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We evaluate the exact (Pancharatnam) phase differences between the final state ~g(t) ) and various ini
tial states for a spin- —particle in a rotating magnetic field B(t) Fo.r initial states ~n;B,t(0) ), which are

eigenstates of the spin component along the direction of the initial effective field B,t(0), the exact phase
has an energy-dependent part and an energy-independent part. It is shown that these states

~ nB, (0t) )
are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we
discuss dift'erent choices of time-dependent bases and the relationship between the exact phase, the
Born-Fock-Schiff' phase, and Berry's phase. We propose neutron interference experiments to test sepa-
rately the exact and the adiabatic evolution laws, as well as to measure exact and adiabatic time-
dependent phases.

PACS number(s): 03.65.—w, 42.50.—p

I. INTRODUCTION

Despite the fact that the rise of quantum mechanics
has been associated with the discovery of the wave prop-
erties of particles and that in numerous different experi-
ments particle interference [1—3] has been demonstrated,
the theoretical status and the physical interpretation of
all phases in quantum mechanics have not been fully es-
tablished. We find the explanation of this state of affairs
in the standard statistical interpretation of quantum
mechanics [4,5]. According to this interpretation only
the modulus square of the wave function is interpretable
and measurable. The following statement is a major part
of this interpretation: If, in a Hilbert space &, ~a)
represents a physical state of the system, a11 vectors of the
form e'~aP), qr real, represent the same physical state and
are said to form a ray.

Berry's paper [6] on "quantal phase factors accom-
panying adiabatic changes" stimulated experimentalists
to measure various phases: Berry's phase [7,8],
Pancharatnam's phase [9,10], the noncyclic Berry phase
[11],the nonclassical Berry phase [12],etc.

Immediately after the appearance of Berry's paper it
seemed that these phases were not the usual phases of
quantum mechanics so that Berry's phase obtained [13]
the attributes nonintegrable, geometrical, topological, ad-
ditional phase of geometrical origin, new phase, canoni-
cal phase, quantum adiabatic phase, mysterious phase,
etc. But it has been more and more recognized [14—19]
that these are actually nothing but different names and

attributes given to various parts of the total phase in the
exact solution of the Schrodinger equation with a time-
dependent Hamiltonian. Ramaseshan and Nityananda
pointed out [20] that the classical phase discovered by
Pancharatnam [21] in the study of the interference of po-
larized light was an anticipation of Berry's phase. So,
they have reminded us that relative phases of states have
always been measured in the interference experiments.
That is why in the recent literature [11] the phase
difference y—=P( 4&~iIt ) between two arbitrary nonorthog-
onal states ~qt) and ~@),defined by

(e~~p) = )(e~iIt) )exp(iy)

is called Pancharatnam's phase.
Due to the fact that Pancharantnam's phase was de-

rived [21] in the classical theory of light, the first optical
experiments [9,10,22] with Berry's phase, which in fact
measured the phase shift of classical electromagnetic
waves, led to a controversy [23,24] as to whether one
should view the optical Berry's phase as originating at
the quantum or at the classical level. In order to settle
the controversy Kwiat and Chiao did an experiment [12]
with photons in essentially n = 1 Pock states.

Now, the important question is the following: Is there
any basic principle which allows us to qualify certain
(class of) phase differences between states belonging to
the same ray as interpretable and measurable while oth-
ers should be qualified as uninterpretable and unmeasur-
able?

To our knowledge, a basic principle which would justi-
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fy this distinction has never been proposed. In our
opinion, all phase differences between states belonging to
the same ray (time dependent or time independent, adia-
batic or exact, dynamical or geometrical) are measurable
if the criterion of measurability is the existence of an ap-
propriate interference pattern. Pancharatnam's general
definition of the relative phase of two arbitrary
nonorthogonal states is inspired by the dependence of the
intensity of their interference pattern on the real part of
their scalar product. In this sense the relative phase of
two states belonging to different rays is also measurable.
However, along with the interference pattern this case
clearly requires a measurement of the absolute value of
the scalar product.

The present paper aims at elaborating the latter state-
ments by an analysis of already performed experiments
and proposes experiments with spin in constant and ro-
tating magnetic fields.

In Sec. II we solve the Schrodinger equation for spin —,

in a rotating magnetic field by using (1) the basis ln &,

n =+a.„(2)the Born-Fock-Schiff (BFS) basis, and (3) the
time-revolution operator. Then starting from the exact
solutions we derive their form in the adiabatic approxi-
mation (Sec. III).

In Sec. IV we compare the Born-Fock-Schiff; Pan-
charatnam, Berry, and Aharonov-Anandan phases.

In Sec. V we discuss several combinations of static and
rotating magnetic fields along two paths in the neutron
interferometer that should allow one to check the exact
time evolution of spin state and to measure various
phases (Berry, Born-Fock-Schiff, Pancharatnam) associat-
ed with the adiabatic approximation of the exact solu-
tions.

