by Porter [9]) to derive the linear repulsion
of energy levels.

In Sec. III we obtain a general expression for the den-
sity of diabolical points, and obtain an explicit result
for the parametrized GOE model. Appendixes A and B
contain a discussion of how this result can be applied to
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obtain the semiclassical density of diabolical points for
a two-parameter classically chaotic quantum system. In
Sec. IV we obtain the joint probability distribution for
the eccentricities and slopes of the conical intersections
associated with the diabolical points for the parametrized
GOE system. The analysis is similar in approach to that
used by Rice [19] and Longuet-Higgins [20] to investigate
the topography of Gaussian random functions. Numeri-
cal results reported in Sec. V confirm the correctness of
these expressions. In Sec. V we also report some numeri-
cal investigations of the distribution of spacings between
diabolical points in parameter space: surprisingly, dia-
bolical points on the same energy surface do not exhibit
repulsion at small separations. A scaling argument is
presented which explains this result.

Some results on a related problem have been obtained
recently for systems without time-reversal symmetry,
where energy levels become degenerate if three param-
eters are varied. These degeneracies have a sign asso-
ciated with them, which is related to the two-form de-
scribing the evolution of the phase of the wave function
under adiabatic changes of the parameters [21,22]. The
signed density of these three-parameter degeneracies can
be evaluated using a trace identity [23].

II. DEGENERACIES AND NEAR-
DEGENERACIES IN A TWO-PARAMETER
SYSTEM

We consider a system with a Hamiltonian depending
on two parameters, H(X7,X3), which has time-reversal
symmetry, and which has no symmetries or constants of
motion. The eigenvalues E,(X;,X2) become degener-
ate at isolated points in the (X1, X3) plane. Consider
the behavior of the energy levels in the neighborhood
of one of these degeneracies, where the pair of eigen-
values E,, E,+1 become degenerate at a nearby point
X* = (X7,X3). According to degenerate perturbation
theory, the energy levels in the neighborhood of X* are
given by the eigenvalues of a 2 x 2 matrix

E;+Von
Vn,n+1

Vn n+1
. ) 2.
E: + Vn+1,n+l> (2.1)
where E; = E,(X*), and the V,, ,,» are matrix elements of
V = (0H/98X)-8X, in the basis formed by the eigenstates

of H(X*), with §X = X — X*. The separation A of the
two eigenvalues of this matrix is

A = \/(Vn.,n - an+1,n+1)2 + 4V712,n+1

= \/I(dA/dX)y - 6X]2 + 4[(dH /dX), - 6X]2,  (2.2)
where
(dH /dX)q = (dH /dX)pn — (dH /dX) i1 n41,
(2.3)

(dH/dX), = (dH/dX)p 1 -

Note that A? is a quadratic form in (6X1,8X2); the re-
gion of the (X1, X3) plane in the neighborhood of this
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degeneracy for which the separation of the two levels is
less than A is therefore an ellipse of area,

- (22),(22) - (22), (22 )
(2.4)

In the following paragraphs, it will be assumed that there
are a large number of degeneracies, with a density D in
the parameter space: more precisely the number of de-
generacies connecting one energy surface E,(X) with the
energy-level surface E,1(X) above it is D per unit area
of the parameter space. The consequences for the distri-
bution of close level spacings and the density of avoided
crossings will now be considered.

Consider first how the level-spacing distribution is re-
lated to this assumption. The level-spacing distribution
can be evaluated in various ways, for example by aver-
aging over the energy levels, by averaging over a line in
the parameter space, or by averaging over the entire pa-
rameter space. An “ergodic” assumption will be made,
namely that the same level-spacing distribution will be
produced by any of these averaging procedures. An er-
godic property similar to that being invoked here has
been proved for the GOE random-matrix model [24]. The
level-spacing distribution at small spacings can be com-
puted most easily by averaging over the two-parameter
space. The proportion of the energy levels with separa-
tions below A is given by the fraction of the area of the
(X1, X?2) plane for which the separation is less than A. In
the limit A — 0 this is equal to the density of diabolical
points multiplied by the mean value of the elliptical area
A attached to each one satisfying E,,+; — E, < A. Fig-
ure 1 is a schematic illustration of these elliptical regions
surrounding diabolical points (the positions and orienta-
tions are derived from the model described in Sec. V, but
for visibility all of the ellipses are drawn with the same
area). From (2.4), the area of each ellipse, and therefore
the mean area, is proportional to the square of A. The
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FIG. 1. Schematic illustration of the regions of the parame-
ter space where the separation of two successive energy levels
is less than A: this is a set of elliptically shaped regions when
A is much smaller than the mean level spacing.
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level-spacing distribution, which is the derivative of this
cumulative distribution, is therefore proportional to A
for small spacings. This was one of the arguments orig-
inally used by Wigner [18] to justify his surmise about
the level-spacing distribution. In Sec. III of this paper
we turn Wigner’s argument around, and use the current
more refined knowledge about the level-spacing distribu-
tion to deduce the density of diabolical points.

