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Quantum-to-classical limit of a dynamically driven spin
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Classical and quantum models of a localized spin driven by a polarized-spin beam have been shown to
exhibit a rich variety of dynamical behaviors. In the classical model these include stable limit points,
limit cycles, and chaos; however, in the quantum model the density matrix of the localized spin generally

approaches a steady state. This paradox is resolved by considering the autocorrelation functions of the

spin components, which reveal the expected quantum-classical correspondence. The noncommuting of
the limits j~ ~ and t ~~ is explained in this model by the limiting behavior of certain eigenvalue dis-

tributions, and the significance of these limits is discussed. The study also highlights the unresolved

problem of interpreting the complex correlation functions of noncommuting operators.

PACS number{s): 03.65.—w, 03.20.+ i, 05.45.+b

I. INTRODUCTION

In a pair of papers, [1] and [2], the concept of dynami
cal driui'ng was defined as the driving of a system by
another dynamical system. It was anticipated that
dynamical driving would yield a richer variety of motions
than driving by an external force, which acts on the sys-
tem but is not reacted upon by the system.

The model (see [1] for more details) consists of a local-
ized spin j&, a beam of spins j2 polarized in the y direc-
tion, and a magnetic field 8 in the z direction. The beam
particles interact, one at a time, with the localized spin,
and so the effect of one beam particle on the state of the
localized spin can be treated as a discrete mapping.
While a beam particle is in the interaction region, for a
duration w, the Hamiltonian of the two interacting spins
1S

H, ~=a(S, S2)+B (S,+S~) .

The beam affects the localized spin by transferring angu-
lar momentum to it, so the interaction tends to polarize
the localized spin in the y direction. The magnetic field
rotates any such polarization about the z axis. It is
surprising that competition between these two effects
yields such a rich variety of behaviors in a simple model.
In the classical version of this model, the motion of the
localized spin exhibits stable attractors, bifurcations, lim-
it cycles, and chaos. The quantal model also shows a rich
variety of behaviors, some being analogs of classical
motions, and others being purely quantum mechanical.

Papers [1] and [2] concentrated upon the nature of the
steady state that is ultimately reached. (The term "steady
state" is used here to include periodic, quasiperiodic, and
chaotic attractors, as well as fixed points. ) In this paper
we shall focus on the dynamics of the motion, and espe-
cially on the quantum-to-classical limits.

Dynamical driving has also been studied in the
Jaynes-Cummings model of a two-level atom interacting
with an electromagnetic field mode. Slosser, Meystre,
and Braunstein [3] considered the field mode as the
driven system, with a beam of two-level atoms providing

the driving. On the other hand, Gea-Banacloche [4]
studied the states of the atom, with the Geld mode acting
as the driver. These models exhibit both similarities to
and differences from the spin model of this paper.

II. DYNAMICS OF THE MODEL

A. The need to study correlation functions

The need to introduce correlation functions can be il-
lustrated by some results obtained in [2]. Figure 1 shows
a portion of the phase diagram of the final states for the
classical model. It corresponds to the value 8=m (in
units A'= I, ~=1), such that the effect of the magnetic
field during the interaction time ~ is to rotate the spins
through the angle ~. In this case, the longitudinal com-
ponent (parallel to the beam) of the localized spin Si is
decoupled from its transverse components, and so it is
sufficient to discuss the behavior of the longitudinal (y)
component. If S, is parallel (or antiparallel) to the beam
spins, then the interaction (S, Sz) is a minimum (or max-
imum) and no torque is exerted on the localized spin by
the beam. Thus the localized spin merely Hips back and
forth between Y=+1 and —1 under the action of the
magnetic field. (Y is the y component of S, /j, .) This
period-2 cycle is the unique steady state within the region
marked Y= [+I, —I ] in Fig. 1; elsewhere it is unstable.

