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Generalized covariance condition and quantization in curved configuration space
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We expound the generalized covariance condition in quantization. This condition is combined with
the other standard conditions to determine the quantum-mechanical operator of a quadratic Hamiltoni-
an H2, represented by a quadratic function of momenta with a nonsingular coefficient matrix depending
on coordinates, and the operator of an arbitrary quadratic quantity F2 belonging to a system whose
Hamiltonian is of the Hz type. It is shown that the operator of F2 depends also on H2 and that 8z or P2
cannot contain a curvature term. We also present a modified ordering method with certain conditions
under which the operator of a quadratic quantity can be found by replacing some linear functions of mo-
menta with their operators. Finally, a path-integration formula is formed and shown to yield the expres-
sion of 82 that we derive by the canonical quantization method.

PACS number(s): 03.65.—w, 03.70.+k

I. INTRODUCTION

As is well known, there exist ambiguities in passing
from a complicated classical Hamiltonian and other
quantities to their quantum-mechanical operators. Add-
ing the covariance condition to be expounded in the
present paper to the other standard conditions will weak-
en the ambiguities and enlarge the class of quantities for
which the operators can be determined uniquely. We will
study a special but important Hamiltonian H2, a quadra-
tic Hamiltonian represented by a quadratic function of
momenta with a nonsingular coefficient matrix g

' de-
pending on coordinates, as well as an arbitrary quadratic
quantity F2 for a system whose Hamiltonian is of the H2
type. No trouble can be caused by adding to H2 and F2 a
pure coordinate part and a linear function of momenta.
DeWitt [1] derived the operator H2 of H2 by forming a
path-integration formula and first found, we believe, a
curvature term A,R in addition to the part proportional to
the Laplace-Beltrami operator, where A, is a numerical
constant and R is the scalar curvature of the Riemannian
configuration space with the metric g&&'. The method
was revised by Cheng [2] and Sniatycki [3] to give
A, =A /6. Other methods were also developed and yield
different results (see, for example, Ref. [4—8]). In fact, it
is also easy to construct another path-integration formula
so that the curvature term does not appear in H2 [9].
Obviously, the problem could not be simpler for an arbi-
trary F2. The ambiguities in determining H2 and F2 also
add to the difficulties of the quantization of constrained
systems [10]. It would be interesting to try and search for
the operators of the quadratic quantities H2 and F2 for
systems mentioned above by using only some of the most
obvious arguments including the covariance condition. If
a definite answer can be found in such a way and affirmed
to be a standard one, then it can, in addition to its origi-
nal meaning, also be regarded as one of the criteria for
testing a quantization method. We will argue that by re-
moving some obstacles and taking into account the stan-
dard conditions comprehensively, the canonical quantiza-

tion method will be capable of determining the op rators
of H2 and F2.

Up to the present, the canonical quantization approach
lacks a correct rule for H2 that has a complicated
coefficient matrix (g"" ), and the usual procedures often
contradict some standard conditions. Consider a particle
moving on a unit spherical surface with the Hamiltonian

1 2 1 2h2= Pg+ . 2 P~2m sin 6

where pz, p„stand for the canonical momenta conjugate
to the angles 0 and y, respectively. Denoting by p, p
the operators of p& and p under the volume element
sinOd0dy, one has

pe = (sin8) ' i A (s—ing)'~

a
p = —iA

Bc@
'

We now ask whether the operators of p and p, which
will be denoted by (pe)& and (p+)&, are equal to the
square of the operators of p z and p

(pg)g=(Pg)'. 7, (p~)g=(P~)' 7

If both of these relations are valid and if the additive
principle also holds (by additive principle we mean that
the operator of the sum of uantities F and 6 is equal to
the sum of the operators and 0), then we obtain a
wrong operator for h2. The additive principle must hold.
Consequently, at least one of the two relations is wrong.
Such a conclusion seems to be unimaginable in the view
of the usual quantization procedure for some deep
reasons. First, it is believed according to the usual pro-
cedure, that the operator of classical quantity can always
be determined without reference to the Hamiltonian of
the system under consideration. Such an idea may also
contradict the additive principle. Second, in the usual
procedure the generalized covariance condition is often