Consider next the calculation of the density of avoided
crossings. This is the number of times per unit length
that the separation E,.; — E, of a given pair of levels
falls below A as we traverse a given line in parameter
space. We can again use an ergodic assumption, namely
that this statistic will be the same for any line drawn
in a given direction in (X, X,) space. This assumption
will be valid if the distribution of the diabolical points in
the parameter space resembles a random distribution of
points; this is certainly correct for the GOE model, and
presumably also valid for systems with GOE-like energy-
level statistics. Using this ergodic assumption, the den-
sity of avoided crossings is equal to the density of diabol-
ical points multiplied by the “cross section” for the line
to bisect a given ellipse. The cross section is clearly the
mean value of the projection of the ellipses in a direc-
tion perpendicular to the line of section: this quantity is
proportional to A, because the linear dimension of each
ellipse is proportional to A. The scaling of the density
of avoided crossings (although not the numerical pref-
actor) can therefore be obtained by simple geometrical
considerations, starting from a very minimal assumption
of ergodicity.

Recently two papers [16,17] have appeared containing
numerical results which are at variance with this pre-
diction, claiming that a statistic closely related to the
density of avoided crossings does not scale in the manner
predicted above. As well as being at variance with the
theory, these results also disagree with our own numeri-
cal results which verify both the scaling and the prefactor
[15]. Neither of these papers offers a satisfactory expla-
nation of the surprising numerical results presented.

III. CALCULATION OF THE DENSITY
OF DIABOLICAL POINTS

In this section we derive the density of diabolical points
for a two-parameter Hamiltonian H (X1, X2) with time-
reversal symmetry. A scaling law for the density of dia-
bolical points as a function of the level number has pre-
viously been obtained for the specific case of a quantum
billiard [2]. Because we have to consider many different
probability distributions, we will adopt the convention in
the remainder of this paper that P[] denotes the prob-
ability distribution of the variable(s) enclosed in square
brackets.

The following calculations involve both the eigenval-
ues of the operator H(X), and the matrix elements of
dH /8X; in the basis formed by the eigenstates of H(X).
Both of these quantities are regarded as random vari-
ables. The results given below are based on the assump-
tion that the matrix elements are independent of the
eigenvalues. This assumption can easily be verified for
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the parametrized GOE model discussed in Sec. V. It is
also satisfied in the Pechukas description of a parameter
dependent GOE [14].

We now consider how to compute the density of de-
generacies. Assume that two levels labeled 1 and 2 with
energies E1,Ey, |[E; — E1| = A, situated at X; = X, = 0,
are sufficiently close to a degeneracy that degenerate per-
turbation theory (2.1)-(2.3) can be applied. The distance
R in the parameter space from the origin to the degen-
eracy can be obtained as

2A [ [ OH \? OH \ 2142
R‘W[(a—xl) *(—ax?.)] =78

o o

(3.1)

where the notation of (2.3) has been used and

=), (ox). - (). ] oo

Expression (3.1) shows that the distance from a near-
degeneracy of size A to a degeneracy is proportional to A.
To determine the density of degeneracies it is necessary to
average over f, which is a function of the matrix element
combinations defined in (2.3), and over the level-spacing
distribution P[A] to find the probability of a given R.
Because f is a function of the matrix elements only, f
and A are independently distributed, so that

P(R) =/0°° df/ooo dA PIf] P[A] 6(R— fA).  (3.3)

Using the scaling of the level-spacing distribution dis-
cussed in Sec. II,

PlAl=v A (3.4)

(3.3) can be expressed as

PIR] =/0°°df P[f] f‘I/OOOdA PlA] 5<A—?>

=/0°°dfp[f] f‘l/oooquAtB(A—?)