II. EXACT TIME EVOLUTION OF SPIN-2 STATES
IN A ROTATING MAGNETIC FIELD

The evolution of the spin state in a magnetic field,
which is the sum of a static magnetic field Bp=Bpc and
of a rotating magnetic field Bi(t)=8, [cosoit e„
+sincot e ] [Fig. 1(a)], is governed by the Hamiltonian [4]

H (t) = —po. [Bo+8,(t)],
where o is a vector of Pauli inatrices and p=yA'/2 (y is

the gyromagnetic ratio). With the frequencies

COp
— $8p, CO)

— PB )

the Hamiltonian reads as

(2)

where (ez, er, ez) are unit vectors in the coordinate sys-
tem OXYZ which rotates with the magnetic field. This
field makes an angle 8,f with the Z axis of the rotating
frame as well as with the z axis of the laboratory frame
[Fig. 1(b)], such that

tan8, f
= —

coI /Ac@ .

A. Time evolution in the l + ) basis of cr,

The time-independent Hamiltonian

ACO CO )H=-
CO)

(6)

has the eigenvalues

e„= ne, —E=—(b,co +coi)'~

and the eigenstates

ly+ & =cos ' l+ &+sin
2 2

&
= —sin

' l+ &+cos
2 2

in the basis ln &, n =+ of o, .
The evolution of an arbitrary initial state

li((o) & =~lq+ &+ply

H(t)=(R/2)Icooo, +co, [cosset o +sincot cr ]] . (3)

The corresponding Schrodinger equation was exactly
solved by Rabi [25] and Danzer [26]. For the purpose of
our analysis it is convenient to write this solution in a
form which uses the so-called effective field [26,4] defined
by

1B,t= —(hcoez —co,ex ), Aco = co —coo,

z Z

B
0

e "e ' B(t

id- 4P
0

B e =8+ —eef 6 y z 0 y zf

is given by [4,16]

ly(t)&=e '~' 2 ete'" "cos —pe '" "sin l+ &

ef ef
2 2

0
4P

1——e
X

Y +e' ' ae'" "sin +pe '"~"cos
2 2

X

(o) (b)

FIG. 1. (a) The vectors 80 and B&(t) in the laboratory frame
Oxyz and in the rotating frame oxYz, whose axes OX and OY ro-
tate around the Oz axis with angular velocity co. (b) The
effective field S,f and the polarization vector P(t) in the rotation
frame OXYZ.

(10)

Equation (10) further determines the time dependence
of various quantities of experimental interest such as, for
instance, the spin polarization vector defined by

p(t) =
& g(t)l~lg(t) &

also shown in Fig. 1(b).
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B. Exact time evolution in the Born-Fock-Schiff basis

H(t)~n;B(t) ),=E„(t)~n;B(t))„n=+,
and by the phase fixing condition

(12)

For the sake of making the adiabatic approximation of
the exact solution it is convenient [16] to write the exact
solution in terms of the Born-Fock-Shiff basis

~ n; B(t)),
which (for an arbitrary Hamiltonian) is defined by the ei-
genvalue problem

refer to y„(t) as the Born-Fock-Schiff phase. Condition
(13) was first introduced by Born and Fock [28], in order
to simplify the system of equations obtained when solving
the Schrodinger equation in the adiabatic approximation.
In recent literature [13] this condition is called the paral-
lel transport law, or the connection.

The states which satisfy the eigenvalue equation (12'),
in the case of spin- —,

' particle, are the eigenstates of the
component of the spin operator along B(t)—oz(t). The
most often used eigenstates of o.z(, ] are

(13)

Schiff has pointed out [27] that in general, the states
which satisfy the "eigenvalue problem" (12) and the
phase fixing condition (13) may be determined in two
steps. In the first step one solves "the eigenvalue prob-
lern"

where tan8 =co, /coo. Their eigenvalues are

E = nE' E—=—(co +co )
2 2 1/2

0 2
(17)

~+;B(t))c=e ' '/ cos—~+)+e' '/ sin —
~

—),
(16)

~
—;B(t))c=—e ' ' sin —~+ )+e' ' cos—

~

—),

H(t)~n;B(t)) =E„(t)~n;B(t)) .

