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Anharmonic and nonclassical effects of the quantum-deformed harmonic oscillator
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An isomorphism is realized between the (g)-deformed harmonic oscillator and a particular anharmon-
ic oscillator model: it permits insight into the problem of the physics behind the deformation parameter
g. In our model, the anharmonic coupling strength is shown to be proportional to g. The isomorphism
permits us also to analyze and to interpret the appearance of various nonclassical features induced by a g
deformation during the time evoluton of an su(2) coherent state.

PACS number(s): 03.65. —w, 42.50.Dv

I. INTRODUCTION

Deformations of groups and corresponding algebras
have been considered for some time [1]. In particular,
the g deformation of the Lie algebras, also called quan-
tum groups, has recently attracted much attention since
its introduction by Jimbo [2-4] and Drinfeld [5]. Quan-
tum groups are the natural algebraic setting for the
inverse-scattering problem, and a great deal of interest
has been paid to their relevance to problems of either
physical or mathematical nature. This deformation of
the Lie algebras is indeed strictly connected on one hand
with rational conformal field theory [6-9], exactly solv-
able statistical models [10], and inverse-scattering theory
applied to integrable models in quantum field theories
[11,12], and on the other hand with commutative
geometry [13], knot theory in three dimensions, and in
general with various areas of mathematical physics where
the Yang-Baxter equation plays an essential role
[12,14-17]. In this paper our concern will be addressed
to the g deformation of the Lie algebra of su(2), usually
denoted by su(2),, which has already been extensively
studied by many authors after the work of Kulish and
Reshetikhin [14]. In particular, we will be concerned
with the realization of this quantum group in terms of a
g-deformed quantum harmonic oscillator [18] as dis-
cussed by Biedenharn [19], and independently by
MacFarlane [20].

In recent years, although many aspects of the g defor-
mation of the Bose harmonic oscillator algebra have been
investigated, one of the most interesting problems still at
issue is the physical meaning of the deformation parame-
ter ¢ in the realization of su(2), as a g analog of the har-
monic oscillator [21]. This is the problem addressed
here.

In this paper we show that the g-harmonic oscillator
can be used to describe a specific anharmonic oscillator
model; in particular, we analyze the conditions for which
coherent states of the anharmonic oscillator and coherent
states of the g-harmonic oscillator are equivalent. This
procedure allows us to give g a definite physical meaning:
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it is a measure of the anharmonicity. This is discussed in
Sec. IT1, whereas a brief review of our anharmonic oscil-
lator model is given in Sec. II. The equivalence between
the two oscillator models is a very helpful one and is in
turn used to investigate the effect of a g deformation dur-
ing the time development of a coherent state of the con-
ventional harmonic oscillator. This reveals effects of
self-squeezing that depend on the amplitude of the g de-
formation: i.e., the reduction of the uncertainty expecta-
tions of the two orthogonal components (quadratures) of
the harmonic oscillator field below their vacuum values
varies with g. Furthermore, the g deformation does alter
also the minimality properties of the initial minimum un-
certainty coherent state, but not its Poissonian counting
statistics. The equivalence between the two oscillator
models again provides a straightforward way for a sound
physical interpretation for the occurrence of these phe-
nomena.

II. ANHARMONIC OSCILLATOR MODEL

We take as our oscillator model a system described by
the anharmonic Hamiltonian [22]

A, ﬁ+ N3—i}0+ﬁ,, 2.1)

where H,=b TE—%— ! is the Hamiltonian of the harmonic
part of the osc111ator and the anharmonic term is taken
to be proportlonal to N3 N=b"b is the number opera-
tor, whereas band b are, respectively, the lowering and
raising operators, satisfying standard Bose commutation
rules. Here #=1 so A, is in units of &, when H, is in
units of @, @, is the fundamental frequency of the har-
monic part of the oscillator. The anharmonic coupling
strength A is positive and conveniently taken as
A=wyy?/6, where y will be discussed further below.
Within the domain of quantum optics or solid-state
physics, typical anharmonic deformations [23] of the
relevant fields are extremely small at ordinary energies
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and the Hamiltonian in Eq. (2.1) can be rewritten in the
representation [24]

