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Anharmonic and nonclassical effects of the quantum-deformed harmonic oscillator
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An isomorphism is realized between the (q)-deformed harmonic oscillator and a particular anharmon-
ic oscillator model: it permits insight into the problem of the physics behind the deformation parameter
q. In our model, the anharmonic coupling strength is shown to be proportional to q. The isomorphism
permits us also to analyze and to interpret the appearance of various nonclassical features induced by a q
deformation during the time evoluton of an su(2) coherent state.

PACS number(s): 03.65.—w, 42.50.Dv

I. INTRODUCTION

Deformations of groups and corresponding algebras
have been considered for some time [1]. In particular,
the q deformation of the Lie algebras, also called quan-
tum groups, has recently attracted much attention since
its introduction by Jimbo [2—4] and Drinfeld [5]. Quan-
tum groups are the natural algebraic setting for the
inverse-scattering problem, and a great deal of interest
has been paid to their relevance to problems of either
physical or mathematical nature. This deformation of
the Lie algebras is indeed strictly connected on one hand
with rational conformal field theory [6—9], exactly solv-
able statistical models [10], and inverse-scattering theory
applied to integrable models in quantum field' theories
[11,12], and on the other hand with commutative
geometry [13], knot theory in three dimensions, and in
general with various areas of mathematical physics where
the Yang-Baxter equation plays an essential role
[12,14—17]. In this paper our concern will be addressed
to the q deformation of the I.ie algebra of su(2), usually
denoted by su(2), which has already been extensively
studied by many authors after the work of Kulish and
Reshetikhin [14]. In particular, we will be concerned
with the realization of this quantum group in terms of a
q-deformed quantum harmonic oscillator [18] as dis-
cussed by Biedenharn [19], and independently by
MacFarlane [20].

In recent years, although many aspects of the q defor-
mation of the Bose harmonic oscillator algebra have been
investigated, one of the most interesting problems still at
issue is the physical meaning of the deformation parame-
ter q in the realization of su(2)~ as a q analog of the har-
monic oscillator [21]. This is the problem addressed
here.

In this paper we show that the q-harmonic oscillator
can be used to describe a specific anharmonic oscillator
model; in particular, we analyze the conditions for which
coherent states of the anharmonic oscillator and coherent
states of the q-harmonic oscillator are equivalent. This
procedure allows us to give q a definite physical meaning:

II. ANHARMONIC OSCILLATOR MODEL

We take as our oscillator model a system described by
the anharmonic Hamiltonian [22]

Hg =Hp+ N =Hp+Hi,
COp

(2.1)

where Hp=b b+ —,
' is the Hamiltonian of the harmonic

part of the oscillator, and the anharmonic term is taken
A3 A Afp ~

to be proportional to N . N=b b is the number opera-
tor, whereas b and b are, respectively, the lowering and
raising operators, satisfying standard Bose commutation
rules. Here 6=1 so H& is in units of cop when Hp is in
units of cup. cup is the fundamental frequency of the har-
monic part of the oscillator. The anharmonic coupling
strength A, is positive and conveniently taken as
A.:—copy /6, where y will be discussed further below.

Within the domain of quantum optics or solid-state
physics, typical anharmonic deformations [23] of the
relevant fields are extremely small at ordinary energies

it is a measure of the anharmonicity. This is discussed in
Sec. III, whereas a brief review of our anharmonic oscil-
lator model is given in Sec. II. The equivalence between
the two oscillator models is a very helpful one and is in

turn used to investigate the effect of a q deformation dur-

ing the time development of a coherent state of the con-
ventional harmonic oscillator. This reveals effects of
self-squeezing that depend on the amplitude of the q de-
formation: i.e., the reduction of the uncertainty expecta-
tions of the two orthogonal components (quadratures) of
the harmonic oscillator Geld below their vacuum values
varies with q. Furthermore, the q deformation does alter
also the minimality properties of the initial minimum un-

certainty coherent state, but not its Poissonian counting
statistics. The equivalence between the two oscillator
models again provides a straightforward way for a sound
physical interpretation for the occurrence of these phe-
nomena.
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and the Hamiltonian in Eq. (2.1) can be rewritten in the
representation [24]

where

+r rr & +r=y 'sinhy, (2.2)

i)&n I+&2 (b b+1)
r r 2(3!)