47 2574 {1993 The American Physical Society



47 GENERALIZED COVARIANCE CONDITION AND. . . 2575

ignored and violated.
Naturally the physical contents of the quantum theory

should be independent of the choice of coordinates, and
this requirement gives a certain restriction to the quanti-
zation method and leads to the generalized covariance
condition which will be expounded in Sec. II. When
working with a given coordinate (q) and correctly carry-
ing out the quantization, it is not necessary to consider
the problem of coordinate transformation. However,
when H2 has a complicated coe%cient matrix, one must
treat the generalized covariance condition and other stan-
dard conditions carefully in order to identify the correct
expression of Pz and other operators. We will show that
by using the covariance condition and the additive princi-
ple as well as some general considerations based on the
correspondence principle and the Hermiticity of the
operator of a physical quantity, one can uniquely deter-
mine the operators of Hz and F2.

In Sec. III we will construct the quantization method
and rule for H2 and F2. It will be shown that the opera-
tor of H2 or F2 cannot contain a curvature term and that
the operator of F2 depends also on H2. In Sec. IV we
will present a special ordering method with which one
can find the operator of a quadratic quantity by replacing
some linear functions of momenta with their operators.
In Sec. V we will form a path-integration formula which
yields the operator expression of H2 obtained by the
canonical quantization method. The final section is for
concluding remarks.

II. GKNERAI. IZED COVARIANCE CONDITION
IN QUANTIZATION

aqi(q, t)
H', (q', p', t)=H&(q, p, t)+ g pi (2.5)

The meaning of wave functions, the operator expressions
of quantities, and the form of the Schrodinger equation
are influenced by W(q, t). The inner product is deter-
mined by states and is independent of W(q, t) and of the
choice of coordinates. Let pl, 8(q,p, t) be the momentum
operator and Hamiltonian operator under coordinate (q)
and weight factor W(q, t) and let N„(q, t), C&s(q, t) be the
wave functions of states A and 8, respectively. For
another weight factor which is identically equal to 1, we
write the above quantities as pl"', 8 (q,p'", t), @'„"(q,t),
and 4~"'(q, t). The produce dq, dqz . . dq, will often be
written as (dq) for simplicity. The dependence of the
various quantities on the weight factor can be determined
with the help of the inner product and matrix element
formulas, and one has

@(q,t) = W(q, t) '"4 "'(q, t),
p, = W(q, t)-"~p,"l'W(q, t)'i2,

H(q, p, t)=W(q, t) 'i H"'(q, P'", t)W(q, t)'

where

(2.6)

(2.7)

(2.8)

which show that each H„ for n&1 is a scalar and H, is
also a scalar with respect to the time-independent coordi-
nate transformation.

In quantum-mechanical theory a weight factor W(q, t)
may be introduced rather arbitrarily to express the inner
product of wave functions at time t as

(&„,Cll)= J W(q, t)dq, . . . dq, @~(q,t)cs(q, t) .

I j
qk qk(ql~q2~ . . |qs~t) ~

the new momenta and Hamiltonian are

(2.1)

In this section we will first define a few notations and
phraseologies and then expound the generalized covari-
ance condition. Consider a classical system which is de-
scribed by the generalized coordinates (q„q2, . . . , q, ),
canonical momenta (p „pz, . . . ,p, ), and Hamiltonian
H(q, p, t). We assume that each coordinate qk is still a
continuous variable in quantum mechanics. Under the
coordinate transformation

(2.9)

from which, and from (2.6)—(2.8), one gets

B&W(q, t)4(q, t)
Bt

iA

+W(q, t)
(2.10)

When the weight factor is identically equal to 1, the
Schrodinger equation of course takes the form

fi ' =H"'(q P'" t)4&'"(q, t),. ae'"( t)

Pl=2 . , Pk=X, Pk
k Bql k C)ql

H'(q' p', t) =H(q, p, t) &qkpk+ & qip—l
k

Bql'(q, t)
=H(q, p, t)+ g p/ .

(2.2)

(2.3)

This shows how the time evaluation of the wave function
is described by the Hamiltonian operator H under a
time-dependent weight factor.

It is self-evident that when a function I' (q,p) is used to
represent a physical quantity, then the same physical
quantity should be represented in the coordinate (q') by
F'(q', p') such that

I"(q'(q»p'(q p))=F(q p) .