A,=aala,, Q,=y 'sinhy, 2.2)
where
’r" 2
- )172 2(b b+1)" 2.3
a,=(Q, lH— 231 (2.3)

Quantum states for this Hamiltonian can be construct-
ed from the vacuum defined as ﬁy |0)=o0. ﬁy and ﬁ:, can
be shown [25] to satisfy commutation rules different from
the standard ones, and to be the lowering and raising
operators for normalized energy eigenstates (number
states) |n ) of the Hamiltonian H In particular, we
will be concerned in this paper with coherent states (CS).
They are defined as solutions for the equation
a,la),=ala), and can be expressed [25] as a superposi-
tion of number states, i.e. [26],

n

la),=C, 2 G In),

n=0 (c ny
= S cr@lrloy, J(ala),=1. 2.4)
n=0
Here
2n
cii=3 & (2.5)
Y n=0 c":?’
and
n 2k2
=plQ) " L__
Cpy=n!Q k]:[1 [1+ 2031
2,2 2
=nlQ," 1+L2(3') ! (co,=1). (2.6)

The resemblance of the |a),’s with CS’s for the har-
monic part of the oscillator is readily seen: however, un-
like the latter, the |a)y’s are a linear combination of
number states whose squared coefficients do not represent
the probability of finding n quanta of the oscillator field
in a Poisson distribution [25]. Coherent states for the
anharmonic oscillator model outlined here exhibit quite a
number of typical nonclassical features which are dis-
cussed elsewhere [25].

III. ¢-DEFORMED HARMONIC OSCILLATOR
AND ANHARMONICITY

Let us recall the (3,3*) bose operators for the conven-
tional harmonic oscillator. They have also been intro-
duced in the preceding section as the creation and annihi-
lation operators for the free part of the anharmonic oscil-
lator Hamiltonian in Eq. (2.1), and they satisfy the Weyl-
Heisenberg (WH) algebra

16,611=1, [N,61=56", =575 . (3.1)
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MacFarlane [20] and Biedenharn [19] have discussed a

deformation of the WH algebra characterized by a pa-

rameter g such that
a,a)—qala,=

gV, (Nah=a].

) (3.2)

g is in general a complex number although here it is tak-
en to be real and greater than 1. In the limit ¢ —1 the g-
deformed Weyl-Heisenberg (g-WH) algebra reduces to
the conventional WH algebra. It is the purpose of this
section to investigate the link between g deformations
and anharmonic deformations of the conventional har-
monic oscillator.

One can start by characterlzmg the connection be-
tween the g operators (@, 6 ) and the Bose operators

(b, 57). The former have been shown to be realizable in
terms of conventional Bose operators of the form [27]
(N+1], |'2. _pt [N+, 12 o
N+ 2 N+1 ' ’
where
_q*—q~ _ e —e ™ _ sinhsx
[X]q— q —q71 or [x]q— eS—e ~ sinhs
(s=Ing) (3.4)

is so defined for a ¢ number as well as for an operator.
Again, it is clear that in the limit g —1, or s —0, the g

operators reduce to the conventional Bose operators.
Quantum states for the g-harmonic oscillator are con-
structed from the g-deformed vacuum defined as
Ziq|0)q=0. From Eq. (3.3) note that IO)q and the vacu-
um for the ordinary harmonic oscillator are the same.

On the usual Fock space, one has
@)

ln),=—"2—10),

q ( [n ]q!)1/2

where [n]/!=[n],[n —1],---[1],. Also, [0], s
defined to be equal to one. From the above it follows that

q(min)qZB,,,)n , (3.5)

alln),=(n+11)"2n +1), (3.6)
a,ln),=(nl,) 1/2|n—1)q (3.7
Further using Eq (3.3) one finds that
b oata (3.8)
a,a,=[b'b+1], ﬁ+1]
where the operator Nq is such that
N,In),=[nl,In), , N,n)=[nl,ln), (3.9)
and similarly,
ﬁIn)qann)q , Nln)=nln) . (3.10)