Consider now the corresponding quantum-mechanical
model for the same range of parameters. It was shown in
[1] that the density matrix of the localized spin ap-
proaches a time-independent steady state. In the limit of
large j&, the probability distribution for the y component
of Si becomes bimodal, with narrow peaks at +ji (see
Fig. 14 of [2]). This is in agreement with the time ensem-
ble for the classical steady state, but it gives no indication
of the classical period-2 oscillation. However, this con-
tradiction between the classical model and the j& —+~
limit of the quantum model (period-2 oscillation versus a
time-independent steady state) is only apparent. For an
arbitrary initial state of the classical model (with parame-
ters in the region marked Y =

I +1,—1] in Fig. 1), we

47 2592 1993 The American Physical Society



47 QUANTUM-TO-CLASSICAL LIMIT OF A DYNAMICALLY. . . 2593

aJ)
Tr

1,3

1.2

1.0

0, 9

0, 8

0.7

0.5 I

0.2
I

0,4
(

0.6 0.8

P.(t) =Pt(t)pb

where p&(t) is the initial state of the localized spin, and pb
is the initial state of the beam particle. We are interested
only in the localized spin, discarding each beam particle
after interaction, so it is sufficient to consider only the
partial state of the localized spin (also called the reduced
state),

p((t+r) =Tr' 'p, (t+r),
obtained by tracing over the coordinates of the beam par-
ticle. Thus the effect of one beam particle on the density
matrix of the localized spin is a linear transformation,

(a~p, (t+r)~b &= g g g (aa~U~cy&(c~p (t)~d &

a c,yd, 5

FIG. 1. 8 =m phase diagram for the Y component of the lo-
calized spin (from [2]).

X (y ~pb ~5&(d5~ U ~ba&

= yM. b.„&clp((t)ld & .
c, d

(7)

know not only that spin is equally likely to point in either
of the directions Y=+1 or —1, but also that it alter-
nates between them. To obtain the corresponding infor-
mation for the quantum model, we must calculate a
correlation function such as (S (t)S (t+r) &. These
correlation functions contain information about the dy-
namics, notwithstanding the stationary character of the
state function.

The dynamics of the localized spin is obtained by itera-
tion of a linear mapping,

pi(t+r)=Mpi(t),
where the "matrix" M, defined implicitly by (7), is a
four-dimensional array and the "vector" p& is a two-
dimensional array. The eigenvalues and eigenvectors of
M,

B. Equations of motion

=Is H»@I' . (r(t (2r),
=I@IeH»a (2r&t (3r) . (2)

Here the places in the tensor product represent the suc-
cessive beam particles, and the subscript zero refers to
the localized spin. Each of the two-particle interaction
factors are of the form (1). The time development opera-
tor from t =0 to n ~, describing the effect of n beam parti-
cles passing through the interaction region, has the form

U(nr, O)= U(nr, (n —1)r) . U(2r, r)U(r, O), (3)

where each of the factors on the right-hand side of (3) is
an exponential function of the appropriate form of H(t)
in (2).

The effect of one beam particle (entering at time t and
leaving at time t+r) on the state operator of the whole
system p, is

p, (t+r)= U(t+r, t)p, (t)Ut(t+r, t) .

The initial state of the two interacting particles will be of
the form

The Hamiltonian for the whole system, consisting of
the localized spin and the beam, is time dependent be-
cause each beam particle interacts with the localized spin
only while it is in the interaction region. For example, as
the first three beam particles enter and leave the interac-
tion region the Hamiltonian takes on the following forms:

H(t)=Ho, eI@Ie (0(t (r),

(Q(t, )R(t, ) &
=TrIP, (0)Q(t, )R(t, )1 . (12)

For t2 ) t„we may write U(t2, 0)= U(t2, t, ) U(t„O).
Substituting this into (12), and performing a cyclic per-
mutation of the operators whose trace is being taken, we
obtain

(13)

Mp~=Ap~,

determine possible dynamical behaviors. An eigenvector
pz with A=1 describes a steady state. An eigenvector
with

~
A

~
( 1 describes a decaying transient.

~
A

~
) 1 is im-

possible, since exponential growth would violate the con-
dition Trp (1. An oscillatory limit cycle would occur if
~A~ =1, A%1, although no such case has been found for
this model. Except for certain special values of the pa-
rameters (a set of measure zero), it has been found that
there is exactly one eigenvalue A=1, so the state of the
localized spin goes to a unique final steady state.