H„'(q', p', t)=H„(q,p, t) (n&1) (2.4)

One sees from (2.2) that the classical canonical momen-
ta constitute a covariant vector. Next, on expanding
H(q, p, t) in powers of the momenta and denoting by H„
the nth-power part, one gets from (2.3),

That is, a physical quantity is always represented by a
scalar function. Take a single momentum, for example.
If a physical quantity is represented in the coordinate (q)
by p„ then it is represented by the scalar +if IIl(q')pl'
where fIIl(q') constitute a contravariant vector whose
components in the coordinate (q) are (1,0,0, . . . ).
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If we let F(q,p, t) be a classical scalar with respect to
general coordinate transformation and P(q,p, t) the
operator of the physical quantity represented by F, then
the matrix element of F must be independent of the
choice of coordinate. Namely, for each pair of states 3
and 8 and for an arbitrary two kinds of coordinates, one
has

8" q, t dq ~ q, tF qp, t4z q, t

=f W'(q', t)(dq')@'„*(q', t)F'(q, P', t)@'(q', t),
(2.11)

where @'„(q',t), 4&'(q', t), and F'(q', p', t) are the wave
functions and operator under the new coordinate (q') and
weight factor W'(q', t). This relation forms the content
of the covariance condition and imposes a certain restric-
tion on the form of operator P. This condition can also
be stated as follows: Under an invariant volume element
W(dq) (accordingly, the wave functions are scalar func-
tions), the integrand

N~(q, t)P(q, p, t)@~(q, t)

and, therefore, F(q,p, t)@~ and P(q,p, t)+„must be sca-
lar functions.

Let us give a simple application of the condition by
searching for the operator F& of the physical quantity
represented by

implement the canonical quantization method and deter-
mine the operator of Hz and that of an arbitrary quadra-
tic quantity F2.

H2(q p) = ,' X-g""(q'S u k
k, k'

(3.1)

F2(qu)=-,' gf""(qV kS'k . (3.2)
k, k'

The coefficients g constitute a contravariant symmetric
tensor and can also depend on the time and so do f"".
The matrix (g"" ) is assumed to be nonsingular. We will
denote by g the determinant of the inverse of this matrix
and by ~g~ the absolute value of g.

For the convenience of applying the covariance condi-
tion and reAecting the relationship between the operator
structure of an arbitrary F2 and that of H2, we choose as
W(dq) the invariant volume element ~g~' (dq). So an ar-
bitrary wave function N is a scalar function and so is the
result of operation of P2 on it. Since the coeKcients
f""(q) and the weight factor are real, the imaginary
number (i) can only occur in the operator P2 through
[ —i'(B!Bq~)]. It follows that Pz is proportional to
( —i~) . P24& contains the derivatives of N no higher
than second order, and the part containing the second
derivatives must be

( —&&)' ~fkk( )
aqkaqk

Fi(q,p)= gf"(q)S'k .
k

(2.12) One can therefore write

a2

~A~qk'

+( —iA) g Ak(q) —ih +( —i') Bo(f)@,
aqk

(3.3)

where Ak(q) and Bo(f) are real functions. Due to the
Hermiticity of Pz, (3.3) can be rewritten as

Pz4&= —,
' g i' f"—" (q) ifi—

g f"(q) —ih'
aqk

One therefore has

Since the coefficients f"(q) and the weight factor W are
real, the imaginary nuinber (i) can only occur in the
operator F, through [ —i'(BIBq~)]. It follows that F, is
proportional to ( i'). Under —an invariant volume ele-
ment W(dq), the scalar P, 4 can only be formed by cou-
pling a4/aqk to a vector or multiplying N by a scalar,
and the part containing aC yaqk must be

P, 4= g f"(q) i A —4 if'(q)N, —a

aqk
where

+( —iA) Bo(f)4, (3.4)

where B(q) is a real scalar function. Taking into account
the Hermiticity of F„one gets

r

P, =—|gf (q) iA—
aqk

a—iA
aqk

=~g '' t'al-a
aqk

/g/'' (3.5)

The first part in (3.4) is a scalar function and can be ex-
pressed as

+—gf (q) iA— (2.13)
i% f""—(q) iA—

Due to the special structure of this formula, it is valid for
an arbitrary volume element.