Then, by applying the unitary transformation
The BFS phase associated with the latter states is

12'

y'„( t ) =n ( cot /2 )cos8 . (18)

~n;B(t))„=e " ~n;B(t)),

where

(14) By substituting (16) and (18) into (14) we find [16] the
BFS basis for spin —, in a rotating magnetic field:

y„(t) ij d~ n;B(~)=n;B(~))
0 a~

one determines the state ~n;B(t)), which satisfies also
the condition (13). In the subsequent discussion we shall

I

~

+.B(t) ) —e (t/2)cos'@~ +.B(t) )
.B(t) ) e

—t(c)t/2)case~ .B(t) )

The exact solution in the BFS basis (19) reads [16]:

(19)

~y(t) ) ——t'(c)t/2) scca A cos —
—,
' C sin(8 —8,t) e'"/"

+ A sin + —,'Csin(8 —8,t) e "' " ~+;B(t)),

+e' ' '"' ——'A sin(8 —8 )+Csinef 2
e

—i Et/R

+ —,'/I sin(8 —8,z)+C cos (20)

where 3 and C are coefFicients in the initial state written
in the BFS basis

which can be solved in closed form for a spin- —,
' system in

a rotating magnetic field. The solution reads [29]

~@(0)) = A ~+;B(0)),+ C~ —;B(0)
~ ), . (21)

—t(c)t/2)a t(st/A')(a sine t+a case t)Ut =e 'e (23)

C. The evolution operator
After straightforward algebra the above product may be
expressed as a single exponential [30]

U ( t )
—e i [ P( t) /2]V u( t )a

7

where

p(t) cot Et . cot . ct
cos =cos cos—+sin sin —cos8,f2 2 A 2

i A U(t)=H(t) U(t), U(0) =I,a
at

(22)
and the coordinates of u are given by

Instead of focusing on state vectors a useful alternative
approach is to introduce the time-evolution operator
U(t) defined by ~g(t)) =U(t)~g(0)). This operator
satisfies the equation

(24)
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P(t) . et . cot
u (t)sin =sin —sin8 fcosX 2 A

' 2
Ig„(t)}=e ' "' e' " In;B(t)}, (34)

P(t) . Et . . cot
u (t)sin =sin —sing csin

2 e ' 2 '

P(t) . ct cot . cot ct
u, (t)sin =sin —cosddcos —sin cos—.

2 fi ' 2 2

(26)

In;B(T)&=In;B(0)} . (35)

where the states In;B(t) }are assumed to be single-valued
functions in the parameter space. In particular, if
B(T) =B(0) this implies that the functions

I n;B(t) }have
the property

In Sec. III B we shall determine U(t) in the adiabatic ap-
proximation.

III. THE ADIABATIC APPROXIMATION

In&„
«Iz„—z„I .

n k
(27)

In the case of spin —,
' in a rotating magnetic field it

reduces to a condition on the ratio of frequencies

cocoi /2(coo+ coi )
I
((1

and is satisfied if

The general condition for the applicability of the adia-
batic approximation is

The states

I+;B(t)},'=e"""I+;B(t)},,

I —;B(t)&~c=e'~"'
I
—;B(t)}c, Ij =1,—1

satisfy the eigenvalue equation (12') and have the proper-
ty (35). The states I+;B(t)}~ =—e' ' I+;B(t)}c,

;B(t)}~ ——e ' '
I
—;B(t)}c in addition have an ap-

pealing property (see Sec. IV A):

limP @ (n;B(0)In;B(t) }~=P ~(n;B(0)In;B(T) }~=0 .
f~T

(36)

This set is essentially the one recently used by Weinfurter
[31]. The associated phase is given by

g =co/(coo+co, )'i ((1 .

Then, the following approximate relations are valid

cos(8,t—6)= 1 —[cocoa/(coo+co, ) ] /2= 1,

(29)
y„(t)= ncot (1——cos6)/2 .

For t = T one has

y„(T)=—n~(l —cos8),

(37)

(3g)

sin(8, t
—8)= coco~ /(coo+ co~ ),

cos = 1 —[cocoo/(coo+ co, ) ] /2 = 1,
2

(30)

which is precisely the value obtained by Berry [6] without
specifying the time-dependent basis explicitly.

With the single-valued basis I+;B(t)}~—:e'"' I+;B(t)}c, I

—B(t) }M—=e' '
I
—;B(t)}cused in

Ref. [16] one finds

sin = [cocoa/(coo+co, )] /2=0 .
2 y „(t)= cot(1 ncos—P)/2 .— (39)

These relations reAect the fact that in the adiabatic case
the real field B(t) and the effective field B,t(t) are approxi-
mately equal. Therefore their respective angles 8 and 8,f
are approximately equal as well. Also, we have the fol-
lowing important approximate relation:

y„(t)=co(l+n cos6)/2 (40)

Kobe et al. [15] define the bases I+;B(t)}»
' ' 'I+ B(t)}

I

—B(t)} =— ' '"I —B(t)}
and obtain

Cdf1
E =E+ cos8 .

2

A. Adiabatic evolution in the Born-Fock-Schiff basis

(31)
which they call the Yang phase.

Notice that for t =0 all the above three sets of states
reduce to

I n; B(0)}„:
In; B(o) &M

= In; B(o)&» = In; B(0)& w
= In; B(o)&.