(2.3)

Quantum states for this Hamiltonian can be construct-
ed from the vacuum defined as a lo) =0. az and at can
be shown [25] to satisfy commutation rules different from
the standard ones, and to be the lowering and raising
operators for normalized energy eigenstates (number
states) ln )r of the Hamiltonian Hz. In particular, we
will be concerned in this paper with coherent states (CS).
They are defined as solutions for the equation
ar la ) ~

=a la )~ and can be expressed [25] as a superposi-
tion of number states, i.e. [26],

MacFarlane [20] and Biedenharn [19] have discussed a
deformation of the WH algebra characterized by a pa-
rameter q such that

aqaq qaqaq =q, [N, a ) =aq (3.2)

a = (3.3)

where

q is in general a complex number although here it is tak-
en to be real and greater than 1. In the limit q ~1 the q-
deformed Weyl-Heisenberg (q-WH) algebra reduces to
the conventional WH algebra. It is the purpose of this
section to investigate the link between q deformations
and anharmonic deformations of the conventional har-
monic oscillator.

One can start by characterizing the connection be-
tween the q operators (a, a ) and the Bose operators
(b, b ). The former have been shown to be realizable in
terms of conventional Bose operators of the form [27]

[N+1]q t t [N+1]b, a=b
N+1&y2 ' q &+1

la&, =C, g „,ln &,
„=0 (c„y)'

—= y cr(e', )"lO), ,(ala), =1.
n=0

(2.4)

q

q
—

q e' —e

(s = lnq) (3.4)

e' —e '" sinhsxor [x]
sinhs

Here

2
r

oo 2n

n=0
(2.5)

2
n 2I 2

c =n!0 "+ 1+tl, i k=1

2
2 2

=ntQ " 1+ ~
r 2(3!)

! (cDr=l) . (2.6)

The resemblance of the la ) ~'s with CS's for the har-
monic part of the oscillator is readily seen: however, un-
like the latter, the la)z's are a linear combination of
number states whose squared coefficients do not represent
the probability of finding n quanta of the oscillator field
in a Poisson distribution [25]. Coherent states for the
anharmonic oscillator model outlined here exhibit quite a
number of typical nonclassical features which are dis-
cussed elsewhere [25].

III. q-DEFORMED HARMONIC OSCILLATOR
AND ANHARMONICITY

A. fLet us recall the (b, b ) bose operators for the conven-
tional harmonic oscillator. They have also been intro-
duced in the preceding section as the creation and aIinihi-
lation operators for the free part of the anharmonic oscil-
lator Hamiltonian in Eq. (2.1), and they satisfy the Weyl-
Heisenberg (WH) algebra

[b, b ]=1, [N, b ]=b, N= bb . —(3.1)

is so defined for a c number as well as for an operator.
Again, it is clear that in the limit q —+1, or s~0, the q
operators reduce to the conventional Bose operators.

Quantum states for the q-harmonic oscillator are con-
structed from the q-deformed vacuum defined as
aqlo)q=0. From Eq. (3.3) note that lo)q and the vacu-
um for the ordinary harmonic oscillator are the same.
On the usual Fock space, one has

gt)n
ln &,

= ' „,lo&, , (min), =b. „,
y )1/2

where [n] != [n] [n —1] . [1] . Also, [0] is
defined to be equal to one. From the above it follows that

aq ln )q =([n +1]q)' ln +1)q, (3.6)

a, ln &, =([n], )'"ln —1&, . (3.7)

Further using Eq. (3.3) one finds that

:aqaq I bb]q: IN'

aqaq=[b b+l]q=[N+1]
where the operator Nq is such that

N, ln &, =[n], ln &, , N, ln &=[n], ln &,

and similarly,

Nln) =nln), Nln)=nln) .

