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Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations
and intermolecular interactions between molecules in either ground or excited states
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Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole
transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar for-
malism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation func-
tions at two points r and r are given for a source molecule in either a ground or an excited state. In con-
trast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for
a ground-state molecule. For an excited molecule the downward transitions contribute additional terms
which have modulating factors depending on (r —r )/K. From these correlation functions electric and
magnetic energy densities are found by setting r=r'. These energy densities are then used in a response
formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads
to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are addi-
tional terms arising from downward transitions. An important feature of these energies is that they ex-
hibit an R dependence for large intermolecular separations R. This dependence is interpreted in
terms of the Poynting vector, which itself can be obtained by setting r =r in the electric-magnetic corre-
lation function.

PACS number(s): 12.20.—m, 31.70.—f, 31.50.+w

I. INTRODUCTION

The van der Waals interaction between two molecules
in their ground states is well understood. However, if
one or both molecules are excited, the concept of inter-
molecular energy is still a valid one provided the lifetimes
for decay are sufficiently long compared with the light
transit times R/c, where R is the intermolecular separa-
tion. For lifetimes typically of the order of 10 sec it is
physically meaningful to examine intermolecular poten-
tials between excited molecules separated by hundreds of
angstroms. In the London limit it is well known that the
interaction between two molecules in their ground states
is attractive with an R power law. When both mole-
cules are excited the potential energy gives a repulsive
force arising from downward transitions. If only one of
the pair is excited the sign of the potential depends on the
relative magnitudes of the relevant transition energies of
the two molecules. In both cases the power law remains
R in the near zone, i.e., in the London limit of the fully
retarded interaction. The explicit expressions for the
near-zone potentials are given in [l]. The van der Waals
potentials for large intermolecular separations differ from
these because the finite speed of propagation begins to
play an important role in the mechanism of interaction.
The Casimir-Polder potential [2] is the predicted interac-
tion energy when this retardation effect is fully taken into
account. The complete potential shows a complicated
dependence on R, tending to the R power law when R
is much less than the reduced wavelengths for dipole-
allowed molecular transitions. For large separations the
power law tends to R . The complete theory of inter-
molecular interactions is based on quantum electro-
dynamics. Although the original formulation employed
the minimal-coupling Hamiltonian, it is now common to

use the multipolar form of the theory to study inter-
molecular effects and indeed all radiation-molecule in-
teractions. The main advantage of multipolar quantum
electrodynamics is that, except for the Coulomb binding
within each molecule, all electromagnetic effects are
characterized by transverse photon interactions, as, for
example, their exchange leading to intermolecular forces.
This, in addition to simplifying the detailed calculations,
ensures that the causal requirements of physical phenom-
ena are automatically satisfied.

In the present work we investigate the retarded inter-
molecular effects between molecules in either ground or
excited states. As a prelude to this study we determine
second-order correlations between the electromagnetic
fields at two field points. Expectation values of electric-
magnetic correlation in the limit of identical field points
is immediately related to the Poynting vector and the re-
sult is in agreement with our previous work in this series
[3] based on the Heisenberg formalism. Similarly the ex-
pectation values for both the electric-electric and
magnetic-magnetic field-operator products at identical
field points lead to known results for the energy densities
in the vicinity of molecules in either ground or excited
states. A manifestation of these energy densities is the
energy shift produced on a test polarizable molecule in
response to the electromagnetic fields. For two molecules
in their ground states this approach leads to the disper-
sion force. When the source molecule is in an excited
state the intermolecular energy shift has an unmodulated
term including a part that falls off as R . Previous
work [4] on this shift provided only a partial determina-
tion valid for a limited range of R. In this paper we
present a comprehensive analysis of the theory of inter-
molecular interactions and give expressions for the poten-
tial valid for all separations outside molecular overlap.
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II. BASIC THEORY
AND SECOND-ORDER FIELD CORRELATIONS

In the multipolar formalism, which is used in this
series, the momentum canonically conjugate to the vector
potential a( r ) is proportional to the transverse
displacement-vector field d(r). In this formulation the
electromagnetic gauge used is the Coulomb gauge and
the sole longitudinal contributions are the intramolecular
Coulomb binding potentials. For an electrically neutral
source the total electric field is equal to the transverse
Maxwell displacement vector outside the source since
divd=o [3(b),5]. Thus in calculations involving the total
electric field one may use the displacement vector field. In
this section we use the multipolar Hamiltonian in the
electric-dipole approximation. The extension to higher
moments and to magnetic effects is straightforward, but