Ig(t) &
= Ae' ' "I+;B(t)} +Ce ' ' "I —;B(t)} (32)

Particularly simple is the adiabatic evolution of two spe-
cial initial states, I+;B(0)}, ( A =1, C =0) and
I —;B(0)&„(A=0, C=l):

I @„(t)I }= e'" ' "In;B(t) }„. (33)

To first order the exact state expressed in the time-
dependent basis (19) is given by

(41)

One can easily check that they all lead, according to Eq.
(14), to the same time-dependent states I+;B(t)}„given
in (19). This means that there is complete agreement be-
tween the two forms (33) and (34) of the adiabatic solu-
tion. This is no surprise since for the given initial state
In;B(0)},both the exact and the adiabatic solutions of
the Schrodinger equation are of course uniquely deter-
I111ned.

B. Adiabatic evolution in Berry's formulation

Nowadays, using (14) instead of the BFS old-fashioned
form (33), the adiabatic solution is written as

C. The evolution operator in the adiabatic approximation

In this section we show that in the adiabatic approxi-
mation the evolution operator reduces to the product of
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two unitary operators N(t) and M(t) defined by

~ n; B(t)),=N(t)
~ n; B(0)), ,

M(t)~n;B(t))=e'" ' "~n;B(t)), n=+ .

Straightforward evaluation leads to

(42)

(43)

A. Pancharatnam's phase

&C [e)= e'~((e[e)
f . (47)

As we have mentioned in the Introduction, the phase
difference y=P(szs~)It) between two arbitary quantum
states ~(It) and ~Ct), is defined by

i(—tot/2)o i(tot/2)ense(o sine+ o case)Nt=e e
i(Et/a))(o„sine+o ense)Mt=e

(44)

(45)

Now, by starting with the form (23) of the evolution
operator, and using the approximate relations (31) and
8,f—-8 one easily sees that, in the adiabatic approxima-
tion, U(t) is a product of N(t) and M(t):

U(t)=N(t)M(t) . (46)

The same result was obtained by Anandan and Stodolsky
[32] and Weinfurter and Badurek [11]with the aid of the
adiabatic theorem written in the operator form.

It is called, in the recent literature [33,11],
Pancharatnam s phase. This definition is in fact the gen-
eralization to an arbitrary pair of states of the notion of
the relative phase which has been used previously for two
states belonging to the same ray.

1. Et)a1uation of Pancharatnam 's phases P ~ ( n; 8{0)
~ P{t ) )

Let us apply the definition (47) to evaluate the exact
phase difference y„(t) between ~P(t) ) and the initial state

nB(0) ),. The easiest method is to use the exact evolu-
tion operator (24). After some algebra we find

(t), ( n; 8( 0)~g(t)) =cos

IV. PHASES

In the past a number of phases associated with spin —,
'

in a magnetic field have been defined and studied. Here
we shall review some of them and establish their mutual
relations.

+[u (t)sin8+u, (t)cos6]ni sin
(t)

where cos[P(t)/2] and u(t) are given in (28) and (26), re-
spectively. This further gives

y„(t)=n arctan

cut . c.t . cut ctcos sin —cos(8—8 )
—sin cos—cos8

2 X " 2
cot c.t . cut . c.t

cos cos—+sin sin —cos8
2 A 2

(49)

In the adiabatic limit [8,t~8, c, ~E+ (co))l/2)cos8] the above expression reduces to

y„(t)=n +g„(t),Et
(50)

where

cot
g (t) = narctang co—s8 tann 2

cot cos8 (51)

g„(T)= limg„( t) = n—m( 1 ——cos8) .
t~T

(52)

Had we used instead the adiabatic approximation (46) we would have obtained the same expression for y„(t). Namely,

, ( n; B(0)
~ g(t) ) =, ( n; B(0)~N(t)M (t) ~n; B(0)),

But

=e'" ~ (n;B(0)~n;B(t)) (53)

, (n;B(0)~n;B(t)), =cos cos cos8 +cos8sin sin cos8cot cot cot . cot

2 2 2 2

ut . cut cot COt+ in cos sin cos8- —cos8 sin cos cosP
2 2 2 2

(54)



2586 A. O. BARUT, M. BOZIC, S. KLARSFELD, AND Z. MARIC 47

Therefore

I, (n;B(0)I@(t)& I
= I, (n;B(0)In;B(t) &. I

2cot 2 . 2mt
cos +cos csin

2 2

y„(t)=P, (n;B(0)IQ(t) & =n +g„(t),Et

since

P„(n; B(0) I n; B(t) &.=g. ( t) .

1/2

(55)

(57)

and therefore

P ii (n;B,t(0)IP(t) & =n ——arctan cosg, ttan
ct cot

2

Taking the adiabatic limit yields

lim, dP ii ( n; Bd( 0)
I p( t ) &

Et mt cot=n + cos8 —arctan cos8 tan
2 2

(60)

(61)

2. Evaluation of the Pancharatnam phases z ( n; B, (0f) I P(t) &

It is interesting that there exists another exact phase
difference which reduces to (50) in the adiabatic approxi-
mation. This is the phase difFerence between Itj'j(t) & and
the initial state In; B,t(0) & ii, which is an eigenstate of the
spin component in the direction of the effective field B,f
for t =0. Of course this state is not an eigenstate of
H(0).