(3.8)

(3.9)

(3.10)

The same set of eigenvectors ln ) and
l
n ) q

expand the
whole Hilbert space both for the harmonic oscillator and
for its q analog. Note now that the q analog exp(aaq ) lo &

to the coherent states of the conventional harmonic oscil-
lation is not available in the present case for the q opera-
tors, since it is not normalizable for all q&1 (aAO). Fol-
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lowing Biedenharn [19] one can define coherent states
(q-CS) for the q-harmonic oscillator via the alternative
definition, i.e.,

Qq Q q=Q CX
q

This yields [26]

(3.11)

~a)~=c 'exp~(aa~)~0), with C =exp a . (3.12)

Here the q analog of the exponential function has been in-
troduced,

oo

expqX: g (3.13)
o [n]!

Using the standard procedure one can more conveniently
decompose ~a )~ on the basis

~
n ),

~a&, =C, g, , ~n),
( [n] t)1/2

(3.17)[n] !~c„r and a&~ar .

Using [n] in Eq. (3.4) in terms of s and the infinite-
product expansion [34]

one has

QO X1+
~k

(3.18)

minimum-uncertainty states (MUS) [32] for both quadra-
tures [33]. In the next section the study of the time evo-
lution of these phenomena will reveal a different type of
squeezing associated with a q deformation of the conven-
tional harmonic oscillator.

Here, instead, we proceed to examine a condition for
which coherent states ~a ) for the anharmonic oscillator
of Sec. III are equivalent to q-CS. This can indeed be
demonstrated [cf., Eqs. (2.4) and (3.14)] provided

=—y .g(a,')"~0), , ( ~a), =1.
n=0

(3.14)

oo s n s (n —1)
[ ]!= !fl "Q 1+ Q 1+

k=1 ~ k k=1

These states contain a nearly classical distribution of
quanta. The density probability distribution of finding n

quanta of the conventional harmonic oscillator in a q-CS
is given by

2'
Pg(a) =

~
(n ~a &, ~'=C,'

n, !
(3.15)

(3.16)

This function, known from the theory of orthogonal poly-
nomials of discrete variables, coincides, with the weight
function of the so-called Charlier q polynomials as dis-
cussed in [28]. The effect of a q deformation on the clas-
sical density probability distribution of a conventional CS
consists in deforming the associated Poisson distribution
(q =1) by shifting its average value toward n smaller
than ~a~ with a corresponding increase of its most prob-
able value. This is clearly seen in Fig. 1 where the distri-
bution Pg(a) is reported for various values of q. Note
that for any q&1 its width (root-mean-square deviation)
becomes less than the average value, that is, a sub-
Poissonian distribution. The states (3.14) exhibit also
effects of quadrature squeezing by which we mean that in
the

~
a ) 's the quantum fiuctuations of one or the other of

q
the two orthogonal components (quadratures) of the con-
ventional harmonic oscillator field are smaller than those
associated with the vacuum state [29]. The two quadra-
tures are denoted by

b+b b —b

&2 '
i 2

1.05

s (n —2)
~k

QO S tl=n!n-" + 1+
k=1

(3.19)

and physically they describe the in-phase and out-of-
phase components of the harmonic oscillator field. The
squeezing condition can be written as ((b,x ) ) or
((bP) ) (—,', where —,

' is the dispersion for the vacuum

[29]. This squeezing has been investigated in [30] and
demonstrated via a numerical computation for some
values of the parameters a and the whole range of q's.
On the contrary, q-CS's do not display any squeezing
with respect to the quadratures (q quadratures) of the q-
harmonic oscillator [31]. q-CS's, however, are

FIG. 1. Density probability distribution (vertical axis) of
finding n quanta in a coherent state of a q-deformed oscillator
with a=7. The deformation, measured by q, with respect to the
Poisson distribution (q = 1) of a coherent state for the conven-
tional harmonic oscillator having the same a, consists in a
change of the counting statistics (Poissonian~sub-Poissonian)
and in a shift of the average value toward n smaller than a with2

a corresponding increase of the distribution most probable
value. As we recede away from limit case q =1 these features
become more and more noticeable.
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nihilation operator is 2

b(t)=exp —i 1+ (3A' +3/t/+1) t b(0) .
6

(4.2)

b = —i[b, H) ]= i —1+ (3/t/' +3iV'+1) b(0) . (4.1)
Mp

Since Hz is a function of 8 the latter is a constant of
motion, rejecting the conservation of the number of
quanta in the oscillator, so that the solution of Eq. (4.1) is
simply an exponential [37]