In the above discussion, we used the Schrodinger pic-
ture, with a time-dependent state function p, (t). In order
to discuss correlation functions, it is necessary to use the
Heisenberg picture, with a time-independent state func-
tion and time-dependent observables. Therefore we in-
troduce two Heisenberg operators (in practice these will
be spin components),

Q(t, )=U (t„O)QU(t„O), (10)

R (t, ) = Ut(t„O)R U(t„O),
and their correlation function,
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R, (t2 t,—)=U (t2, t, )RU(t2, t, ) (14)

where p, (ti ) = U(t„O)p, (0)U (t, , O) and Q are ordinary
Schrodinger-picture operators, and

(Q(&i)R(&p)) =
—,'(Q(&i)R(&2)+R(&2)Q(&i))

—
—,
' ( [Q(&i ),R (&2) ]), (17)

is a Heisenberg-picture operator referred to the origin

We shall assume that Q and R represent dynamical
variables of the localized spin, i.e., that they operate only
in the Hilbert space of the localized spin. Then in (13) we
may trace over all the variables pertaining to the beam
particles that have passed through the apparatus before
t = t „effectively reducing the many-particle density ma-
trix p, (t, ) to the localized-spin density matrix p&(t, ) [as
calculated from (7) and (8)]. Because of the interactions,
the operator R i (tz —t i) contains correlations between the
Hilbert spaces of the localized spin and the beam parti-
cles that pass through the apparatus between t=t, and
t2. But one can trace over the variables of those beam
particles, and obtain an equation, similar to (7), for an
operator R,&(t2 —t, ) that is reduced to the Hilbert space
of the localized spin. The result is

(~ [Rii(&+r)(b ) = gM , d. b( (cR (i&i))d ),
c,d

(15)

C. Interpretation of correlation functions

Correlation functions like (Q(t, )R(t2) ) bring us face
to face with an old question in the interpretation of quan-
tum mechanics, to which no definitive answer has ever
been given. What is the meaning of such a correlation
function if the two operators do not commute? There is
no difFiculty if the operators commute. Then they possess
a complete set of common eigenvectors, from which a
non-negative joint-probability distribution can be com-
puted, and the correlation function is just the average of
the product of the simultaneous eigenvalues of the two
dynamical variables with that joint-probability distribu-
tion. But if the operators do not commute, then no such
set of eigenvectors exists. One can use the spectral pro-
jectors of the noncommuting operators to give an ap-
parently natural definition to their joint distributions [5],
but the resulting distributions take on negative values,
and so they have no probability interpretation. More-
over, the correlation function (12) is generally complex,

which can be solved recursively, beginning with
R»(0)=R. Finally, the evaluation of (13) is completed
by a trace over the variables of the localized spin,

(Q( r)R( r))=Tr'"[p, (r, )QR»(t, —
&, )] .

The matrix Md, b, that occurs in (15) is the transpose
of the matrix in (7), the difference being due to the
different order of the operators U and U in (4) and (11).
The eigenvalues computed from (9) are also relevant to
(15) because a matrix has the same eigenvalues as does its
transpose. If Eq. (8) is iterated until the density matrix
reaches its steady-state value, p&( 0O), then the correlation
function (Q(t, )R(t2)) will be a function only of t2 t„—
and its time dependence will be directly related to the ei-
genvalues of M in (9).

the symmetrized term giving the real part, and the corn-
mutator giving the imaginary part.

The "orthodox" response to this problem has been to
assert that two dynamical variables cannot be simultane-
ously measured if their operators do not commute, there-
fore one should not discuss their correlations. Regardless
of the truth or otherwise of the premise of this argument,
the conclusion is quite beside the point. In fact, correla-
tion functions like (17) arise naturally as the fundamental
constituents of a dynamical theory, regardless of their
measurability [6]. Moreover, one must be able to define a
quantum correlation function in order to make contact
with classical correlations in the appropriate limit.