I

H,„,= —y) -" d(O)lm &&nl,
m, n

(2.1)

the second-order unnormalized wave function expressed
in terms of the unperturbed states is

results in technically complicated expressions. The
electric-dipole transition moment for molecular states
m ) and In ) is written p ". In this section we determine

the expectation values of three spatial correlation func-
tions of the electric and magnetic fields, namely
(d;(r)bi(r')), (d, (r)d. (r')), and (b, (r) b(r')) for the
electromagnetic vacuum and a molecule either in an ex-
cited state n ) or in its ground state IO). These expecta-
tion values are found to second order in the electric-
dipole transition moments of the source molecule. In the
Schrodinger picture, with the radiation-molecule interac-
tion Hamiltonian

& p; mlH;„, In;0 &

ln;0)~„,= ln, o) — & Im;p&

(p', p;n'IH;„, lm;p)(p;mlH;„, ln;0)
(gc)2, ' '

(p —k„is)(p—+p' —k„„—is)
m, n'

(2.2)

where Im, p ) represents the bare state with molecule in
state

I
m ) and the field with a photon of wave vector p

(the polarization character is implicit); the wave number
k„ is that associated with the n~m transition of the
molecule, i.e., k„=(E„E)/A'c. I—n (2.2) the displace-
ment of the poles shown by the addition of —i c is based
on the adiabatic switching on of the interaction. We now
calculate the various correlation functions using this
wave function with the aid of the expansions for the
displacement-vector field and the magnetic field in terms
of the annihilation operators a (p, A, ) and the creation
operators a (p, A, ), namely

1/2

V

1/2

[b(p, A, )a(p, A, )e'~'

—b(p, A, )a t(p, A, )e

(2.3)

In (2.3) V is the quantization volume and e(p, A, ) and
b(p, A, ) are the complex unit vectors defining the electric-
and magnetic-field polarizations. From now on we
suppress the explicit dependence of these vectors on p
and A, .

d(r) i+=
V

[e(p, A, )a (p, A, )e'~'

—e(p, A, )a (p, A, )e '~'],

A. The electric-magnetic correlation function

The correlation function between the electric and mag-
netic fields is

(0;nlH;„, Im;p) (p;mid, (r)b, (r')Im;p') (p';mlH;„, n;0)
(d, (r)b (r')) =

J g2c2 (p —k„+is )(p
' —k„iE )—

P P

&0;nld;(r)b, (r')In;p, p'&&p', p;nlH; &I pm&&p;mlH, „,ln;0)
+ f2 2 (p —k„—iE)(p +p')

P~P

( 0; n
I H;„, I m; p' ) ( p', m

I H;„, I n; p, p' ) ( p'p; n
I d; ( r )b.(r' ) I n; 0 )+

g2 2 (p' —k„+ic,)(p +p')
P P

(2 4)

The matrix elements of H;„, and of d;(r)b (r ) are calculated using (2.3) and the polarization sums implicit in (2.4) are
effected using
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g e, e~
= g b;b =(5; —PP, ),

pol pol

Xe b =e kPk .
pol

(2.5)

The wave-vector sums are then converted into integrals using the continuum approximation. The resulting angular in-
tegrals can be evaluated using [6J

+; ., dO
r, (pr)= f (5;, —p, pj)e +—'i" ~~

)
sm(pr) +(5 3f~ )

cos(pr)
&J & J 2 2

sin(pr)

p
3r 3

(2.6)

t (P"—) = 8 7 fPke = + '8 jk4m

cos(pr) sin(pr)
pr p 2r2

(2.7)

The correlation function (2.4) can then be written as

rlk (pr)tij (p 'r' ) tkj (pr' )r—i; (p 'r )

w;&(pr)tkj (p'r')+ t&&(pr')rk(p'r)+
(p —k„—i E)(p +p')

t'I(Pr)tkj (P r )+tjl(Pr')r k(p
(p' —k„+iE)(p +p') (2.8)

For nondegenerate states
~
n ) and

~
m ) the transition moment gc

" can be chosen real so that pk p&
" is k-1 symmetric.

Using this fact together with judicious changes in the integration variables the correlation function (2.8) can be written
as

(d, (r)b (r')) = g pk pi "f f dp dp'p'p'r, k(pr)t, (p'r')
m

1 1 1X
(p —k„—i E) p +p' p' —p +2i E

1 1

(p' —k„+iE) p +p'
1

p p +21 E,
C. C. (2.9)

To perform the integrations in (2.9) we use the distribution identity

X Xo+l E,

=P 1 + &m5(x —xo), (2.10)

where P denotes principal value, for the four denominators. First we note that the terms involving i n5(p —p ) mutual-
ly cancel. Second, when the integration limits applied to x in (2.10) are (0, ~ ) the 5 function contributes only for
xo )0. Thus in (2.9) we need to distinguish upward from downward transitions corresponding to k„being negative or
positive. We find that the contribution to the expectation value of this correlation function is zero for upward transi-
tions from ~n ).The downward transitions contribute to this expectation value and we have