III. QUANTIZATION OF Hp AND F2

( &) ~fkk'@ +(—tA)

k, k'

(3.6)
In this section we will follow the generalized covari-

ance condition as well as the other standard conditions to where Nk stands for the covariant vector a/aq, e; ek. k
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Rik = g Rka
I

I

(3.7)

where a is a numerical constant, gk k g Rkk, is the sca-
lar curvature R of the Riemannian space with the matrix
gkk. , and R is the unique scalar that depends linearly on
the second derivatives of gk and contains the first
derivatives not higher than the second power. Conse-
quently, one has

Bo(g)=aR (3.8)

or

iA—8

Bqk
gkk lA

aqk

+a( i') R —. (3.9)

As for Bo(f), it can at most contain some covariant
derivative terms off"" besides agk k f""Rkk, i.e.,

Bo«)=a & f"'Rkk'+13 X (f );k';k
k, k' k, k'

+ g (fkk ) G (g)
k, k'

where p is a constant and Gk(g) depend on g"" and con-
stitute a covariant vector with the dimension of (a/aq).
In fact, a vector cannot be formed with the first deriva-
tives of g so one has

T

fkk

Bgk
F2= —,

' g iA—
C)gk

+( if&) a g f""Rkk—
k, k'

and (f" ).
&

are the covariant derivatives of the vector &0k

and tensor f"" in the Riemannian space with the metric
gkk'. In order to conform to the covariance condition
and the additive principle, Bo(f) must be a scalar func-
tion and depend linearly on f"". The fact that
P2 ~ ( —iA') also implies that Bo consists of terms operat-
ed by two of the differential operators
(a/aq „a/aq„. . . ).

Since Bo(g) vanishes for such a kind of H2 that the
Riemannian space with the metric gkk. , is Bat, i.e., the
Riemann-Christoffel tensor Rkl k vanishes and Rkl k. has
the dimension of (a/aq ), Bo(g) can only contain the cur-
vature term in the form

aug R„„,,
kk'

k, k'

with

the operator of I, is

(1, )g =(1 ) (3.11)

takes the form

i =p = lgl
' i' lgl' = —i16

~ a = a' aF'
which is Hermitian. Eq. (3.11) can be regarded as a result
of the following assumption: If i A'(a/—aq. ) is Hermitian
with respect to the volume element lgl' (dq), then the
operator of pj is (PJ ) . However, we treat as our addi-
tional rule (3.11) itself and not a stronger assumption.
Applying (3.10) to (l, )& one gets

(i2) = j2+4pfg2

which shows that P=0 for a free particle. Clearly, P van-
ishes for an arbitrary system with three degrees of free-
dom because it is independent of the special structure of
02 and F2. Let systems A and A ' have three and s' de-
grees of freedom, respectively, and A' have a constant
matrix (g'"') and consider a quantity F' of A ' such that
(f'"') is also a constant matrix. Denote by P2 the opera-
tor of F2 of system 3 under the volume element
gl' (dq) and by Pz the operator of F'z under
g'l' (dq'). The operator of F2+F'2 of the whole system
3 + A' under lgl' (dq)lg'l' (dq') is P2+F2 and cannot
contain a P term, while

(fkl+f fkl) ~0
k, l

That implies P=O for the whole system A+A' and
therefore for an arbitrary system with more than three
degrees of freedom. Next assume 3' is an arbitrary sys-
tem with s' & 3. Since s'+3) 3, the operator of a quadra-
tic quantity of the whole system A + 3 ' does not contain
a P term and so the system 2' cannot contain a P term.
Consequently, P vanishes for any system and (3.10) be-
comes

where p, p, and p, are the canonical momenta conju-
gate to the Cartesian coordinates x, y, and z, respectively,
and I, is the z component of the angular momentum,

l, =xp —yp

The operator of l, under the polar coordinate (r, 8, y) and
the volume element

m d~ dy dz=lg(r~q)l' «d&dq
=m r sin0 dr d 0 dy

+ ( ig)2p Q (fkk')

k, k'
(3.10) fkk'F2= —,

' g ih-
Bgk

—iA
a

Bqk
In order to determine a and P, it is enough to give the
following additional rule based on the very idea in the
canonical quantization approach: For a free particle with
the Hamiltonian

1h2=
2 (~.'+I,'+J.'»
2m

+( —i') a g f""Rkk. .
k, k'

(3.12)

We shall argue that a =0. Applying (3.9) and (3.12) to
a particle moving on a unit spherical surface with the
Hamiltonian h2 given in the Introduction, one has
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h 2
= —,'( l„+1 + l, ) +4aA

(l, )&
= l, +2airi sin 9 .