The orthodox view is also unsatisfactory because of its
instability under small perturbations. If the commutator
is exactly zero, then a correlation function with a normal
statistical interpretation exists. But what if the imagi-
nary part of (17) is several orders of magnitude smaller
than the real part (as indeed happens in many of the cases
studied in this paper)? The orthodox view denies any
meaning to a correlation function in such a case, whereas
common sense suggests that there should be some con-
tinuity between the commutative and noncommutative
cases.

I offer no solution to this old problem, but in order to
proceed I shall assume that the real part of (17) can be re-
garded as the quantum correspondent of the classical
correlation function. This assumption is reasonable, but
it stands in need of a more fundamental justification. The
often-expressed view, that problems in the interpretation
of quantum mechanics are merely "philosophy, " is con-
tradicted by this case; indeed the failure to solve such
problems can obstruct progress in "normal" science.

III. EIGENVALUE DISTRIBUTIQNS

The dynamical behavior of the quantum system is
characterized by the eigenvalues of (9), so it is of interest
to see whether the form of this eigenvalue spectrum is re-
lated to the classical motion. There is a well-established
theory connecting the eigenvalue spectrum of a quantum
Hamiltonian with the classical periodic orbits [7],but it is
not applicable to the matrix M in (9), which is neither
Hermitian nor unitary. Figures 2—5 show the eigenvalue
spectra for four sets of parameters, corresponding to four
qualitatively different classical motions. The parameters
for Fig. 2 lie in the phase marked Y=+1 in Fig. 1; those
for Fig. 3 lie in the "chaos" phase; those for Fig. 4 lie in
the phase marked "1," for which the y component of the
localized spin converges to a steady value while the x and
z components move on a limit cycle transverse to the
beam. Figure 5, for B=0.7m. (not in Fig. 1), corresponds
to a classical motion having two distinct attractors.
Clearly the patterns are very different for the different
kinds of classical motions. The patterns are qualitatively
similar at different points within the same phase in Fig. 1,
for example, different parameter values within the phase
Y=+1 lead to eigenvalues that cluster near the real axis.
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FIG. 4. Complex eigenvalues for j& =12, j2=6, aj, =1.5m.,
B=m. (Corresponding classical phase in Fig. 1 is 1.)

However, the patterns vary continuously across phase
boundaries, there being no discontinuous phase transi-
tions for finite values of j, and j2.

The statistical distributions of energy eigenvalues have
been shown to be related to the nature (integrable or
chaotic) of the corresponding classical motion [8]. In
particular, "repulsion" of neighboring eigenvalues has
been identified as a common signature of chaos. This
concept has also proved useful for the complex eigenval-
ues of the Fokker-Planck equation [9]. However, Figs.
2—5 indicate no apparent applicability of such ideas to
the eigenvalues of Eq. (9).

The number of eigenvalues in each figure is (2jI+1),
and many near the origin are not resolved. (This con-
trasts with the results of Ref. [8], Sec. 8.6, for dissipative
quantum maps, whose complex eigenvalues are confined
to an annulus that excludes the origin. ) Although the eye

is drawn to the complex pattern of eigenvalues near the
center of the picture, those represent short-lived tran-
sients. It is the eigenvalues on or near the unit circle that
are most significant. In all of these cases there is a single
eigenvalue on the unit circle, 4= 1, that corresponds to
the steady state. In Fig. 2 the nearest eigenvalue to the
unit circle (called the subdominant eigenvalue) is A = —1,
corresponding to a pole-to-pole (Y=+I) oscillation of
the spin polarization. The oscillation is damped because

~
A

~
( 1, but as j, increases A rapidly approaches —1 (see

Fig. 6). Thus in the limit j,~ ~ the pole-to-pole oscilla-
tion becomes undamped, as in the classical model.