(d;(r)b. (r') ) =—g pk pi "f f dp dp'p p' rk(pr)t& (p'r'), —, [5(p —k„)+5(p' —k„)]
m

E (E
m n

21 „ti (p r), , 7 k(pr)
k„~&k &i

" r k(k„~~r)p f dp'p', +t~&(k„~r')p f dp p
E (E

(2.11)

The integrals in (2.11) can be expressed in terms of elementary functions. We define the functions o.;, and s;, conjugate
to r;j (2.6) and t;, (2.7) by

)
cos(pr) (5 )

sin(pr) cos(pr)
pr IJ I J pr pr2 2 3 3

(2.12)

sin(pr) cos(pr)
~ij P" = 'Erjkrk 22p" p

(2.13)

Then the electric-magnetic correlation function is
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(d;(r)bj(r')) =2i g k„pk p/ "[r/k(knmr)s/, (knmr')+t/1(knmr')cr, k(k. nmr)]
m

E &E
m n

(2.14)

E &E

k„p/, /M/
".Cos[k„(r —r')] a;k+P;/, k„rr'

~ik 1 1+sin[k„(r —r')], —
P;/, + (2.15)

We note that upward transitions do not contribute to this correlation function. As will be shown later, this is in direct
contrast to the electric-electric and magnetic-magnetic correlation functions. For r =r expression (2.15) reduces to

(d;(r)b. (r) ) = —2e /

(5 rr —)rik r' k n ~ k4 nm mn
2 nmPk Plr m

E &E

(2.16)

which shows an inverse square dependence on r. From this result we can obtain the expectation value of the Poynting
vector S by contracting (2.16) with (c/4~)E;Jk. This yields

S(r)=
2 g k„(p" .p " p" rp—"r)

27Tr
E &E

m n

as expected [3(b),3(d)].

B. The electric-electric correlation function and energy density

(2.17)

The electric-electric spatial correlation expectation value for the state (2.2) can be written in a form similar to (2.9).
We have

(d, (r)d (r')) = g pk p/ "f f dp dp'p p' w,.k(pr)r/i(p'r')
m

1 1 1

(p —k„iE) (p +—p') (p' —p +2iE)

1 1

(p' —k„+ic)(p +p, ')
1 +C.C.

(p' —p +2iE)
(2.18)

To proceed further we use Eq. (2.10) as before; however, those terms involving ivr5(p —p') do not cancel in the present
case. They are

Xpk p/ "f dp p rk(pr)r//(pr') .
7T 0

1 -+C.C.
(p —k„iE)— (2.19)

The remaining contribution to this correlation function is

4 X &k» knmr/k(knm")~//(knm" ) .
Em &E.

(2.20)

g pk p/ "f f dp dp p p wk(pr)7/&(p /' ) .
m

PV PV
(p +p') (p —p') (p —k„)

1

(p+p')
PV PV

(p —p') (p' —k„
(2.21)

Using [6]

~, (p'r)f dp'p' ', =~p cr; (pr)
(p +p') (2.22)

2
QPk P/

xP dp [rk(pr)o /, (pr')+~;k(pr)r/J(pr')]
GO

with o',"(pr) given by (2.12), expression (2.21) is found to
be (2.23)
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In contrast to the (d (r)b(r') ) correlation discussed in Sec. II A we now have nonzero contributions from upward tran-
sitions.

1. Upward transitions

First we take the special case of ~n } being the ground state ~0) to evaluate (2.23) for one upward transition
~0) ~ ~m }.Since k o= ko )0, there is no pole in the integrand in this case. The contribution to (2.23) is

6

jk—j I
' J dp I r;k(pr)a»(pr')+a;k(p«)rI, (p')]

2 0 o ~ p. . . cos[p(r+r')], cos[p(r+r')]=—
III,ok ILI,I

' "dp a,„a,', sin p r +r' —a,„,',. I ik+Ij

sin[p(r+r'}], sin[p(r+r')], sin[p(r+«')]
rk~lJ 2 I2 ik jIp 2 ik Ij

p r' p p rr'2 I

cos[p (r +r')), cos[p (r +r')], . fp(r +r')
ik lj

(2.24)

where we have used (2 6) and (2.12) for the tensors r and a. The p integration is effected using sine and cosine integrals

and the combinations [7]
XQ

f (x)=ci(x)sinx —si(x) cosx = du
1+u

(2.25)
~ ue

g (x)= —ci(x) cosx —si(x)sinx =
2

du
1+u

and we obtain

(O~d, (r)dj(r') ~0) = g (d;(r)d. (r') }

where

2k',
(d;(r)dj(r')} ~= pk tul, . a,kaij

ko(« +r') +f(ko(r +r'))1

ko(« +r')

aik I !j
kor'

