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Scheme for measuring a Berry phase in an atom interferometer
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We present a concept for measuring a Berry phase using an atom interferometer in an optical Ramsey
arrangement. The adiabatic cyclic process needed for the appearance of a Berry phase consists of the

adiabatic change of population in one of the interferometer arms. A closed circuit in parameter space is

realized by the time-dependent Doppler detuning of two additional strongly focused Gaussian beams,

which couple selectively to one of the interferometer arms. It is shown that the resulting additional

atomic phase consists of a Berry phase corresponding to the phase difference of the two Gaussian beams

and a dynamical phase caused by the dynamical Stark effect. By recombining the two interferometer
arms this total phase gives rise to a shift of the interference pattern. In case of a Ramsey arrangement

with magnesium atoms the parameters of an experimental realization have been calculated. Further im-

provements using laser-cooled and trapped atoms are discussed.

PACS number(s). 03.65.—w, 42.50.—p, 07.60.Ly

I. INTRODUCTION

The recent realization of atom interferometers has
opened fields in matter wave interferometry, stimulating
theoretical and experimental investigations of fundamen-
tal quantum-mechanical questions. This development is
based as well on "classic" atom interferometers formed
by microfabricated matter gratings [1] or double slits [2]
as on arrangements with laser beams as atomic beam spli-
tters. The geometry of an optical four-beam Ramsey ar-
rangement [3—5], which has been interpreted by Borde as
an atom interferometer [6] shows promising properties
and has lead to interesting investigations [7,8]. Here we
examine its possibility for measuring a Berry phase [9].

Figure 1 shows schematically the coherent splitting
and recombination of the atomic wave in a Ramsey atom
interferometer. In the terminology of interferometry the
first laser beam acts as a beam splitter, coherently divid-

ing the atomic wave function into two components.
These components differ in their external states, caused
by the transferred photon momentum, as well as in their
internal quantum states due to the resonant absorption or
stimulated emission processes. The arrangement of the
following three lasers facilitates the recombination of the
two interferometer arms. Because of their different ener-
gies the two wave components travel with different
dynamical phases which interfere after passing through
the fourth interaction zone. Compared to interferome-
ters using mechanical beam splitters the Ramsey inter-
ferometer has the advantage that the two arms are la-
beled by different internal atomic states. This enables the
selective interaction with one arm even without the need
for a spatial restriction of the interaction zones to this
arm. Based on these ideas we report on a concept for
measuring a Berry phase [9], i.e. , a special geometrical
phase in quantum mechanics [10].

According to its definition the appearance of the Berry
phase requires an adiabatic cyclic process in parameter
space: We thus consider a quantum system described by
a Hamiltonian H(R) which depends on a set of external
parameters R varying slowly in time such that the adia-
batic theorem is satisfied. Berry has shown that under
these conditions the phase of the wave function, satisfy-
ing the time-dependent Schrodinger equation, does not
only consist of the dynamical but also of a geometrical
part. If the adiabatic parameter R describes a closed
curve C in parameter space (C:[to,t, ]~IR,t~R(t)},
this phase will be independent of the phase chosen for the
stationary eigenstates. This geometrical phase y is given
by [9]
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FIG. 1. Ramsey atom interferometer. Only those atomic tra-

jectories corresponding to the high-frequency (blue) component
of the Ramsey fringes are shown.
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y=i f A„(R)dR,
C

with a pseudovector potential

A„(R)=i(n(R)~VR~n(R)) . (2)

Here ~n(R) ) denotes the adiabatic state obeying the sta-
tionary Schrodinger equation for constant R:

H(R)~n(R)) =E„(R)~n(R)) . (3)

In the example described here the cyclic process con-
sists of an adiabatic change of population in one of the in-
terferometer arms. This is realized by the adiabatic fol-
lowing in a strong laser field which connects only the
ground state with a third state. We illustrate this model
in Sec. II, whereas Sec. III summarizes the theoretical
framework. For the case of a Ramsey experiment with
Mg atoms the parameters for an experimental realization
have been calculated quantitatively. The results are given
in Sec. IV. It will be shown that the crucial point for the
observation of a geometrical phase is the width and the
velocity distribution of the atomic beam. Improvements
utilizing laser cooled and trapped atoms are discussed as
well.