There is a well-known conjecture (rigorously proven in
some cases [10]) which asserts that the limits A' —+0 and
t ~ ~ cannot be interchanged. For spin models, the lim-
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FICi. 5. Complex eigenvalues for jl =12.5, j2=2.5, ajl =m,
B=0.7m. (Corresponding classical phase has two basins of at-
traction. )
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FIG. 6. Magnitude of the subdominant eigenvalue (A= —1,
as in Fig. 2) vs 1/j&, for j2/j, =0.5, aj& =~/2, B=m.

it A~O becomes j~~, since the macroscopic angular
momentum, Aj, must be held constant in the "classical"
limit. Now for any value of j&, the t ~ ~ limit is deter-
mined by the eigenvectors (usually only one) correspond-
ing to ~A~ =1. The limit t ~ oo can fail to commute with
the limit j& ~~ only if one or more eigenvalues converge
onto the unit circle from within as j&~~. That this
happens for parameters within the phase Y=+1 is clear-
ly shown by Fig. 6. But for the chaos phase, the eigenval-
ues (Fig. 3) behave very diff'erently. Figure 7 shows the
variation of

~ A~ with j, for the closest real and complex
eigenvalues to the unit circle, and although ~A increases
with j&, it shows no sign of approaching unity. If these
trends, which appear well established in Fig. 7, continue
indefinitely, then the conjecture must be false in the re-
gion of chaos (although true in the phase K=+1). If, in
spite of appearances to the contrary, the conjecture
remains true in the region of chaos, then the behavior of
the eigenvalues must change radically for larger values of
j&. Indeed, a comparison of Figs. 6 and 7 suggests that
for the subdominant eigenvalue to reach ~A~ =0.999, it
would require orders-of-magnitude larger values of jI in
the chaos phase than are needed in the phase Y=+1.

ponents, such as (S~(t, )S~(t~) ). We shall evaluate them
for the final steady state, in which they depend upon only
the time difference, t =t2 —t, . It is convenient to sub-
tract the large-t asymptotic limit, and to divide the spin
operators by the magnitude of the localized spin, j„so
that the results for different j& values may be compared.
Hence we define normalized correlation functions,

S (r)=Tr' '[pbUtS U1 . (19)

This is invariant under rotations about the y axis, since
the beam-particle state pb is polarized in the y direction
and the Hamiltonian (1), from which U is derived, has
spherical symmetry for B=0. So a single step of (15)
preserves the y-axis symmetry of S (t) for t=r, and
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(18)

with C„(t) and C„(t)being defined similarly.
The correlation functions are generically complex, but

there are some interesting exceptions. For B=0, we find
that C „(t) and C„(t) are complex but C (t) is real. To
understand the latter, we substitute S for Q and R in
(10)—(17). For a single step (t =r) the Heisenberg opera-
tor S (r), reduced to the subspace of the localized spin, is
given by the equivalent of (15),

IV. AUTOCORRELATION FUNCTIONS

The dynamics of the localized spin can be studied by
means of the autocor relation functions for its com-
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FIG. 8. Autocorrelation functions for j& =j2 =10, aj& =~/2,
B=a. (Corresponding classical phase in Fig. 1 is Y=+1.)
Upper: C»(t). Lower: real parts of C „(t) (oscillatory curve)
and C„(t) (positive envelope).
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hence n steps will also preserve the symmetry for t =n~.
Therefore S (0) and S~(t) will commute, and so (18) will
be real.

For B =m. (in units of A'= 1, r= 1) the efFect of the mag-
netic field is to rotate all spins about the z axis through an
angle vr. This reverses the sign of S~(t), but still preserves
its rotational invariance about the y axis. Thus C~~(t) is
also real in this case.

Qualitatively different autocorrelation functions are
obtained for parameter values that correspond to
different classical motions. Figure 8 corresponds to the
phase labeled Y=+1 in Fig. 1. The longitudinal correla-
tion, C (r), oscillates strongly and is slightly damped.
The damping is governed by the subdominant eigenvalue
of Eq. (9), which approaches —1 as jJ increases. In the
limit j J

—+ oo the oscillation of C „(t)becomes undamped,
in agreement with the stable pole-to-pole oscillation of
the classical model. The transverse correlations, given by
the real parts of C„„(t)and C„(t), have small amplitudes
and are strongly damped. Both the amplitude and the
range of the transverse correlations diminish as j& in-
creases.

For B=~, both C, (t) and C„(t) contain the same in-
formation, C„(t) difFering from C„(t) by an additional
factor of ( —1)' because of the vr rotation of spins about
the z axis. (Here t is an integer because we set r = 1.)