- /0 4 Plf) £? R
— YR(f). (3.5)

Because (3.4) is only valid for A small compared to the
typical level spacing, (3.5) is only valid for small R. [The
Dirac 6 functions in (3.5) imply that the support of the
integrand does not extend to large values of A where the
approximation (3.4) breaks down.] The density of de-
generacies can now be obtained in terms of P[R]. Let D
be the density of degeneracies and V' the number of de-
generacies found in a circle of radius R in the parameter
space. This has expectation value

(N) = TR*D. (3.6)

The probability of finding a degeneracy between R and
R+ dR is d(N)/dR so

P[R] dR = 27D dR = v(f "?)R dR.
This implies that

(3.7)
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_ )
== (3.8)
To obtain the final form of P[R] and hence of D, it is

necessary to find the average value of f~2. In terms of
the matrix elements this quantity is

A?D? + B2C? —2ABCD\
—2\ __
(f )—< oL D? > (3.9)
where
OH 8H
A= — = | —
(5%), 2-(3%),
(3.10)

O0H O0H
C= 2(8X1) D= z(%)u.
In order to proceed further it is necessary to consider the
statistical properties of A, B, C, and D. We assume that
the matrix elements of (BH / BX 1) and (8H/HX>) are un-
correlated. (The more general case of correlated X; and
X5 derivatives is discussed later.) With this assumption
the cross term ABCD in (3.9) will average to zero and

the average values of the products of uncorrelated quan-
tities can be factored,

(F?) = A?D? 4+ B2C?
- C? + D?

= (A2)<E§—?_%5> + (B2)<§%>- (3.11)

To obtain a specific prediction of the density of degen-
eracies the above results are now specialized to the case
where the matrix elements of (8H/8X;) and (8H /8X>)
conform to a GOE model, i.e., the off-diagonal and diag-
onal elements of these matrices are Gaussian distributed
with variances o2 and 202, respectively. For this model,
A, B, C, and D are all independently Gaussian dis-
tributed with variance 402. These properties allow (3.11)
to be written as

) =204 iz ) =80 (i ). (312

The average over C and D is

27r1(r2 / dc/ dDijr 53 &Pl—(C?+D?)/20%] = 3
(3.13)

and therefore
P[R] = 40%~R. (3.14)

Using the explicit form of the level-spacing distribution
coefficient for the GOE [9], v = 72n/6, the density of
degeneracies is therefore

D = imndo?, (3.15)

where ng is the smoothed density of states.
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For a general Hamiltonian, the matrix elements of
(6H/ 3X1) and (8H/8X,) will have different variances
0% and 03%,, and they will also have a nonzero corre-
lation o%,. This more general case can be dealt with by
making a suitable transformation of the coordinate space,
such that in the new coordinates 0%, = 0%, = 1 and
0%, = 0. This is described in Appendix A: the results
show that the general expression for D is

D= %ﬂ'ng(o’udgg - 0'%2). (316)

If the system under consideration is a semiclassical sys-
tem with a chaotic classical limit, the variances o2 can
be obtained from certain classical correlation functions.
This is described in Appendix B.

IV. DISTRIBUTION OF CONE PARAMETERS

The method described in Sec. III can be extended to
give the joint distribution of the parameters describing
the variation of the separation of the two energies in the
neighborhood of the degeneracy.