This result lends itself to some interesting considerations.
First, if I/3) is the initial state of the harmonic oscilla-

tor at t =0, that is, a CS with mean number of quanta
IPI [b(0)IP) =PIP) ], a q deformation induces squeezing
and antisqueezing in each quadrature of the harmonic os-
cillator during different intervals of time. Using Eq. (4.2)
one can calculate the expectation values & [b,x(t)] ) and
& [iI)p(t)] ) to obtain

& [bx(t)]') = ,'+C(—b b)+Re[b(t)]'

+Re
p~ 5)(/3, y, t)

1
() (p, y, t) 2 ' ' () (p, y, t)

e '
(4.3)

and

& [EP(t)]') =
—,'+C(b b) —Re[b(t)]'

&', (P, y, r)
e (p ) &(~'y' ) e, (p, y, )

e ' 1

(4.4)

S, (p, y, t)= g, exp i y —(n +n) (4.5)

where we have introduced the notations C ( AB )—= & AB &
—

& A & &B &, ())(p, y, r ) —= lpl' +2/t(1+2y'i3),
82(P, y, t): I/3I i yt,—and —the sums

quite the same. This difference results from the difference
in the type of interaction. The former is caused by a
two-particle interaction represented by a quadratic Ham-
iltonian [29], whereas the latter is caused by a six-particle
interaction represented by the Hamiltonian H& in Eq.
(2.1). The difference is particularly evident when study-
ing the minimality properties associated with the two
types of squeezing. In our case the uncertainty product

a& 2n

&2 (p, y, r ) = g, exp[ i y't( n—'+ 2n ) ] ..=p
(4.6)

1.20

Physically the variances (4.3) and (4.4) describe how the
dispersions of the conventional harmonic oscillator, ini-
tially in a coherent state of the WH algebra, evolve in
time owing to a q deformation. Since the quadratic
dependence on n prevents us from expressing S, and S2
in a closed form in terms of elementary functions, both
dispersions are evaluated numerically and reported in
Fig. 3 as a function of time for different values of q%1.
Reduction of these variances below —,

' is a signature of
squeezing in the in-phase or out-of-phase quadrature
components of the harmonic oscillator. Note that
squeezing is quite sensitive to the magnitude of the q de-
formation; fairly small deviations from the undeformed
case q = 1 are suScient to produce remarkable amounts
of squeezing for the time intervals of interest here.

Second, the periodicity with which squeezing and an-
tisqueezing alternate in each variance reminds one of the
dynamics of ordinary squeezed states for which the x and
p uncertainties oscillate in time in and out of the vacuum
level at twice the oscillator characteristic frequency [38].
However, note that the evolution of the dispersions of a
conventional harmonic oscillator induced by ordinary
squeezing and that induced by a q deformation are not

0. 90

&n 0. 80

0. 70
a

FKJ. 3. Oscillations, due to a q deformation, in the time [37]
evolution of the in-phase [curves (a) and (b)] and out ofphase--
[curves (c) and (d)] quadrature fluctuations for a conventional
harmonic oscillator initially in a coherent state of the Weyl-
Heisenberg algebra. The dispersions are evaluated for q =1.05
(solid line) and 1.03 (dotted line), and compared to the disper-
sion of the vacuum state (dashed line). The oscillator displace-
ment is a=2. Even fairly small q deformations can produce
considerable squeezing that occurs when the dispersion becomes
less than that for the vacuum.
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for x and P evaluated from Eqs. (4.3) and (4.4 can be ex-
pres assed

( [~x(t)]') ( [&p(t)]') = ,'+—C'(b b)+C &$P

—
I ReC [b (t)]]

I&[X p] ~'

4
(4.7)
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V. CONCLUSION

In the present paper an attempm t has been made to
study the physics e in ebehind the q structures in order to get
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Other studies on nonclassical properties o q e
states are given in [30,31].
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