The condition that fz conserve the angular momentum
implies

[h2, (l, )g]=0,
which means

reAect the Hermiticity of P, . Namely,

a+~
(C'g, Fi@s)=I Igl'"(dq)-,' g f (q)

k 9k

ae,+4*„—iW
aqk

(3.17)

With the similar argument that indicates 13=0, one can
conclude that o. vanishes for any system.

To sum up under the volume element IgI' (dq), the
operators Hz and F2 are

—
imari

a

k, k

gkk lA
a9'k

(3.13)

F2 =
—,
' g i fi —f"" i fi — . (3.14)

k, k' aqk

Rewriting Fz in the form independent of the choice of the
volume element, one has

'"pk Igl'"f""'pk Igl '", (3.»)
k, k'

which clearly shows the dependence of F2 and Hz.
We notice that (3.6) indicates a rule to construct P24

by the covariant derivative method based on the special
metric tensor gkk'. Another rule for Fz can be stated as
follows: In constructing the integral expression for the
matrix element (C&&,P24~ ) under the coordinate (q) and
the volume element IgI' (dq), the integrand can be ob-
tained by replacing the vector pk N „and pk.4z in
@*„F24~ with the vector —i%(B/Bqk )4„and—i A'(8/Bqk )All, respectively. Namely,

IV. A MODIFIED QRDKRING METHOD

F2('q p) g +lFll'(q»/
1, 1'

with

(4.1)

H, = QBikp
k

(4.2)

Fll (q)=Fl l(q» (4.3)

so that the operators gkBlk[ —iR(B/Bqk )] are all Hermi-
tian with respect to the volume element IgI'~ (dq), then
the operator of F2 under this volume element can be writ-
ten as

According to the usua1 ordering method, it is assumed
that a classical quantity F(q,p), expressed in terms of
momenta and some coe%cient functions can be rewritten
by arranging the ordering of the momenta and the
coefficient functions so that the operator P can be ob-
tained by replacing pk with the operator pk. Such a
method is applicable for linear functions of momenta, but
often contradicts the additive principle and covariance
condition for H2 and F2. We now present another order-
ing method which can be expressed as follows: If a quad-
ratic function of momenta is written in the form

(@„,F2@ii )

j I I

1/2(d

ae,
X g ih— ac,f""(q) iA—

aqk

(3.16)

P2 ,' & fllFll(q——)~—l .

1 . a+ —. QBlk ifi—
2 k aqk

a
A, =

—,
' gB,„ifi-

aqk

Under the Hermiticity condition

In fact the operator of II1 takes the form

(4 4)

Both types of rules can also be applied to a linear func-
tion F, (q,p), as given in (2.12). Thus the covariant
derivative formula for F~C takes the form

F,4=( —
imari) g f"4k+ g (f").kC& .

k k

In using the second kind of rule, one should combine
(
—iA'(8/Bqk )N„)*Nil and @*„(—iR(B/r}qk, )Ns ) to

I

- =gB«
k

one has

aft, = yB,k

ag B,k ifi-
k aqk

lA
a

aqk

Y X ~IFll'(q)~l' 2 g XBik
a

1, 1' 'l, l k
'"

aqk
Fll (q) X Bl'k

k'

—iA
a

aq1

ih— a
rf BlkFll'BI'k'
1, 1' aqk
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The method is thus correct.
Let us illustrate the method with some applications.

First, we write E2 in the form

+,=-,' g Igl '"palglf""'lgl '
pa

k, k'

Since the operator

L (q, q, t) =
—,
' g Maa (q, t)qaqa

k, k'
(5.1)

where qa and qa are coordinates and velocities and (Maa }
is the inverse matrix of (g"" ) and is assumed to be posi-
tive definite. We define A (q, t, e) and B (q, t, e) by

A(q, t, e)= f lMl(q', t)l' dq', . dq,

lgl-'"i —tea/aq„)]
is Hermitian with respect to the volume element
lgl'~ (dg), one can regard lgl

'~
pa as IIa and get

2
—

—,
' X alglf""~a .

ie q+q' q
—q'

7

B (q, t, e)= f lM(q', t) l

'~ dq', . dq,'4(q', t)