In terms of the notation of Sec. III, the separation A
of the two energy levels is given by

A? = (A? + C?)6X}E + (B? + D*)6X3
+2(AB + CD)6X16 Xz, (4.1)

where A, B, C, D are defined by (3.10): note that A2 is a
quadratic form in (6§X1,6X32), so that the level lines of A
are ellipses. We now consider the distribution of the pa-
rameters of the quadratic form (4.1) for the parametrized
GOE model. We will assume, as in Sec. III, that the
coordinate system (X;,X2) has been chosen (using the
method described in Appendix A) so that the statistics of
the model are isotropic. The cones are most conveniently
described in terms of the eccentricity of the elliptical level
lines of A, the angle of the major axis of this ellipse to
a reference direction, and a parameter s describing the
slope of the cone. Because the model is isotropic, the dis-
tribution of angles is obviously uniform. The two other
parameters can be obtained from the eigenvalues of the
matrix characterizing the quadratic form (4.1),
5 ( A2+ C? AB+CD)

A=\ AB+CcD B2+D? (4.2)

We characterize the eccentricity of the ellipse by the ratio
€ of the lengths of the minor and major axes; this quantit
is related to the eigenvalues Ay, A_ by € = /A_/Ay
(with A_ < A4 so that € < 1). The slope of the cone
is conveniently characterized by the inverse of the ratio
of the area of the ellipse to A, which is proportional to
d? = Ay A_. It is not very convenient to compute the
joint probability distribution of € and s directly; instead
we compute the distribution of the parameters

t =tr(A) = A + B® + C? + D?,

d = y/det(A) = AD — BC.

(4.3)
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These can be related to € and s using the following rela- By a simple extension of the argument leading to (3.8),
tion for the eigenvalues in terms of ¢t and d: the density of diabolical points with t between ty and
to + 6tg, and with d between dy and do + 6dp, is
e = At o — &), (4.4) 0 05 , 0 0 0

(AD — BC)?

02 ¥ D2 5(tO - t) 6(d0 - d):

v oo oo oo 0o

D(to,do) btg édp = Eéto 6d0/ dA/ dB/ dC/ dD P[A,B,C, D]
) —o0 —o0 —o00

(4.5)

where P[A, B,C, D] is the joint distribution of A, B,C,D. For the GOE model these variables are independently
distributed with mean zero and variance 402. The joint probability density P|t,d] is obtained by dividing D(t,d) by
the total density D given by (3.15). The integral in (4.5) is most conveniently evaluated by integrating over C and D
first, then over A and B: write

1
2567206

oo oo
I(to, do) = / dA / dB e~(A+B)/8* J(1 g0 A B), (4.6)
—o0 —oo

P[to,do] = I(to,do),

d2
—+b—2 6(d0 - d) 6(7‘0 — C2 - Dz),

J(ro,do,A,B)=/ dC/ dD e~ (C*+D?)/805% ~
— 00 —00 C

where 7 = t — (A% + B?). We calculate the integral J by performing a rotation in the C, D plane, such that in the
transformed coordinates, C’, D’,

d(A,B,C',D') =/ A2 + B2 C'. (4.7)
The integral J can now be computed by transforming the C’, D’ plane to polar coordinates, (7, 6),
0o oo 2 2 12
J(T, d, A,B) =/ dcl/ dD' e—(C’ 2+D 2)/802%5@1— /A2 + B? C/) 6(7‘ —C”?— D12)
—00 —0o0
Lp—7/80% /21r d6 cos? 0 6(+/7(AZ + B?) cosf + d) = e~ /8" a (4.8)
= 1l¢ =e . .
2 o 7/7(A% + B?) — g2

The integral I(t,d) can now be evaluated easily in polar coordinates

2m T2 2 d? 1 2
I(t,d) = / dB/ dr re 4/ = ne"t/% ta? F(a), (4.9)
0 T1

t—r2 V{t—r2)r2 — g2

where a = d/t and the range of the inner integral of (4.9) is such that the square root remains real, and

T+ 1 1
F(a) = /L dz = DRk (4.10)

with T4 = %(1 + u), p = /(1 —4a?). The successive substitutions X = (2z — 1)/p, X = sinf, allow F(a) to be
obtained as a standard integral

1 1 /2 1
F(a) =2 dX =2 df——-—
(@) /_1 (uX +1)v1 — X2 ,/_,../2 1+ psing

= \/—1%—;12 [arctan(%) + arctan(%)]. (4.11)

Substituting for u in terms of a gives the simple result d 2
P — —t/80

- [t,d] 25656 (4.13)
Fla)=—. (4.12)
« We now use this result to obtain the distribution of the

Finally, substituting into (4.9) and (4.6) we have axis ratio € of the ellipses. The probability distribution
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Pla] can be obtained as M-1 4r3o2 M2
IV SPVREE . SR
n=1 n=1

Pla] =/Ooodt/_°:odd6(a—%) Plt, d]

= / dttP[t, o]
0

—_ o /oo dt t2 -—t/80‘2 =4
= 25602 J, € -

The relationship between o and e defined previously can
now be used to obtain the probability distribution for e,

(4.14)

in an(e —€?
Ple] = 2 [‘112_1:0:2 2(9) = 8(61(1_ 626)3).