The same set of eigenvectors |n) and In) expand the
whole Hilbert space both for the harmonic oscﬂlator and
for its g analog. Note now that the g analog exp( aa )[0)
to the coherent states of the conventional harmonic oscxl-
lation is not available in the present case for the g opera-
tors, since it is not normalizable for all g7=1 (a#0). Fol-
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lowing Biedenharn [19] one can define coherent states
(g-CS) for the g-harmonic oscillator via the alternative
definition, i.e.,

ﬁqla)q=a1a>q . (3.11)
This yields [26]
la),=C, 'exp,(aa))|0) , with C, 2=exp,a®. (3.12)

Here the g analog of the exponential function has been in-
troduced,

=3} Xn
EXp X = . (3.13)
/ ngo [n]‘]'
Using the standard procedure one can more conveniently
decompose |a ), on the basis |n ),

—C % a”
@)= B G

=3 cialyloy, ala),=1. (3.14)
=0
These states contain a nearly classical distribution of
quanta. The density probability distribution of finding n
quanta of the conventional harmonic oscillator in a g-CS
is given by

2n
Plla)=|(nla),?=C}-5—

TInlt (3.15)

This function, known from the theory of orthogonal poly-
nomials of discrete variables, coincides, with the weight
function of the so-called Charlier g polynomials as dis-
cussed in [28]. The effect of a g deformation on the clas-
sical density probability distribution of a conventional CS
consists in deforming the associated Poisson distribution
(¢ =1) by shifting its average value toward n smaller
than |a|? with a corresponding increase of its most prob-
able value. This is clearly seen in Fig. 1 where the distri-
bution Pl(a) is reported for various values of g. Note
that for any ¢g#1 its width (root-mean-square deviation)
becomes less than the average value, that is, a sub-
Poissonian distribution. The states (3.14) exhibit also
effects of quadrature squeezing by which we mean that in
the |a )q’s the quantum fluctuations of one or the other of
the two orthogonal components (quadratures) of the con-
ventional harmonic oscillator field are smaller than those
associated with the vacuum state [29]. The two quadra-
tures are denoted by
b+b6" . _

va P

S —
X =

(3.16)

and physically they describe the in-phase and out-of-
phase components of the harmonic oscillator field. The
squeezing condition can be written as ((A%X 2) or
((Ap)?) <4, where 1 is the dispersion for the vacuum
[29]. This squeezing has been investigated in [30] and
demonstrated via a numerical computation for some
values of the parameters a and the whole range of g’s.
On the contrary, ¢g-CS’s do not display any squeezing
with respect to the quadratures (g quadratures) of the g-
harmonic oscillator [31]. ¢-CS’s, however, are
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minimum-uncertainty states (MUS) [32] for both quadra-
tures [33]. In the next section the study of the time evo-
lution of these phenomena will reveal a different type of
squeezing associated with a ¢ deformation of the conven-
tional harmonic oscillator.

Here, instead, we proceed to examine a condition for
which coherent states |a ), for the anharmonic oscillator
of Sec. III are equivalent to g-CS. This can indeed be
demonstrated [cf., Egs. (2.4) and (3.14)] provided

(n)!—c,, and @,—a, . (3.17)

Using [n], in Eq. (3.4) in terms of s and the infinite-
product expansion [34]

© x2
sinhx =x 1+—=— (3.18)
kI=II[ ’7'7'2k2
one has
L s?n? | 2 s3(n—1)%
I=pnlQ_ " 1+ 1+
[n]q " v kI—_;Il[ 772k2 kI=I‘ 772k2
ad s3(n —2)?
X 1+
kI_—II[ 7T2k2
7 (3.19)

FIG. 1.