By applying the exact evolution operator in the form
(23) to the state

I n; B,t(0) & ii, we find

elllEt/flI n, B (0) & (59)U(t)In;B, t(0) &ii, =e

The easiest way to establish the relation (56) is by start-
ing with the adiabatic approximation (33). This also
makes apparent that the term g„(t) is in fact the sum of
two different contributions

g„(t)=y„(t)+P(n;B(0)In;B(t) & .

Note that both terms in the right-hand side depend on
the chosen basis, while their sum is clearly basis indepen-
dent (see Table I).

which is precisely the phase y„(t) of Eq. (50). This result
is understandable, taking into account the fact that in the
adiabatic limit B,t(t) is approximately equal to the real
field B(t).

B. Aharonov-Anandan phases

The exact solution in the form (10) shows that among
all possible initial states only those with (a = 1, P=0) and
(a=0, P= 1 ) undergo cyclic evolution. These states
evolve according to

(62)

where

I+;B,t(t) &it, =cos ' I+ &+e' 'sin

(63)

I
—;Bd(tO&z= —sin

'
e ' 'I+ &+cos

are eigenstates of the spin component along the effective

TABLE I. The functions y„(tl and P(n;B( 0)In;B(t) & for the three bases In;B(t) )M, In;B(t) &ir, and

I n; B(t) &z, which are all single valued in the space of the parameter B, for BFS basis and for the basis

I n; B(t) & z which changes sign after t = T.

Basis
In;B(t) &

BFS phase
y„(t) P(n;B(0)In;B(t) &

g„(T)
for cosBWO

In;Bit) &~ — (1—n cos8) cot cot

2
—n arctan cos8 tan

2
—m(1 —n cos8) —n~(1 —cos6)

In;B(t) & ~ —n (1—cos8)cot

2
cot cot

n —arctang cos8 tan
2 2

—n m.(1—cos8-) —n m.(1—cos8 )

In;B(t) &

2
(1+n cos8) 6)t cot—n arctan cos8 tan

2 2
m.(1+n cos8) —n m(1 —cos8)

In;B(t) &g
mt cot

n cos8 —arctan cos8 tan
2 2

—nm(1 —cos8)

In;B(t) &,
cot

n cos8 cot cot—n arctan cos8 tan
2 2

n~cos8 —nm(1 —cos8)

for cos 8=0
the phase g„(T)
vanishes for all
bases
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field and have the property

~
n; Bd( T) ) ii

=
~ n; B,t(0 ) ) ii, = ~ P„(0) ) . (64)

lim, ~ P„= —nn(1 —cos8),

limad An llET = E„T .

(77)

(78)

Therefore, after time T the state ~f„(T)) is equal to the
initial state multiplied by a phase factor. Using the nota-
tion of Aharonov-Anandan [34]

This is understandable since in the adiabatic limit
B,t(t)~B(t) and therefore ~n;B,t(t)) ii —+~n;B(t)) ii.
This is in agreement with our previous conclusions.

~ij'„(7))=e' "lq„(0)&,

where

P„=n ———T=nvr —I
E, CO 2E,

2 Ace

(65)

(66)

V. NEUTRON INTERFEROMETRY WITH STATIC
AND TIME-DEPENDENT MAGNETIC FIELDS

Neutrons are the most suitable quantum objects for the
experimental study of the spin states, both in static as
well as in variable magnetic fields.

c.t cot= lim n ——arctan cos8,&tan
T A' 2

(67)

Aharonov and Anandan also define another set of states

lp„(t) & —= ' " lp„(t) &,

where f„(t) satisfies

f„(T)—f„(0)=P„
In view of (62) one clearly has

jy„(t) ) = ~n;B,f(t) )

and

(68)

(69)

(70)

f„(t)=n
2

(7l)

Finally let us consider the two quantities [34]

(72)

Taking now into account the expression (60) for the
phase P ii & n;B,t(0) ~P(t) ) we see that P„ is just a partic-
ular value of this phase for t = T.

&;B.(0)lg(T) &

A. Veri6cation of the law of transformation of spinors
under rotation: Measurement of dynamical phase

Neutron interference experiments with static magnetic
fields were originally aimed at verifying the transforma-
tion properties of spinors under rotation [35]. In these
experiments (Fig. 2) a neutron beam is split into two
beams, one of which passes through the static magnetic
field 8, =8,e„ the other propagates freely. Along both
trajectories there is, in addition, a small guiding magnetic
field which determines the quantization axis (z axis). The
wave function of neutrons entering the interferometer is a
product of the space function (plane wave) and spin state

~
n ), which is an eigenstate of o„

qg ( t) —( ik. —'(A' / ) R~ )in r in~ Z ~

Here, k is the initial neutron wave vector. The wave
function in the detector I. is a superposition of wave
functions qI; I, (L, t) and 4, i, (L, t) associated with waves
which propagated along paths ijk and spk, respectively,

(80)%(L,t)=%;.k(L, t)+4, k(L, t) .