The eccentricity e is related to € by e = v/1 —€2. The
probability distribution for e can be obtained from (4.15)

Ple] = (23—22)3

V. NUMERICAL INVESTIGATIONS

(4.15)

(4.16)

We investigated the density and other properties of
diabolical points numerically by considering the two-
parameter Hamiltonian

H = H cos(X1) + H, sin(X;) + Hs cos(X2)

+Hysin(X3) (5.1)

with H 1, ﬂz, Hs and H, different realizations of the
GOE, with matrix dimension M and with an off-diagonal
variance of unity. The Hamiltonian H and its derivatives

(0H/8X1), (DH/8X,) are independent GOE matrices.
This Hamiltonian conforms to GOE statistics with the
variance of the off-diagonal matrix elements equal to 2,
and the variances associated with the matrix elements
of the derivatives of H with respect to X; and X, are
0%, = 0%, = 1, 0% = 0. The number and positions
of the degeneracies of the eigenvalues of H were found
by performing a search in the (X7, X2) plane. Figure 1
shows some typical results: we have plotted an ellipse
corresponding to a level line of A around the position
of each diabolical point (for clarity, the sizes of the el-
lipses have been magnified, and they are all drawn with
the same area). The data for this figure are the diaboli-
cal points between levels 1 and 2 of a realization of (5.1)
with matrix dimension M = 20.

By calculating the number of diabolical points as a
function of the matrix dimension, it is possible to test
the result (3.15) derived above. Expression (3.15) gives
the density of degeneracies for a pair of levels in terms
of the local density of states ng. To convert this to the
total number of degeneracies, it is necessary to obtain a
sum over all levels and the whole parameter space. The
variances are independent of energy in this model but
the density of states is energy dependent. The parameter
space has area 472, so the total number of degeneracies

N is

47302

M-1
= / dn ni(E,)
3 1

4m3g2 [ dn ,
=73 /_de dE "

4 3.2 oo
=g / dE n3(E). (5.2)
—o0
For the Hamiltonian (5.1) ng is given by
M E2? 1/2
B)=Y"(1-2
no(8) = 22 (1- ) (5.3)

in the limit M — oo [9], so that the required integral is

3/2 2v2M 2\ 3/2 2
YL G (1 B
2 ) ) apsu 8M 872
Substituting into (5.2) and putting o = 1 gives the num-
ber of degeneracies as

(5.4)

N = -725M2. (5.5)
Table I shows a comparison of the calculated number of
degeneracies and the number predicted from (5.5) for a
range of matrix sizes M; the agreement can be seen to
be excellent.

The equation of the quadratic form (4.1) can readily
be found by making small variations of X; and X5 in
the vicinity of each diabolical point; the axis ratio of
the ellipse can then be obtained from the eigenvalues of
the corresponding matrix (4.2). The results are shown
in Fig. 2: they are in excellent agreement with the the-
oretical prediction, (4.15). The data were obtained for
diabolical points from four realizations of the Hamilto-
nian (5.1) with matrix dimension 50.

We also investigated the distribution of spacings in the
parameter space between neighboring diabolical points,
by computing the cumulative distribution of distances r
from a given diabolical point between levels n,n + 1, to
its nearest neighbor between levels n+ N,n+ N + 1. For
randomly distributed points this cumulative distribution
is

TABLE I. Number of diabolical points for the Hamilto-
nian (5.1) averaged over five GOE realizations for a range of
matrix dimensions, compared with the prediction (5.5). The
ratio Nobs/Ncalc approaches unity as the matrix dimension
increases.