Density probability distribution (vertical axis) of
finding n quanta in a coherent state of a g-deformed oscillator
with a=7. The deformation, measured by g, with respect to the
Poisson distribution (¢ =1) of a coherent state for the conven-
tional harmonic oscillator having the same «, consists in a
change of the counting statistics (Poissonian— sub-Poissonian)
and in a shift of the average value toward n smaller than a? with
a corresponding increase of the distribution most probable
value. As we recede away from limit case ¢ =1 these features
become more and more noticeable.
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The infinite product can now be approximated by

w 2,2 2,2 22 |
kgl 1+% =1+s—3"!—+---z 1+;(—’31!) (3.20)
provided
sn<l. (3.21)
Thus for n and s that satisfy this condition, [n],! exactly

gives ¢, ., upon the identification s =y. Similarly [cf. Eqgs.
(2.3) and (3.3)], one can show that in the same limit
a,—a,. Note, on the other hand, that when n and s (or
v) do not satisfy Eq. (3.21) the coefficients ¢ (or ¢) in
the expansion (3.14) [or (2.4)] vanish, e.g., for displace-
ments a and parameters s (or ) such that [35]

alta+2)<s '=(lng)" !, (3.22)

which ultimately establishes a condition for the
equivalence |a) «>|a),.

It is here further instructive to compare the density
probability distribution in Eq. (3.15) with the analogous
probability but for coherent states of the anharmonic os-

cillator of Sec. II, that is,

2n
Pl(a)=nla),|?=C}-2— . (3.23)

ny
A numerical evaluation is reported in Fig. 2 for values of
s and a, respectively, conforming and not conforming
with the condition (3.22). In the latter case P,(a,) is
strongly shifted with respect to PZ *(a,), whereas in the
former case the two distributions are nearly the same
with a relative difference as small as one part in 10° (inset
of Fig. 2). Owing to the definition (3.15) and (3.23) of the
probability in terms of overlap over the same state |n ),
the remarkable agreement between P, ‘() and P, '(a;,)
implies the equivalence of the states |a), and |a), under
the condition (3.22). This equivalence will be particularly
useful in discussing the physical origin of certain nonclas-
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sical properties associated with a g deformation. Inciden-
tally, as anticipated above, Fig. 2 is an instance of the
vanishing of the distribution for values of n >s !, de-
pending on whether the condition (3.22) is satisfied or
not.

In conclusion, for appropriate displacements (a) and
anharmonic couplings (A) coherent states for the anhar-
monic oscillator model of Sec. II are correctly described
in terms of coherent states of the g-deformed Lie algebra
of SU(2), with g =exp(A /w,y)!”2. This result is particular-
ly important because the g-WH algebra deformation pa-
rameter (g) can be given a direct physical meaning: its
logarithm is directly proportional to the square root of
the anharmonic coupling strength for the anharmonic os-
cillation model of Sec. II.

IV. ¢ DEFORMATION AND SELF-SQUEEZING

Here squeezing, a well-known manifestation of certain
nonclassical states, will be related, in our model, to a ¢
deformation. We adopt the usual definition of squeezing
[29] as introduced in Sec. III. Specifically in this section
we will demonstrate that because of a ¢ deformation the
state generated during the time evolution of an SU(2)
coherent state is self-squeezed. The self-squeezing associ-
ated with a g deformation is best illustrated through an
analysis of the time development of the harmonic oscilla-
tor [18] under the nonlinear effective Hamiltonian that
governs a g deformation. Taking advantage of the
equivalence ‘a>q<—>|a>y (Sec. III), the discussion is car-
ried out by using the |a>,,’s. This also provides insight
into the squeezing mechanism. Use of the |a )q’s, as they
appear in Eq. (3.14), would only tend to obscure the phys-
ics behind the mechanism of squeezing. For deforma-
tions g of the WH algebra and oscillator displacements «
satisfying Eq. (3.22) the |a),’s are the corresponding
coherent states of the oscillator Hamiltonian in Eq. (2.1)
[36]. The Heisenberg equation of motion for the field an-

FIG. 2. <Coherent states

(\al)ql, laz),,) of a g-deformed

oscillator and coherent states
(|al)yl,|a2)y2) of an oscillator

with a third-order anharmonici-
ty in the number of quanta.
Their equivalence, inferred from
the equivalence between the cor-

responding probability distribu-
tions, holds depending on
whether the oscillator parame-
ters satisfy (a;=4, ¥,=0.05) or
do not satisfy (a,=10, y,=0.1)
the condition (3.22), respective-
ly. Here g =e?. The relative
difference between the former