—g(ko(r +r')) + —g(ko(r + r') }1, ~ik alj 1

ko(«+r') kpr ko(r+r')
I

aik~lj
k2 &2

0

I ik~lj

korr'

—f(ko(r +r'))1

ko r+r'

—f(ko(r +r'))1

ko r+r
I

3 I2

+ ' [g(ko(r+r'))]+ z [f(ko(r+r'))] . ,
kor r' k4r'r' (2.26)

where ko =k 0)0, and ( } 0 denotes the contribution to the expectation value from the transition m~0. For identi-

cal field points, i.e., r =r', we can use i,j and k, I symmetry to determine

(d, (r)dj(r)) 0=
2k'

o o1
Pk PI 2

' 'k Ij 3r 4kor

3
+aikl lj 2kor

+f (2kor)
1

2kor

2g (2kor ) 2f (2kor)

kor k', r'

&;kPI,
2kor

f (2kor)

k r0

2g (2kor) f (2kor)

k r
+

k4 4
0

The asymptotic limits after spatial averaging of the molecular orientation are
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le I'
7 (136;~.+7r, r ), kor))1

6m.kor
(d;( )d, ( )

6 (5;J +3r; rj ), kor « 1 .
3r

(2.28)

The electric energy density associated with the transition m ~0 for an isotropic source follows from (2.27) and is

(d (r)) 0= ko. — —f(2kor) —2+ + —g(2kor)
kOr

12
3 3

. . (229)
kOr

This expression is equivalent to our previous result [3(d)] where the energy density was given as an integral (2.30) over a
parameter u,

1 ~d 6 2„, O Pmole

u u e6' o k +u
1 2 5 6 3

u2r2 u3r3 u4r4 usr5 u6r6 (2.30)

The above expressions are easily adapted to a general upward transition m~n with k„(0.
2. Downward transitions

From the expressions (2.20) and (2.23) for the total electric-electric correlation function we now extract the contribu-
tions arising from downward transitions. For simplicity we consider the transition O~p with kzo —=po) 0. The term
from (2.20) for this transition is

0 Op 4
0 0„6, PkPI PO

4Pk jII POIIk(Por)'rij(por ) cos[po(r r')] a,„a',, ——aikPI,

p 2r&2

ik Ij I iki jl~iki jl

(2.31)

Ia ki lj'+ sin[po(r —r') ]
por

~ikalj I iki lj ~ikf lj

a;k13I, &;kal, Ak&'I,+ cos[po(r +r')] a;„ai + — + +
por por porr 4 2 r2

aik~lj ~ik alj
+sin[po(r +r')], +

por'
&ikAI

(2.32)

The corresponding term arising from (2.23) is

6
Vk'jIi'—P I dp I

& k(pr)ai, (pr')+a;k(pr)&I, (pr'))
p po

= —(d;(r)d (r')) 0+2, . cos[po(r+r')] a;ka'Ii-
jIk Pi Po

rr'
a k131 Iikal ' ~ k'i 1 ~ik~l'

(2.33)

ik~lj ~ik Ij I iki Ij Pikplj+S111[p 0 r +r (2.34)

where (d;(r)d (r) ) ~ is given by (2.26) with ko replaced by po. When (2.32) and (2.34) are summed to obtain the total
contribution to the expectation value from the downward transition O~p, the terms depending on cospo(r +r ) and
sinpo(r +r') cancel. We have

(d;(r)d, (r) ) = —(d;(r)d, (r') ) +2 jjkPi PO
rr'

I
~ik Ij

p 2r2

a kgb!I'
+sin[po(r —r') ] pOr'

I ikaij ~ik~!j

por porr'

cos[po(r —r')] a,„a', —
pOr

~ik~lj tiki lj

por r

(po=k~o)0) . (2.35)
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A significant feature differentiating the contributions to
the correlation function from upward and downward
transitions is the presence, for downward transitions, of
oscillatory terms due to real-photon emission and reab-
sorption. These terms depend on the radial difference
(r —r') with characteristic reduced wavelength ( I/po).