N Nobs Afcalc Nobs/Ncalc
5 35 39 0.90
10 144 157 0.92
20 564 598 0.94
30 1370 1414 0.97
40 2489 2513 0.99
50 3847 3927 0.98
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2.0
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0.0
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€

FIG. 2. Distribution of axis ratios of diabolical points for
the GOE model (histogram), compared with the theoretical
distribution (4.15) (smooth curve).

Qlr]=1-e""P", (5.6)

which is quadratic for small values of the distance r.
The results are shown in Fig. 3, for points on the same
level, N = 0, and the first and second nearest neigh-
bors, N = 1,2, with (5.6) for comparison. The data set
used was as for Fig. 2. The distances were scaled so that
the mean density of diabolical points is unity. Surpris-
ingly, there is no repulsion between diabolical points on
the same energy-level surface. Diabolical points between
neighboring levels show a clear repulsion, and from the
second neighbor onwards the results show increasingly
good agreement with (5.6).

We now present a simple scaling argument for the fact
that diabolical points on the same level surface do not
exhibit repulsion. Although it is possible to refine this
argument considerably, we have not succeeded in finding
an exact relation for the cumulative spacing distribution,
Q|r], even for small 7. In the neighborhood of a diabolical
point degenerate perturbation theory can be applied to
the separation A between two levels. The separation is
given by the eigenvalues i-;—A of a 2 X 2 matrix,

G(X1,X2) )
—F(X1,X2) )’

- F(X., X
= (GG

(5.7)

A=+F?24+ G2

The separation A vanishes when both F' and G vanish,
at isolated points in the (X, X3) plane. Two diaboli-
cal points will lie close together if the zero level lines of
F(X,,X5) and G(X;, X2) are nearly parallel, and if the
lines have some degree of curvature which causes them
to cross again: this is illustrated in Fig. 4. If the coor-
dinates in parameter space are scaled so that the mean
density D is unity, the typical radii of curvature of these
lines is also of order unity. The two diabolical points will
be close together if the angle between the level curves of
F and G is small: if this angle is 6 the distance r be-
tween the diabolical points is of order 8 (see Fig. 4). The
angle 6 is proportional to the axis ratios € of the pair of
nearby diabolical points if € is small. We therefore have
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r ~ @ ~ ¢ for pairs of nearby diabolical points. From
(4.15), the probability distribution of € is linear for small
€. The probability distribution of r is therefore also linear
for small r, and its cumulative distribution is quadratic,

orr]

0.0

N=1
1.0
(b)
olr] 02
0.0
0.0 0.25
0.0 +—
0.0 . 1.8
N=2
1.0

orr]

0.0

. 8
0.0 r 1

FIG. 3. Cumulative distribution of the distance r from a
given diabolical point on the nth level to its nearest neighbor
on the (n + N)th level, for the three cases (a) N = 0, (b)
N =1 (¢), N = 2. The smooth curves are the distribution
for a random scatter of points.
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-

N

F=0
G=0

FIG. 4. Schematic illustration of the geometry of two closely
spaced diabolical points, discussed in Sec. V. The elliptical
level curves of A are aligned for nearby pairs of diabolical
points.

in agreement with (5.6). The numerical results shown in
Fig. 3(a) are consistent with the hypothesis that the co-
efficient of this quadratic dependence is the same as for
the random distribution, (5.6).

This simple argument also predicts that both the ec-
centricities and the orientations of the ellipses associated
with closely spaced diabolical points are correlated. This
was confirmed by plotting these elliptical regions in the
same manner as for Fig. 1, for a case where the density of
diabolical points is larger; the results are shown in Fig. 5.
A number of examples of this correlation can be seen: el-
lipses with small € usually occur as pairs with both of
their longer axes aligned with the line joining their cen-
ters, as illustrated in Fig. 4. (Some of the ellipses overlap
in this figure because the diabolical points are very close
together.) The data for this figure used the diabolical
points connecting levels 9 and 10 of a realization of (5.1)
with dimension M = 20.