0.15 T T T g n = —r
P:’Z(az) oo | 10° [P —pP]] |
a8
0.12 4 .
¥ s L~ -
. Pl () soo |
Pnl(al)
a
0.09 : ssoob 107 (pU_ph
) ) 7 3 w
: 7,
0.06 | EPn (o) _
0.03 | N
0.00
0 10 20 30 40 50 60 70 80

and the latter distributions is re-
ported in the inset. P,%a) is a
Poisson (go=1) reference distri-
bution with a=7.



nihilation operator is

A1=—i |1+ 6R2+38+1) [B0) . @.1)

@

Since H, is a function of N the latter is a constant of
motion, reflecting the conservation of the number of
quanta in the oscillator, so that the solution of Eq. (4.1) is
simply an exponential [37]

N
([AR(D]PY=14C(5"h)+Re[b(1)]?
]:;1(1377/1t )lZ l;z
— 2 Y -
=1+|g] l1— T +Re | 570
e e
and
([Ap(OP)=1+C(B'H)—Re[b(1)]
|£;1<13,7/,t )'2 [;2
— 1 2 _ _ Y A
1+1BI ‘1 T Re g
where we have introduced the notations C(AB)

=(AB)—(A)Y(B), 6,(B,y,t) = B> +2it(1+2y2/3),
0,(B,v,t)=|B|*—ivyt, and the sums

© 2n 2
S1(By, =3 ]B" exp — il (n24n) (4.5)
oo n! 2
and
_ © lﬁlZn . )
S,(B,y,t)= 3 exp[ —iy“t(n°+2n)] . (4.6)

n=0 N !
Physically the variances (4.3) and (4.4) describe how the
dispersions of the conventional harmonic oscillator, ini-
tially in a coherent state of the WH algebra, evolve in
time owing to a ¢ deformation. Since the quadratic
dependence on n prevents us from expressing S; and S,
in a closed form in terms of elementary functions, both
dispersions are evaluated numerically and reported in
Fig. 3 as a function of time for different values of g7#1.
Reduction of these variances below 1 is a signature of
squeezing in the in-phase or out-of-phase quadrature
components of the harmonic oscillator. Note that
squeezing is quite sensitive to the magnitude of the g de-
formation; fairly small deviations from the undeformed
case ¢ =1 are sufficient to produce remarkable amounts
of squeezing for the time intervals of interest here.
Second, the periodicity with which squeezing and an-
tisqueezing alternate in each variance reminds one of the
dynamics of ordinary squeezed states for which the X and
P uncertainties oscillate in time in and out of the vacuum
level at twice the oscillator characteristic frequency [38].
However, note that the evolution of the dispersions of a
conventional harmonic oscillator induced by ordinary
squeezing and that induced by a g deformation are not
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o~ 2 n
b(t)y=exp | —i 1+3’6~(3N2+3N+1> t60) . 4.2)

This result lends itself to some interesting considerations.

First, if |B) is the initial state of the harmonic oscilla-
tor at ¢t =0, that is, a CS with mean number of quanta
182 [6(0)|8)=PBI|B)], a g deformation induces squeezing
and antisqueezing in each quadrature of the harmonic os-
cillator during different intervals of time. Using Eq. (4.2)
one can calculate the expectation values {[A%X(#)]*) and
([Ap(2)]?) to obtain

SHB,y,1)

Sz(ﬁ,%t)—w

1 (4.3)

S3(B,y,t)

Sz(B,y,t)—W (4.4)

I

quite the same. This difference results from the difference
in the type of interaction. The former is caused by a
two-particle interaction represented by a quadratic Ham-
iltonian [29], whereas the latter is caused by a six-particle
interaction represented by the Hamiltonian A, in Egq.
(2.1). The difference is particularly evident when study-
ing the minimality properties associated with the two
types of squeezing. In our case the uncertainty product

f

Dispersion

FIG. 3. Oscillations, due to a g deformation, in the time [37]
evolution of the in-phase [curves (a) and (4)] and out-of-phase
[curves (¢) and (d)] quadrature fluctuations for a conventional
harmonic oscillator initially in a coherent state of the Weyl-
Heisenberg algebra. The dispersions are evaluated for ¢ =1.05
(solid line) and 1.03 (dotted line), and compared to the disper-
sion of the vacuum state (dashed line). The oscillator displace-
ment is a=2. Even fairly small ¢ deformations can produce
considerable squeezing that occurs when the dispersion becomes
less than that for the vacuum.
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for X and p evaluated from Egs. (4.3) and (4.4) can be ex-
pressed as