For identical field points

2poII "I'
(5;, —r, r, ), por))l

3»
(d;(r)dj(r))o ——

o 2

(5 +3r, r, ), por ((I .
6

(2.37)

(2.38)

(d, (r)d (r) )o p
= —(d, (r)dJ(r. ) )p

PkPl Po
0 Op 4

'

p
2

'
Ik jI2 2» pp»

j ik~lj lunik Ij
2 2 p4»4

(2.36)

where (d;(r)dj(r) ) o is given by (2.27) with ko replaced
by p0. For an isotropic source

It is important to note the striking difference in the far-
zone behavior of (2.37) and the ground-state expression
(2.28). The r dependence arises from the real photon
emission in the present case. The» -term due to
virtual-photon exchange is still present, but is dominated
by the real-photon-emission contribution. On the other
hand, the near-zone expressions (2.28) and (2.38) are iden-
tical. This occurs since the» contribution from virtual
photons is the negative of (2.29) and the pole contribution
in (2.36) is twice (2.29). The electric energy density asso-
ciated with a downward transition O~p is found from
(2.36). We have, for an isotropic source,

(d'(r) &~, =
Iv" I'po

12m. »

13 1
3

+ +f (2por) —2+ 10 6
PO» PO» PO»

4 12 2 6
+g(2por) — +n 2+ +

Po» P 0» PO» PO»
(2.39)

It is instructive to compare the additional terms in (2.39)
arising from real transition, namely (

1
class ) 2

E2 IP I (3+p2 2+p4r4)
8m 24m»

(2.42)

Op(2
IP I (3 + 272+p4y4)6m. »6

(2.40) The two expressions (2.40) and (2.42) are reconciled by
the correspondence principle [8]

with the electric energy density of a classical dipole
source. The latter is

class 2R (I opI) (2.43)

i (po r —cot)

E = '
Retu, '.""(—V 5"+V; V . )

8~ 8~

0i(p r —cot)

X ' Repk""( —V 5. +V; Vk )

(2.41)

which after orientation and cycle averaging becomes

C. The magnetic-magnetic correlation
function and energy density

The magnetic-magnetic correlation function for an
electric-dipole source p can be expressed in a form analo-
gous to (2.18). We consider the case of a downward tran-
sition with Po ——kpo) 0:

( b(r)b (jr')) op= 2 jt,pkit, ,p J f dp dp'p p' tk;(pr)t~j(p'r')
0 0

1 1

(p —po
—i e) (p +p')

1

(p' —p +2iE)

+ 1 1 +, +C.C.
1

(p —po+i8) (p +p') (p' —p +2iE)
(2.44)

where t,j is defined by (2.7). The calculation follows essentially the same steps as for the electric case in Sec. II B. We
find
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(b;(r)b, (r ) &0 =,I 'kVl sl, ek. r."
vrrr

3
2po po 4+, p—of(po(r + r') )

(r +r')3 (r +r'

—+—,+ —+ —, pog(po(r+r'))1 1 Po 1 1

r r' (r +r')2 r r'

3+,f(po(r + r') ) —mp 0 cos[po(r —r') ]
Po PO

rr'(r +r') rr'
2

1 1 . , po—mpo —,——sin[po(r —r')] —m, cos[po(r r')]— (2.45)

o o, r. rm
( bl(r)b (r) ~0 P'k I 1 slj ek'

7T r

5po po
X — + —pof (2por)

4I 3 2r

2pp
3

po
2

+ g (2por)+ f (2po")

4 1—
mpo 1+

por
(2.46)

We note, in passing, that the corresponding correlation
function for upward transitions excludes the tri-
gonometric terms in (2.45) and is the negative of the
remaining terms.

For r=r', we have

(2.50)
Finally, we quote the asymptotic results for the energy
density,

mol2
kpr ))1

24m. ko r
mof2ko, kpr ((1 .

24w2 ' r'
(2.51)

transition may be found from the negative of (2.45) by re-
placing po by ko and excluding the trigonometric terms.
The integral form for this energy density [cf. (2.30)] is

1 ~ 6 2„„ o P 1 2 1
mol2

duu e
u ur ur ur0

For an isotropic source the asymptotic expressions of
(2.46) are III. INTERMOLECULAR ENERGY SHIFTS

FROM ENERGY DENSITIES

(b;(r)bj(r))0 p
—'

4l op 2

(5, r, r ), por)—)1
3r

lv'l poOp 2 (2.47)

(5, rr ), por((1 . —
6~ r5

(2.48)

In Sec. II we found the electric and magnetic energy
densities associated with electric-dipole transitions in a
source atom or molecule. The presence of these densities
can be detected by their effect on polarizable test bodies
placed in the neighborhood of the source. These densities
can therefore be used in the determination of the interac-
tion energy between two molecules.