Figure 9 shows the longitudinal correlations for several
models belonging to the chaos phase of Fig. 1. The
strength of the correlation function gradually increases
with the magnitude of the quantum spins. An extrapola-
tion to j=~ was calculated, using six values of j (of
which only three are shown in Fig. 9). The result is quite
similar to the classical autocorrelation function, however,

the latter has a significantly longer range. The transverse
correlations (not shown) are much weaker than the longi-
tudinal correlations for both classical and quantum mod-
els.

The parameters for Fig. 10 correspond to the phase 1

in Fig. 1, for which the y component of the classical spin
converges to a unique value, while the x and z com-
ponents move on a limit cycle transverse to the beam.
For the final state of the quantum spin, the probability
distribution of S has a single peak, and the distributions
for S„and S, are very broad (see Fig. 16 of Ref. [2]). In
this case, the longitudinal correlation function is very
weak and very short ranged, implying that Auctuations
within the narrow S distribution are essentially random.
However, the transverse correlations are large and long
ranged, describing the more orderly motion on the trans-
verse limit cycle.

These results demonstrate that the main features of the
three largest classical phases in Fig. 1 are realized by the
quantum model for quite modest values of j, and j2. But
the classical phase 2, in which S has a period-2 limit cy-
cle, could not be obtained for quantum spins as large as
j &

= 14; instead the results resembled those for whichever
of the phases 1 or Y=+1 was closer. Evidently, it will
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require very much larger values of j, in order to resolve
the many phases that occur along the classical bifurca-
tion route to chaos.

The imaginary parts of the corrrelation functions are
related to the noncommutation of the time-dependent
operators. For the phase Y=+1, both the real and the
imaginary parts of C„(t) and C„(t) are small, with the
imaginary parts being smaller, but comparable in magni-
tude to the real parts. For the chaos phase, the imagi-
nary parts are about 20 times smaller than the real parts.
For the phase 1, the imaginary parts are 50—100 times
smaller than the real parts. For B =0.7~ (discussed in
detail in the next section), all three correlation functions
are complex. The imaginary parts of C„„(t) and C (t)
are about 100 times smaller than the real parts, while the
imaginary part of C„(t) is 5000 times smaller than the
real part. In this case the magnitudes of the imaginary
parts appear to decrease systematically as j increases, but
no such trend was apparent for the chaos phase. SmaH-
ness of the imaginary parts makes it plausible to interpret
the real parts as ordinary correlations (see Sec. II C), but
the precise interpretation of complex correlation func-
tions is not clear.

V. NONUNIQUE FINAL STATES

For certain values of the parameters, the classical mod-
el may have more than one attractor, and the final state
will depend upon the initial state. Figure 11 shows a case
with two quasiperiodic limit cycles. In Ref. [1] it was
pointed out that the quantum model too can have
nonunique final states, if the parameters are such that the
eigenvalue A = 1 in (9) is degenerate. However, the
nonuniquenesses in the classical and quantum models are
entirely unrelated.

As was explained in [1], the final quantum state is
nonunique when the parameters are such that a certain
phase shift is zero (mod2vr), rendering the Hamiltonian
ineffective in a certain subspace. Such a situation occurs
for B =0, a(j&+jz)=2m, and as a result, the states

~j„j,) and
~j„j,—1) (and also superpositions and mix-

tures of them) are possible final states of the localized
spin. However, the difference in polarization between
these final states becomes insignificant in the limit

j& —+ ~. For the corresponding classical model, there is
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only one final steady state —the localized spin must align
with the beam. Now, as was shown in [2], the effect of
the interaction is to rotate the spins about the total angu-
lar momentum J through the angle aJ. If a(jI +jz ) =2m,
the rotation angle aJ approaches 2~ as the localized spin
approaches alignment. But a rotation through 2~ has no
effect, so the closer the spin comes to its final state, the
less effective is the interaction in achieving that state. It
can be shown that, instead of the usual exponential ap-
proach to perfect alignment, in this case the misalign-
ment decays only as t

For parameter values corresponding to Fig. 11, the
quantum model has a unique final state. The classical
model, with its two basins of attraction and two steady
states, is analogous to a system with a double-well poten-
tial. Tunneling between the two wells is possible in the
quantum model, and this leads to a unique final state.
The steady-state probability distributions for the com-
ponents of the localized quantum spin are shown in Fig.
12. The broad distributions for S„and S are similar to
those obtained from the classical limit cycles. (The pro-
nounced bias toward negative values of S, not evident in
Fig. 11, becomes apparent when the picture is projected
from different vantage points. ) The S, distribution shows
some indication of a bimodal shape, becoming more pro-
nounced as j& and jz increase, but it will require much
larger j values for it to develop clearly.