If pB ((A k l2rn, the refiection on the field boundaries
are negligible and the magnetic field affects only the spin
part of 'P,~k(r, t). This implies that the time evolution of
%,~k(r, t) may be approximately described [35,36] by ap-
plying upon the initial spin state

~
n )„the operator

a„=—fl ' I &1/f„(t)~H~q„(t))dt

= —I {g„l Q„Idt, (73)

U, (t) =exp(i per, B,tlfi) .

ik r -i (5 k /2In) t/'5
e e (n&in

(8l)

which in Ref. [34] are called geometrical and dynamical
phase, respectively. Explicit evaluation for the cyclic
states (62) gives Si g B=Be

P„= n ir( I cosB,t), — — (74)

2Ea„=—n vr cos8,&— (75)

Notice that

p„=p„+a„. (76)

In the adiabatic limit [B,t~g and EE+(A'co/2)c 8]os
the above exact phases approach Berry's values

4'(I. , t)=4. . (L, t) + 0 (L, t)
1Jk spk

Detector L

FIG. 2. Scheme of an interference experiment for verifying
the law of transformation of spinors under rotation. In modern
language this experiment measures the dynamical phase.
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This leads to the state

exp(i)cccT, B,(t/A) ~n ), =exp(in)MB, t/A) ~n ),
=exp( iE—„,t/fi) ~n ), , (82)

ik r -i (h k /'2m) t/'0
C e e

B(t)=B +B (t0 1

s
where E„,= —np, B, are the eigenvalues of the neutron
spin energy in the constant magnetic field 8, . The neu-
tron velocity U, the length of the field I, and time of pas-
sage tp are simply related by l =t v =t Ak/m T. here-
fore, the effect of the static field directed along the axis of
quantization (z axis) consists in inducing the phase
difference

4(L, t)=4, . (L, t)+4 (L, t)ijk ' spk

Detect. or L

a„(t )= E„,t —/A=npB, l/vs

between the states V,pk(L, t) and 4,"&(L,t), so that

(83) FIG. 3. Scheme of an interference experiment for verifying
the exact and the adiabatic evolution law in a rotating magnetic
field.

4, k(L, t)=%, k(L, t)e (84)

At the exit from the interferometer, the two waves
which propagate along paths ijk and spk are superposed
and the number of neutrons is counted in the detector.
The number of neutrons I(L), counted in the detector L
during finite interval ht, is proportional to

I(L)~ f dt~+, ,„(L,t)+4, „(L,t)~
0

= ~)II;,k(L)~ 2[1+cosa„(t )], (85)

where

~e„„(L)~'=f dt~e, ,„(L,t)~'

= f

dt's%'„„(L,

t)i' .
0

(86)

B. Proposed interference experiment for the verification
of the exact and adiabatic evolution law

in the rotating magnetic field

Since U, (t ) has the same form as the operator of rota-
tion around the z axis by the angle —2pB, I /viz, the inter-
pretation of the experiment was that it verified the law of
transformation of spinors under rotation [35,36].

Currently the phase a„(t)= E„,t /A' is ca—lled, follow-

ing Berry's nomenclature, the dynamical phase. By
adopting this modern nomenclature, one could therefore
say that in the interference experiment with static mag-
netic field (which obeys the transformation law of spinors
under rotation) one also measures the dynamical phase.

(L t)-e'k" '"" / "/~~n'B(0))
(88)

q/ (L t )
ik Le —c(fi k /2m)tlat'e'(~ p ) '

p
~

.B(0))

We have obtained again the simple cosine law, except
that now ct)(tp )/2 is not the phase, but the angle of the ex-
act evolution operator (24) of spin in the rotating magnet-
ic field. Taking into account that between cos[P(tp)/2]
and cos[y„(t )] there exists the relation

p(t, )
cos =(„(n;B(0)~)U(tp)~n;B(0)), (cosy„(t ), (90)

we conclude that by combining the measurement of I (L)
with one of („(n; (BO)~U(t )~pn;B(0))„~ one could in
principle determine the phase difFerence g„(t ).