(5.2)

kk

For the second example consider the rigid-body rota-
tion. One can write H2 as

3

H~= g Li
2I(

where L, &, L, 2, and I.3 are the components of the angular
momentum in the body system formed by the principle
axes of the inertia tensor and I&, I2, and I3 are the mo-
ments of inertia about the body axes. Denoting by
(q i qp q3 ) and (p „pz,p3 ) the Euler angles and the corre-
sponding momenta and defining a matrix (B&a ) by

Li = g Biapa,
k

one has
I

Hz 2 Xg PaPa
k, k'

where

= X —BiaBi a .kk'

I Iq+q q
—

q
fi 2

'
e

(5.3)

is obtained from L(q, q, t) by replacing q& and q& with
(qi+q&')/2 and (q&

—qi')/e, respectively.
It is easy to prove that

B(q, t, e) e=4(q, t)+ H2@(q, t) for e-O, (5.4)
A (q, t, e} ' ih

where Az is the operator derived in Sec. III. As men-
tioned in Sec. II, since the weight factor lM(q, t)l' de-
pends on the time, the Schrodinger equation takes the
form

ifilM(q, t)l '
l M(q, t)l'~ c&(q, t)=82@(q, t) .1 /4

Consequently, relation (5.4) is equivalent to the following
time-evolution formula of the wave function:

where e is a small real number, lM(q', t)l stands for the
determinant of (Maa. ), and 4(q', t) is the wave function
under the weight factor lM(q', t)l'

L((q +q')/2, (q —q')/e, t)

The operator of L& can be written as

L, = —,
' QBia iA—+ —,

' g Bia ifi-
k Bqk

IM(q, t)l'"e(q, t+~)=iM(q, t)l'" q' ' for e-0.iraq B(q, t, E)
A (q, t, e)

(5.5)

Under the volume element lgl' dq, dq2dq3, the opera-
tors gaB&a[ —iR(c}/Bqa)] can be checked to be Hermi-
tian and the operators of L& and H2 are

(Li') g
= (Li )',

H, =y '
(E, )'.

2J,

The same argument is tenable for the angular momentum
components I. , L„,and L, along the spatial axes and the
operators of L, L», and L, are (L ), (L»), and (E,),
respectively.

V. PATH-INTEGRATION FORMULA
FOR DERIVING P2

Without any loss of generality let us consider a system
with the Hamiltonian H2 given in (3.1). The Lagrangian
thus takes the form

This is the path-integration formula which yields the
Hamiltonian operator A"2 derived in Sec. III.

VI. CONCLUDING REMARKS

We have expounded the generalized covariance condi-
tion in quantization and studied the quantization prob-
lem of the quadratic quantities H2 and E2. In searching
for the operators of Hz and F2, we have used the follow-
ing standard conditions:

(1) The quantum-mechanical operator of a physical
quantity is Hermitian.

(2) The additive principle: The operator of the sum of
the quantities F and G is equal to the sum of the opera-
tors of Eand G.

(3) The generalized covariance condition: The matrix
element of the operator for a given quantity and two
given states is independent of the choice of coordinates.

(4) For a free particle with the Hamiltonian
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(P.'+P,'+P.'»1

the operator of l, is equal to (l, ), where l, =xp~ —yp, .
(5) For a particle moving on a fixed spherical surface,

the kinetic-energy operator commutes with the operator
of l, where I, =p& and stands for the z component of the
angular momentum about the center of the sphere, which
is also the origin of the coordinate system.

Based on these conditions as well as some general con-
siderations, we have determined the operators of H2 and
F2. The quantization rule for these quantities has also
been given. For the convenience of some applications we
have developed a modified ordering method. We have
also formed a path-integration formula with which one
can derive the expression of A'2 given in Sec. III. It is
worthwhile emphasizing again that the operator of Fz de-
pends also on H2 and that Az or P2 cannot contain a cur-
vature term.

A special feature of our method to search for the
operators of H2 and F2 is to use only the easily prehensile

arguments. This has already been seen clearly. The situ-
ation is different for the other methods. For instance,
among the different path-integration formulas used in
Ref. [1,2] and the present paper (Sec. V), it is difficult to
choose unless one tests them with other standard condi-
tions. Similarly, without reference criteria one does not
know whether some more complicated assumptions used
in the literature are convincing. Another feature of our
method is to study Hz together with F2. In this way we
have been able to make use of the standard conditions
effectively and clarify how the operator expression of F2
depends on H2.
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