The autocorrelation functions are multiperiodic for
motions on each of the two classical attractors. The re-
sults in Fig. 13 are for the x component of spin; those for
the y component are very nearly the same. It is evident
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FIG. 11. Two classical attractors: j2/j &

=0.2, aj &

=m,

B=0.7m.
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FIG. 12. Steady-state quantum spin distributions for
j, =12.5, j,=2.5, ~j, =~, B=0.7m.
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of the spin to its initial value.
In the quantum mo ed 1 the autocorrelation functions

C„„r) and C„~(t) are also nearly identical. This is not
guaran eet d by any symmetry, so it must be interpreted as

' u' t' f motion on a limit cyc e. t e q
d state were, approximately, a mixture o e

ld ex ect its auto-classical limit cycles, then one would exp
correlation function ig.(Fi . 14) to exhibit all four of the

it has eriodsperio s escr''
d d scribed above. But instead it has perio s

d T =24.4, which are intermediate betwe
those of the classical limit cycles. This indicates a
motions involving positive an n g

~ ~

decou led. However, the autocorrelation function for S,decoup e . ow
(Fi . 14) is monotonic, indicating that S,S does not oscil-
late between positive and negativea e

'
ive values. That is con-

sistent with the corresponding classical behavior.

VI. CONCLUSIONS
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FIG. 13. Classical autocorrelation functioctions of the x com-
i . 11.ponent o spin, in e uf ', '

th pper and lower attractors of F'g.

that there is a rapid oscillation w' pith eriod T], and a
modulation with longer period T2. In ppthe u er attractor

nd T =15.2; in the lowerthese periods are T, =2.81 and
are T =2.96 and T2=42. 6. The short

eriod T& is the time for the spin to make a circui
1 T corresponds to a near returnaround the limit cyc e. 2 c
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Flax. 14. Quantum autoeorrelation functions for Ji —12.5,
j,=2.5, ~j, =~, B= . ~.=0 7 . The upper, smooth curve is Re
C„(t); the lower, oscillatory curve is Re C (t).

This a er began with a paradox: t e qe uni ue finalis paper
of the quantum mode1 seemed to be

'
pe incom atiblestate o e

a states (limit cy-with the variety of time-dependent stea y s
cles and c aos oh s) of the classical model. An oscillatory

1 b't t matched with an oscillatory quan-classical orbit is no ma
b takind 't matrix. The paradox is resolved y a ingturn density ma rix.
f uantumt the essentially statistical nature o qinto accoun e

is ener allystates. e c aTh 1 ssical limit of a quantum state is g
4

rbit as wasble of classical orbits, not a smgle orbi (aan ensem e o ca
ears a o; seepointed out by Einstein to Born [11]many yea g;

2 . In Ref. [2] the analogous quantum and classi-
1 t d -state ensembles were s own o a

statistical distributions, with the quantum p
t e classical robabilities in theapparently converging to t e c a

limit j—+~. nI this paper we have seen that dynamica
sinformation is con ainet

'
d in autocorrelation function,

~ e

even though the quantum state function may be station-
r in the ararneters of the Hamiltonian to

d to different kinds of classical motions, we o-correspon o i e
i n func-tain qua itative y i1 d'fferent quantum autocorre ation

which closely resemble their classical ana ogs.tlons, w ic c 0
ic the limit j~~The conjecture, according to w ic e

' ' jt~~ has beent be interchanged with the limit t~~,canno e
'

fi d and illustrated in terms of the lim' '

gitin behav-con rme an i
overn the dynam-f the eigenvalues of Eq. (9), which govern eior o e
1 the numericalf the quantum model. Surprising y, eics 0 e

a fail (i.e., the limitsdata suggest that the conjecture may ai i.e.,
~ in the re~ion of chaotic classical motion.wi11 commute in e re