If the evolution is adiabatic [co/(coo+co, )' ((I], it
follows from (53)—(57) that

1/2
P( tp ) cotp cot

cos — =— cos +cos 6 sin
2 2 2

Et
Xcos n +g„(t ) (91)

Taking (48) into account we easily show that the number
of neutrons in the detector L,I(L), measured during time
interval ht is proportional to

I(L)~ f dt~+, ,„(L,t)+4, „(L,t)~'
0

p(t, )
=i%;k(L)i 2 1+cos

The time evolution of the spin state in a rotating mag-
netic field could be also verified using the interferometer
described in Sec. V A. But, instead of a static field 8, one
should apply the rotating magnetic field B(t)=BO+B,(t)
along one path (for example, along path ijk as shown in
Fig. 3). Initially the neutrons should be polarized along
the direction of the magnetic field at t =0,
B(0)=Boe,+Bi(0), which means that the initial wave
function should be

In particular for t =Twe find

I ( n; B(0)
~
U( T)

I n; B(0) ) I

—= 1,
g„(T)= —n~(1 cosi'I) . —

Therefore

IIL) ~ ~%',~k(L)~ 1+cos n —n~(1 —cos8)2 ET

(92)

@;„(rt)=c;„elkre l(R k 2/m)t A/~ n.
B( 0)) (87)

Wave functions of waves arriving at the detector I, along
paths ijk and spk are then

(93)
We see that for t =T the expression for I(L) is par-
ticularly simple. The argument of cosine is a sum of dy-
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namical, n

ET�/R,

and
—y„(T)= —nm(1 —cos8).

geometrical

C. Berry's interference experiment

phases B(t)=Boe, +B,(t) is arbitrary the states

(I r ) eik Le —i(h k /Zm)t/A'e '
n P

~
n .B(P) )spk W

In the experiment proposed by Berry [6] an adiabati-
cally rotating magnetic field B(t)=Boe, +B,(t) should be
applied along one path (for example, along ijk) and a
static magnetic field of intensity B =(80+8 i

)'l in the
direction of B(0) should be applied along the other path
(for example, spk). The length l of both fields has to be
such that the time of passage t = l/U through the fields
has to be equal to the period T of the adiabatically rotat-
ing magnetic field B,(t). Initial neutrons should be polar-
ized in the direction of B(0). Then, the initial wave func-
tion is

r t)-C;„eik re i(r k —/m2)t h/~ tiB(P)) (94)

The waves arriving to the detector I along paths ijk and
spk (Fig. 4) are described by wave functions

qt (L r ) e 'k'Le —t A'(k /2m it/ate n
~n

.B(0))
(95)

eik Le —i(A k /2 m)t/ tettn p
~&

.B(p) )
I

Z
x I'k.L —i(A k /2m)t/A '

n p
(97)

Xexp[iy„(t )]~n;B(t )) ii

p

do not belong to the same ray. Consequently the intensi-
ty in the detector depends on the phase difference be-
tween the spin states as well as on the absolute value of
their scalar product:

I ( L ) ~
~ 4,. „(L )

~ [ 1+ ) „(n; B(0)
~ n; B(t~ ) ), ) cosg„( t~ ) ] .

(9g)

This means that in order to determine the phase g„(t~ )

the measurement of ~, ( n; B(0)
~
n; B( t~ ) ), ~

is necessary,
in addition to the measurement of I(L). Taking (54) into
account I(L) in (98) may be also written as

(L r )
ik Le i(A k /2—m)t/s n-e e

X exp [ i y„(T) ] ~ n; B(0)) ii

I(I-) ~ i%';ik(L)i [I+cosrj(t )],
where

(99)

where E„ is given in (17). Since 0';&&(L, t) and 'P,zk(L, t)
belong to the same ray the intensity of their superposition
'It;~k (L, t )+%,~k (L, t) is a simple function of Berry's
phase y„(T) and therefore

cos21(t )=cos COtp cot

2 2
cos cos8

I(L) ~ i%, k(L)i [1+cosy„(T)] . (96) +cos8 sin sin cos6 . (100)
2 2

If the (common) length l of the static magnetic field

B,=B(0) and of the adiabatically rotating magnetic field

i k. t —i ( h k /2m) t/h2 2
e e n; B(0)&ln W

B(t, )=B +B (t.
0 1

B =B(0)
S

& s

By comparing (96) with (93) we see that the difference
is in the argument of cosine. With a rotating field (of
length l =vT) along one path, the argument of the cosine
equals the sum of E„T/A and—y„(T). If in addition a
static magnetic field B(0) (of the same length) is present
along another path the argument of the cosine is y„(T).
Therefore, the role of the static field is just to eliminate
the term E„T/A so that I (L—) depends only on y„(T).

D. Berry's interference experiment
with arbitrary time of passage

One easily sees that for t = T the expression (99) becomes
identical to the expression in (96), namely,

I(L) 0- 1 —cos(vr cosB)= 1+cos[m(1 —cos8)]

=1+cosy„(T) .

Berry associated the attribute "geometrical" with y„(T)
because he had noticed that y„(T) is equal to nA/2, —
where 0 is the spherical angle spanned by B(t) during the
time interval (O, T). However, expression (100) suggests
another geometrical interpretation, namely, the angle
21(t ) is equal to the length of the third side of the spheri-
cal triangle on the sphere of unit radius whose two other
sides are cot&/2 and (cot /2)cos8, respectively, their mu-
tual angle being 8 (Fig. 5). The analogous interpretation
was given by Pancharatnam [21] in the study of the in-
terference of polarized light. This interpretation was re-
cently applied by Berry [33].