The far-zone expression is, as expected, the same as
(2.37). The near-zone result is different from its electric
analog (2.38) in that it depends on po and the power law
is r instead of r

It is straightforward to use these results to find the
magnetic energy density due to an electric-dipole source.
For an isotropic source

Opl2
(b'(r) )

8vr 6m2 r'

Xpo — + —f (2por)
4r 2pp r

+ g (2por)+ f (2por)
2 1

ppr p pr

A. Dispersion forces

We first consider the case where both molecules are in
their ground states. The energy density arising from mol-
ecule A influences molecule B. The latter responds to the
energy density at R2l for the transition m+—0 (in A)
through its dynamical polarizability at frequency co p.
Similarly, A responds to B for the transition r~O. Thus
the total interaction energy from the pair with isotropic
polarizabilities a "(co) and a (co) is given by the expecta-
tion value of

&E = —
—,
' g a (co 0)d 0(R2l ) ——,

' g a "(co„o)d„o(R~),

(3.1)

1
'1T 1 +

por
(2.49)

As previously noted a correlation function for an upward

where

E olp '(A)l'mo

E 0
—(%co)

(3.2)
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Hence using (2.30) for the energy density and (3.2) for the polarizability we obtain, with R = IRs —R„ I,

4 k„,lp"'(8)I' k, lp '(»I' k oIp '(&)I' k,olp"'(»I'

)

6 —2uR 1 + 2 + 5 + 6 + 3
2R2 3R3 4R4 5R5 6R6 (3.3)

4
~

„k oIp (A)I k„oIp" (8)I
u 6 —2uR

(k 0+u )(ko+u )

1 2 5 6 3u2RuRuRuRuR (3.4)

which in terms of polarizabilities defined for imaginary
frequencies is

AcbE= — a"(iu)a~(iu)u e
0

1 2 5
2R2 3R3 4R4

+ + du.6 3
u'R' u'R'

(3.5)

This is the familiar Casimir-Polder interaction energy be-
tween two molecules in their ground states.

The interaction energy between a molecule 3 with an
electric-dipole polarizability a "(co) and another molecule
8 with a magnetic g (co) can be found in a similar
manner. The analog of (3.1) for the interaction energy is

bE= —
—,
' gy (co o)b o(Ra) 2 Xa"(co„o)d„o(R„),

(3.6)

where (1/Svr)b o(r) is the magnetic energy density
(2.50) due to the electric transition dipole p (A) and
(I/8~)d„o(r) is, in this case, the electric energy density
arising from a magnetic transition dipole m" (8). The in-
teraction energy is found to be

k„oIm" (8)I k OIp, (A)I k OIp (A)I k„oIm" (B)I

k0 —k 0 k 0+u k 0
—k0 k0+u

X 6 —2uR 1 2 1
d

u R u R u4R
(3.7)

a" su y~ ~u u'eAc

0

1 2 1

u2R u R u4R
(3.8)

in agreement with earlier work I9,10].

B. Intermolecular forces involving
electronically excited molecules

It is straightforward to extend the calculations in III A
to include electronically excited molecules. The response
formalism involving the use of (3.1) and its analogs pro-
vides a direct route to obtain these interaction energies.
These potentials are not easily obtainable by conventional
methods because of intermediate-state resonances. In the
response method these resonances do not pose any prob-
lems as they are automatically taken into account with
the use of the total electromagnetic fields in the neighbor-
hood of the sources. These fields include terms arising
from real transitions. Further, it is easy to identify and
interpret the terms that arise from such intermediate res-
onances.

1. Interaction between a ground-state molecu)e
and an electronically excited molecule

In this subsection we consider molecule A to be in its
ground state and 8 to be in the excited state Ip ); the
transition O~p is assumed to be electric dipole allowed.
Also the molecules are taken to be nonidentical. Then

b.E= —
—,
' pa (co o)d o(Rs) —

—,
' ga (co„„)d„(R~).

(3.9)

This expression difFers from (3.1) in that d„(r) for
downward transitions has terms associated with real pho-
ton emission and a (co) is now the dynamic polarizability
for the excited molecule B. %'e have
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r
E )E

p

a "(co„~)d„~(R„)

E &E
p

a "(co„~)d„(R~ ) .

b,E= —
—,
' pa (co 0)d o(R~)

(3.10)

4 k 0Ip (A)I k„ Ip"~(B)I

(k o+u )(k~+u )

+ 2 +
uR uR uR

6 3+
s s+ 6 6 duuR uR

We see from (2.36) and (2.39) that the third term in (3.10)
gives (3.11) as the contribution from real photon emis-
sion:

4 k OIp" (B)I k „I)u, (A&I

9A'cR (k 0
—k„)

E &E
T p

(3.15)

where the summation over r includes both upward and
downward transitions. This can be expressed as an in-
tegral analogous to (3.5), namely

X 1+ +
k R k Rpr pr

(3.1 1)
A'c

bE = — a "(iu)a (iu;p)u e
7T 0

where we have expressed the polarizability of 3 in terms
of transition dipole moments using (3.2). It is important
to note that for large R the lead term of (3.11) has an
R dependence. This is the dominant interaction ener-
gy since the virtual photon terms show the well-known
R dependence in this limit. Thus for large R