We can also give a simple scaling argument for
the small-r behavior for diabolical points on nearest-
neighboring levels. Consider a pair of levels (1 and 2,
say), which become very nearly degenerate at X; = X =
0, with a separation less than §E. Assume that there is
a third level with a separation in energy A from levels 1

f

= ARS) P =)
° (- o
N o
/Q N
\
0
X, B Q N
o
N, &
© 0
o
N o 0 o o
0o 7 ° e
i 2
X,

FIG. 5. Similar to Fig. 1, showing the correlation of the
alignments and eccentricities of nearby diabolical points.
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and 2, which is large compared to § E but small compared
to the mean level spacing. Levels 2 and 3 will meet at a
diabolical point a distance r ~ A away in the parameter
space. The probability distribution of r is therefore pro-
portional to the probability distribution of A. Dyson’s
result [25] for the joint probability density of energy levels
of the GOE contains a term in the product of differences
of energy levels: for three levels

P[El, Ez,Eg] ~ (E1 - Ez)(El — E3)(E2 — E3). (58)

The probability density for the third level to be at a
distance A from the very near degeneracy at X; = X, =
0 is therefore proportional to A2. The probability density
of the spacings r is therefore proportional to r2 for small

7, leading to a cumulative distribution proportional to

3. The results shown in Fig. 3(b) are consistent with

this conclusion in that they show a “repulsion” of nearby

degeneracies, but we could not obtain enough data to

verify the small-r behavior unambiguously.
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APPENDIX A

Assume that in coordinates (X7, X3) the matrix ele-
ments of (0H /0X1), (0H/8X}) satisfy

(CAMETE

80X\ ) m 1 ’
OH \?

<<ax§)nm> =oby =1,
.Qﬁ_ ﬁ — A2 =0
0X] )y \OX} )/ ~ V¥ T

We consider the transformation to a set of coordinates
(X1, X2) defined by the linear transformation

X { _ [0 ,3 X 1

X:) \v 8§)\X2)’
The matrix elements of the derivative of H with respect
to X satisfy

OH \? .
—6X1 =0on

= 020%111 + 2aﬂ0’%/2/ + ﬁ20'2/2/
— a2 +ﬂ2

(A1)

(A2)

(A3)
and similarly

032 =~24+62, 0% =ay+ 6. (A4)

For a given physical system the variances 0%, 0%, 02, of
the matrix elements are given, and the parameters o, 3,
v, 6 defining the transformation to the (X7, X%) coordi-
nates are unknown. The fact that there are four param-
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eters and only three unknowns is unimportant, because
the fourth parameter represents an irrelevant rotation.

Only the Jacobian
0(X1, X3) a f

— =122 = det =ab —
B(X1, Xy) 9\ 5) ==
is important for determining the density of degeneracies.
Using (A.3) and (A.4), it is easy to verify that

(012)2 J2.

J= (A5)

0'%10'22 (A6)

Hence if the density of degeneracies in the (X1, X}) space
is D', then the density in the X;, X3 space is

D=JD (A7)

from which (3.16) follows.

APPENDIX B

For systems with a chaotic classical limit the variances
and correlation coefficients of the matrix elements re-
quired for (3.16) can be obtained from a classical cor-
relation function. Consider the expression for the mean
value of the product of the matrix elements of two op-
erators A and B in the adiabatic basis (i.e., the basis
formed by the eigenstates of the Hamiltonian). This can
be obtained as a function of the mean E and difference
AFE of the energies of the basis states,

z 2 X A

n(#m) m

%6c(E — $(En + Em))
X6(AE — (En — En)),
(B1)
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where the pseudo-6 functions 6. (x) are spread out over an
energy range € which is large compared to the mean level
spacing but small compared to the classical energy scales
of the problem. The quantity %5 can be related to the
relevant correlation function for the classical motion by a
simple extension of an argument given by Wilkinson [26],

0% 5(E, AE) = / dt Cap(E,t) exp(iAEL/R).

2m n Q
(B2)

Here the correlation function C4p(FE,t) and the weight
of the energy shell Q(E) are defined by

Can(E,t) = [ da [ dp Atap)

xB(d'(q,p,t),p' (q,p, 1))

x6(E - H(q,p)) (B3)

[where (q’,p’) is the phase-space point that the point
(a,p) evolves into after time ¢ under the classical equa-
tions of motion] and

(E) = / da [ dp 8(E - H(,p)). (B4)

For computing the density of diabolical points, we require
the variance of matrix elements between adjacent states:
we therefore set AE = 0 in the expressions above.
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