4'(L, t)=4. . (L, t)+iIt (L, t)i jk ' spk

Detector L

FIG. 4. Scheme of an interference experiment for measuring
the Berry phase y„(T) (l =AkT/m). If l is arbitrary this exper-
iment verifies Eq. (99).

(ut j'2)cosO
P

FIG. S. Spherical triangle defining g(tp ).
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ik r -i (tt k /2m) t/h, B(O)e e )n; B(0)&
1 n-

B ( Meze I s co I I )
M

S

B(t)=B +B (t) /g B =B(0)e
0 1 rg p, ' g z

P(0)
'0

U (t ) )n; B(0)&

=exp(ipB o t /5) ~n; B(0)&
M H W

=exp(inn/2) ~n&
z

4(L, t)=4. . (L, t)+4 (L, t)
SP

Detector L

FIG. 6. Proposed experiment for measuring y„(t~ ) for arbi-
trary t~.

and the number of detected neutrons is given by

I(L) et I+cos(t)(/2)cos y„(tz )— (103)

We see that for given t) the intensity I(L) depends direct-
ly on y „(t ), which means that in this experiment the

phase y „(t) is measurable for arbitrary values of t.

VI. SUMMARY AND CONCLUSION

The solution of Schrodinger's equation for a spin- —,
'

particle in a rotating magnetic field is written in various
forms, namely, on using the basis ~+) of eigenstates of
o.„then the Born-Fock-Schiff basis, and finally the evolu-
tion operator. These different forms serve to evaluate the
exact (Pancharatnam) phase difFerence between the final
state

~
g(t) ) and various initial states.

For the initial state ~n;B(0) ), which are eigenstates of

E. A proposed interference experiment for measuring y„(t~ )

It seems that by combining two static fields along one
path and adiabatically rotating a field along the other
path one could measure y „(t ) for arbitrary tp (Fig. 6).

The first static field should transform the state
~n;B(0)))i into an eigenstate of o, This is achievable
with the aid of Mezei's coil [37] which creates the field

BM =(~hu /2@i~)[sin(t)/2)e +c os(8 /2)e, ] (101)

on the length IM. In Mezei's coil [37] the neutrons under-
go half-precession during time tM = lM Iu (Fig. 7). In the
second static field, B,=B(0)e, on the length I, the latter
state acquires the dynamical phase E„talk (t—

&
=1/u).

The second beam passes through the rotating field B(t).
Thus, the waves hitting the detector I. are

eik Le i(A k /2m—.)t/heine/2e n p ~ )spk

(102)
(L r ) eik Le —i(B k /2m)&/'Se '

& P
ijk

Xexp[iy„(tp)]~n;B(t~)) B, ,

FIG. 7. The principle of Mezei's coil.

the Hamiltonian at t =0, the exact phase difference
reduces, in the adiabatic approximation, to the sum
of E„tI—fi and g„(t)= —n I arctan[cos tan(0)t /2) ]—(mt/2)cos6]. For t =T the phase g„(T) is equal to
Berry's phase: g„(T)=y „(T) = nor( 1 ——cos8).

For the initial states ~n;B,&(0) ), which are eigenstates
of the spin component along the direction of the initial
effective field B, (r0), the exact phase has an energy-
dependent part and an energy-independent part [see Eq.
(60)]. It is shown that the states ~n;B,((0))B, are cyclic
and the corresponding Aharonov-Anandan phases (total,
dynamical, and geometrical) are evaluated. In the adia-
batic limit these exact phases approach Berry's adiabatic
values. This is understandable because in the adiabatic
limit B,t(t)&B(t) and ~n;B, (t())B ~~n;B(t))B.

In this work we have proposed neutron interference ex-
periments with pairs of states which do not necessavily
belong to the same ray.

In such experiments it should be possible to verify the
exact and the adiabatic evolution law thanks to the fol-
lowing two facts: (1) the intensity of interference depends
linearly on the real part of the scalar product of the su-
perposed states; (2) the real part of the scalar product is a
simple function of quantities which characterize the exact
and/or the adiabatic evolution law. The exact law is
verifiable by substituting in the experiment of Rauch
et al. [35] the static magnetic field by the rotating mag-
netic field. The adiabatic law for arbitrary t is verifiable
by allowing an arbitrary time of passage (t WT) through
the static and rotating magnetic field in the interference
experiment proposed by Berry.

The real part of the mentioned scalar product is also
equal to the product of its absolute value by
Pancharatnam's phase. From this we conclude that for
the determination of Pancharatnam's phase, between
states which do not belong to the same ray, the measure-
ment of the absolute value of their scalar product is re-
quired in addition of the interference measurement.

Finally, we have proposed an experiment with two
static fields and one rotating magnetic field for the mea-
surement of Born-Fock-Schiff phase y „(t) for arbitrary t.
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