([AR(OPI[APp(O ) =1+Cxb"6)+C(BTD)

—{ReC[6™(1)])?
o048 2
z——"——|<["’4]>' =1, @.7)

and depends of course on the relative weights of the
different correlations C. The states in this inequality are
MUS’s when the equal sign holds; this is indeed the case
when s —0 (g — 1) since in the absence of interaction the
initial CS remains a minimal state. In Fig.4 we demon-
strate the absence of minimal behavior due to a g defor-
mation during the time evolution of a coherent state of
the WH algebra. Again this is very sensitive to the mag-
nitude of g, particularly during the very first periods of
the evolution. On the contrary, because of ordinary
squeezing an initial MUS oscillates in time and unlike in
our case, in fact, the oscillator will be periodically in a
MUS [38].

Third, Eq. (4.2) is the exact operator solution describ-
ing the dynamics of the g-harmonic oscillator for defor-
mations and displacements conforming with the condi-
tion (3.22). This result clearly shows that the physical
effect associated with a g deformation is an intensity-
dependent change in the phase of the field. This is ulti-
mately what generates squeezing through a ¢ deforma-
tion. Since such squeezing is intensity dependent it can
be referred to as self-squeezing [39], and the state evolving
because of a g deformation as self-squeezed states. It is
the field of the harmonic oscillator itself that during its
evolution squeezes its own quantum fluctuation via a g
deformation.

A coherent state of the WH algebra displays quadra-
ture self-squeezing during its evolution because of a g de-
formation, and yet is not a MUS for the quadratures X
and p. Because of this distinctly nonclassical behavior, it
is also of interest to examine the relevant counting statis-
tics. This is done by examining the Mandel

factor [40] Q=([A(B'H)?Y—<(b'B)/(BTD),
[ABT)2=(5"5)? — (55 )? being the variance of the
number of oscillator quanta. Namely, Q0 and Q =0
indicate, respectively, non-Poissonian or Poissonian
statistics. From Eq. (4.2) it is readily seen that Q is iden-
tically O if the initial state of the harmonic oscillator is a
coherent state of the WH algebra. A g deformation does
not produce any change in the quantum statistics during
the time evolution of the harmonic oscillator. As expect-
ed, the quantum statistics, which is phase insensitive [41],
is not affected by a change in the phase of the field (4.2)
produced by a g deformation.
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Uncertainty product

FIG. 4. Oscillations, due to a g deformation, in the time [37]
evolution of the minimality properties of a coherent state of a
conventional harmonic oscillator. Deformations for which
g =1.05 [curve (a)] and 1.03 [curve (b)] are evaluated and com-
pared to the case ¢ =1 (no deformation) for which the uncer-
tainty product remains constant in time and equal to ,14— (dashed
line). The oscillator displacement is a=2. The uncertainty
product remains fairly close to that for a MUS only during the
very first few periods, especially for the case of the smaller de-
formation (curve b).

V. CONCLUSION

In the present paper an attempt has been made to
study the physics behind the g structures in order to get
some insight into the physical implications of these defor-
mations. We have shown that for appropriate displace-
ments and anharmonic couplings the quantum states of
an oscillator with anharmonicity ~ are correctly de-
scribed in terms of the quantum states for su(2),. This
seems to indicate that a ¢ deformation of a harmonic os-
cillator can be understood as an effective anharmonic de-
formation, where g is proportional to the strength of the
anharmonicity. Within this framework a number of in-
teresting nonclassical features that are induced by a ¢ de-
formation during the time evolution of an SU(2) coherent
state can be examined. These include quadrature self-
squeezing, loss of minimality, and preservation of the
quantum statistics. The physical origin of these effects
associated with a ¢ deformation has been discussed here.
Other studies on nonclassical properties of g deformed
states are given in [30,31].
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