'

ken with cau-However, ath t suggestion had better be taken wit cau-
behaviortion as a challenge to investigate the asymptotic beh

o ef the eigenvalues in greater detail.
The h sical significance of the mathernat'atical fact, that

h t —+ac and t —+~ are not commu
ep ysica

tative is nott e imits j—+~
stud in ther 'd t It is sometimes claimed, in s u y' g

afterclassical limit, that the order of limits, t ~ ~ aft
is 1ig, W

" ' ht" whereas the opposite order, j~~
If that claim were acceptedafter t~~, is "wrong.

literally, one mig t conc u
'

ht lude that the quantal steady
'ned in [I], [2], and the present paper have no

relevance to the classical steady state. u we
1 that such is not the case; the quantal steady

states do have classical anaLogs, and adeem o
correct classical limits.
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When, in physics, we discuss the limit of some parame-
ter becoming infinite, we really mean that it is much
larger that any comparable magnitude in the system.
Thus, since j is dimensionless, the limit j~~ means

j )&1. But what does t —+ ~ mean? Is t =1992 a "large"
value. The question is meaningless, because the origin,
t=0, can be chosen arbitrarily. Usually, in quantum
mechanics, t =0 is taken to be the time of the initial-state
preparation. But, in this model, every passage of a beam
particle can be regarded as preparing some state of the lo-
calized spin. Moreover, the initial-state preparation is ir-
relevant, since (except for certain special parameter
values) the final state is independent of the initial state. If
one were to choose that final state initially, then the pas-
sage of only one beam particle would confirm that a
steady state existed. Thus, for our model, the limit t ~ ~

(measuring t from the initial preparation) is inessential
and irrelevant. This should serve as a warning against a
simplistic interpretation of the right order of limits.

Although correlation functions arise naturally as basic
entities in a dynamical theory, the situation is complicat-
ed because the quantum correlation functions are com-
plex (except for cases having special symmetry). I have
followed the usual procedure of taking their real parts
(equivalent to symmetrizing the noncommuting opera-
tors), but that procedure lacks a fundamental
justification. The imaginary parts were found to be
smaller than the real parts, often (but not always) orders
of magnitude smaller, which adds plausibility to the pro-
cedure used. But the old problem of giving a precise in-
terpretation to the complex correlation functions of non-
commuting operators now seems more urgent than ever.

[1]L. E. Ballentine, Phys. Rev. A 44, 4126 (1991).
[2] L. E. Ballentine, Phys. Rev. A 44, 4133 (1991).
[3] J. J. Slosser, P. Meystre, and S. L. Braunstein, Phys. Rev.

Lett. 63, 934 (1989); J. J. Slosser and P. Meystre, Phys.
Rev. A 41, 3867 (1990).

[4] J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990);Phys.
Rev. A 44, 5913 (1991);Opt. Commun. 88, 531 (1992).

[5] A. O. Barut, Phys. Rev. 108, 565 (1957); A. O. Barut, M.
Bozic, and Z. Marie, Found. Phys. 18, 999 (1988).

[6] J. E. G. Farina, Am. J. Phys. 45, 1200 (1977). This paper
gives a simple example in which the symmetrized correla-
tion between the position and momentum operators arises,
and is the natural analog of the corresponding classical

correlation.
[7] M. C. Gutzwiller, Chaos in Classical and Quantum

Mechanics (Springer-Verlag, New York, 1990).
[8] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,

Berlin, 1991).
[9] L. E. Reichl, Z-Y. Chen, and M. Millonas, Phys. Rev.

Lett. 63, 2013 (1989).
[10]M. V. Berry, Physica D 33, 26 (1988).
[11]A. Einstein, Scientific Papers Presented to Max Born

(Oliver and Boyd, Edinburgh/London, 1953).
[12] L. E. Ballentine, Quantum Mechanics (Prentice-Hall, En-

glewood Cliffs, NJ, 1990), Chap. 15.