1 2 5

uR uR uR

6 3+ s s+uR uR (3.16)

where a (co;p) is the dynamic polarizability for the excit-
ed state Ip ) of B and is given by

k 0Ip (A)I k „Ip""(B)I

9AcR (k 0
—k„)

E &E
p

2 a "(co~„)p~"(B)I kp„.
T

(3.12)

E„~ I
p"~(B)I'

a (~;p)= —g E„—(%co )
(3.17)

E &E
p

This result has a simple physical interpretation based on
the Poynting vector. We note from (2.17) that the rate of
energy loss out of a sphere centered at B due to the down-
ward transition r~p is

The third term in (3.10) giving the contributions from
downward transitions is made up of two parts: one asso-
ciated with real-photon transfer, given by (3.11), and the
other associated with virtual photons from the downward
transition part of (3.15). For large R, the leading term of
(3.15) is

f S RR dQ= Ip"~I k (3.13)
23Ac a (0)a (0;p)
4~ R' (3.18)

where S is the Poynting vector for a randomly oriented
transition moment. Then, as to be expected,

where a "(0) is the static polarizability of A given by (3.2)
for co =0; similarly a (0;p) is the co=0 limit of (3.17). For
small R, the dominant term of (3.15) is

b E = — a "(co „)fS.R d Q = 2vra W (R ), (3.1—4)
2c 2 Ip (A)I Ip"~(B)I

3R' "' (E o+ IE„I&

(3.19)

where the energy density 8 (R) of the source-dependent
field at R is (1/4~c) JS RdQ. The virtual-photon con-
tributions to the energy shift (3.10) remain to be dis-
cussed. Their structure is essentially the same as that of
the upward transitions given in Sec. III A for the disper-
sion force. So b,E has, in addition to (3.11), terms from
all three sums in (3.10) giving

The total interaction energy valid for all separations
beyond electron overlap between A and B is the sum of
the real-photon term (3.11) and the virtual-photon term
(3.16) which can be expressed in terms of the f and g
functions (2.25). For the sake of completeness we give
the explicit result
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AcbE= — a "(iu)a (iu;p)u e
'Tl' 0

1 2 5 6 3
g2R2 ~3R3 g4R4 g5R5 ~6R6

4
9ficR

F &Er p

k Ol)u (A)l k „lp,
" (B)l

(k ()
—k„) (3.20)

k olp ( A)l k„ lp"p(B)l

2vrRcR (k o
—k„)

X . k 0 +f(2k OR) —2+ — +g(2k OR)
1 10 6 4

k.'~'

—lk„, l' +f (2lk„, IR) —2+ 6

+g(2lk„, IR)
rp

12

lk„, I'R '

1

AcR
k„1+ +k alp (A)l'kp„lp"p(B)l', 1 3

3 (k2 —k2) k R k Rm, r m0 pr pr pr
E &E

p

(3.21)

From the general result (3.21) we now find the asymptotic
expressions for b,E. In the small-R limit, using (3.19) for
the asymptotic value of the first term we have

1 3! 5tg(x)= 1 — ' +x' x' x4 (3.24)

2

4

E &E
p

E alp "p(B)I'Ip '(~)l'
(E2 E2 )

2 Ip (A)l Ip" (B)l
3R „(Eo+Ep)

(3.22)

the first summand in (3.21) can be seen to vary as R
The second summand associated with real-photon ex-
change has a lead term proportional to R, as found
previously in (3.12).

2. Interaction between two electronically excited molecules

It is straightforward to extend the method to this case.
The starting point for the calculation of the interaction
energy between molecule 3 in state lq ) and B in the lp )
is the modified form of (3.9), namely

1 2! 4)f(x)= — 1 — ' +
x x' x4 (3.23)

It is interesting to note that in this limit both real- and
virtual-photon terms contribute to the R -dependent
energy (3.22). This is in contrast to the far-zone behavior
where the dominant R term arises solely from the
real-photon exchange. With the aid of the asymptotic ex-
pansions (3.23) and (3.24) for f (x) and g(x) for large x
I:7]

bE= —
—,
' pa (co )d (Rs)

—
—,
' g a "(co„)d„p(R„), (3.25)

where both polarizabilities now refer to the excited mole-
cules. In Sec. II we found expressions for the electric en-
ergy density associated with both upward and downward
transitions. Using expression (2.39) for upward and (2.38)
for downward transitions in (3.25) we obtain



2550 E. A. POWER AND T. THIRUNAMACHANDRAN 47

+f (2lk., IR) —2+
mq k R

k lp ~(A)l k„ lp'~(B)l

2mkcR „3 (k
q
—k„~)

x, lk, l' 6

+g(I2k, IR)
k R

12

lk, I'R'

+f (21k„lR) —2+
rp

+g (2lk„, IR) k„R
12

6

lk„, I'R'

'k Ip i(A)l'k~„lp"~(B)l', l 3
I '„1+ +pr k2 R2 k4 R4

E &E

1

AcR

k„ lp" (B)l k~ Ip q(&)l
3 l 3

k' R' k' R'
m, r pr mq qm qm

E &E

(3.26)

which can also be written in a form analogous to (3.20) as

A'cbE= — a "(iu;q)a (iu;p)u e
77 0

1 2 + 5 6 + 3
g2R gR zgR4 gR gR

4
9ficR

E &Er p

4
9AcR

E &E
m q

k, Ip '(a)l'k, ', Ip"'(B)I'

k„ lp "~(B)
I

k lp ~( 2 ) I

(k„„—k )

1 3
(3.27)

This interaction energy can be decomposed into three
types of terms depending on whether the transitions
m~q and r+—p are both upward, one upward and one
downward, or both downward. The first two types are
similar to those presented in Secs. III A and III 8 1 where
their asymptotic behavior has been discussed. We now
examine the asymptotic forms for the third type due to
downward transitions in both molecules withE,E „)0. For small R the result from elementary per-
turbation theory gives a repulsive force with potential

4

(E &E,E &E )m q' r p

1xk, k,„
pr

4

(E &E,E &E )m q' r p

(E +E„)

Ip, ( & ) I'I p"'(B) I'

(k —k„)

(3.29)

2

(E &E,E„&E )

lp '( &)I'Ip"~(B)l'
(E +Ep„)

(3.28)
and the result (3.28) follows. For large R the dominant
term is proportional to R and arises solely from real-
photon exchange. The energy in this limit arises solely
from the second and third suminands in (3.27) and is

However, in the present calculation this potential arises
from the three summands in (3.26). The first term, from
virtual-photon exchange, is in fact the negative of (3.28).
The second and third, which arise from real-photon ex-
change, together give

2
3

1

(A'c) R
(E &E,E &E )rn q' r p

I p '( ~)l'I p"~(B)l'
(E +E„)

XE E„(E +E E„+E„). (3.30)
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As in Sec. III B 1, the R behavior can be interpreted in
terms of the power per unit area emitted by each mole-
cule.

IV. DISCUSSION AND SUMMARY

We have developed in this paper a method for deter-
mining the intermolecular potential between two mole-
cules which is applicable to the dispersion case as well as
to the case where one or both molecules are excited. The
method involves the determination of the energy density
of the electromagnetic field in the neighborhood of the
molecules. This energy density is the r =r' limit of
(I/8') times the trace of the electric-field correlation
(d;(r)dI(r')). This correlation as well as the magnetic-
magnetic and electric-magnetic ones have been derived in
Sec. II. The correlation functions for the case of an excit-
ed molecule with excitation energy E 0 include terms in
addition to those for the ground-state molecule. These
additional terms, as for example in (2.35), differ from the
ground-state type in being modulated by sinusoidal oscil-
lations with argument (r r')E elf—ic. In the limit r=r'
the cosine term survives and the additional terms are now
polynomials in r '. The corresponding energy densities
are precisely those of a classical electric-dipole source as
shown for the electric energy density in Sec. II B.

The intermolecular potentials found by the response
approach using the energy densities are given in Sec. III.

The interaction energy is found by the response of each
molecule to the electric energy density of the other. For
a ground-state pair, this is given by (3.1) from which we
recover the familiar retarded dispersion energy. This po-
tential gives the London —van der Waals expression with
an R dependence for small R and the asymptotic
Casimir expression with its R dependence for large R.
In the case with one or both molecules eletronically excit-
ed the response theory starts with (3.9) or (3.25) and leads
to the intermolecular energy shift (3.20) or (3.27). These
shifts are made up of two types of contributions: one
similar to the dispersion expression associated with
virtual-photon exchange and the other associated with
real-photon exchange. In the former the polarizabilities
now include downward transitions in addition to the up-
ward ones; the R dependence of course is precisely that of
the Casimir-Polder potential. The second contribution
which arises from the energy density associated with real
emission contains R -, R -, and R -dependent
terms. Thus for small R both types contribute to the R
potential, and together give the result expected from elec-
trostatic theory. However, for large R we predict a new
dependence on the separation, namely an R energy
shift coming from real photon exchange. As discussed in
Sec. III 8 this has a physical interpretation based on the
Poynting vector. This energy which falls away much
slower than the London force can play an important role
in physical phenomena involving excited chromophores
separated by large distances within complex molecules.
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