II. BASIC CONCEPT

During the interaction of an atom with a laser field, a
closed cycle corresponding to an adiabatic change of pop-
ulation can be achieved by the time-dependent Doppler
detuning in the curved wave fronts of two additional
Gaussian beams 8, and Bz as sketched in Fig. 2. The
wave vector k of the optical field changes its direction
continuously, leading to the time-dependent Doppler de-

tuning [11,12]. Placing the additional beams in the first
or third dark zone of the Ramsey interferometer (Fig. 1)
allows the selective interaction with one arm of the inter-
ferometer.

The frequency of the additional laser beams is chosen
to be resonant with a transition between the ground state
~g ) and a third state ~e~ ). The lifetime of the state ~ee )
is supposed to be long compared to the time of the adia-
batic evolution; thus spontaneous emission can be
neglected. The other excited state eR ) which couples to
~g) by the Ramsey beam splitters (see Fig. 1) evolves
freely and serves in this way as a reference state for the
interference experiment. Treating the coupling between

~g ) and ~ez ) in the rotating frame and neglecting
counter-rotating terms (rotating-wave approximation),
the adiabatic parameter R is given by

with

0+(t) =Q(t)cosg(t), 0 (t) =A(t)sing(t),

where P denotes the field phase, Q denotes the Rabi fre-
quency [cf. Eq. (13)], and 6 denotes the detuning between
the transition frequency and the frequency of the addi-
tional laser.

Figure 3 shows the closed curve C in parameter space
described by R during the interaction of the atom with
the Gaussian beams B, and 82. The field phases P, z of
each Gaussian beam are chosen to be constant in time.
Entering the first strongly focused Gaussian light field
B

&
the atom experiences a large negative detuning which

forces R to begin its movement at the —3 axes. Due to
the Gaussian intensity distribution and the change of the
detuning, R rotates into the (1-2) plane and arrives at the
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FIG. 2. Configuration of two Gaussian beams 8& and 82
crossing the atomic beam perpendicularly to induce an adiabat-
ic cyclic population transfer between two atomic states.

FIG. 3. Closed curve C in parameter space described by the
pseudo-field-vector R in the configuration of Fig. 2. In case of
adiabicity the Bloch vector P remains nearly parallel to the field
vector R.
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positive 3 axes when the atom leaves the first Gaussian
beam. With the help of the second Gaussian field B2, as
shown in Fig. 2, the adiabatic parameter is continuously
carried back to its starting position. The curve described
by R encloses a nonvanishing area which is determined
by the phase difference P2

—P, between the Gaussian
beams B i and B2.

The parameter R corresponds to the pseudo-field-
vector in the Bloch picture [13]. During the adiabatic
process the precessing Bloch vector remains nearly paral-
lel to the pseudo-field-vector R. Starting in the ground
state the interaction with the beam Bi leads to an adia-
batic inversion, while the second light field B2 turns the
excited-state population back into the ground state
[11,12].

Summing up, the dynamic evolution results in an addi-
tional change of the atomic phase in one arm only. By
recombining the two arms of the interferometer the total
phase change gives rise to a shift of the interference pat-
tern. By changing the phase difference of the Gaussian
beams, this Berry phase can be distinguished from the
dynamical phase.

III. THEORETICAL FRAMEWORK

The atomic beam consists of three level atoms with the
states Ig & and leB &, coupled by the Ramsey beam split-
ters, and the state IeB &, which is connected to Ig & during
the interaction with the Gaussian light fields B„B2.The
laser fields are supposed to be classical fields. The Hamil-
tonian H describing the interaction with a monochroma-
tic light field reads:

H=H~+ VL (4)

HA ~~ooR I eB & & eB I
+&tooB I eB & ( eB I

~L —~= —
c E

Here copR and cop& denote the atomic frequencies con-
cerning the transitions

I eB & ~ Ig & and
I eB & ~ lg &, «-

spectively, and p denotes the dipole operator.
As the Gaussian beams B i and B2 do not overlap, the

Hamiltonian H includes only the interaction with a single
Gaussian beam B, or B2, respectively, at one time. The
electric field E of a Gaussian beam with polarization e,
frequency coB, and field phase p, propagating in z direc-
tion, reads:

—i [(co~ t —p —y(x) jE(t,x, z ) = ,'eE(x, z )e —+c.c.

~R
2X

r(z)wo
(10)

1 0 0
U = 0 exp[ —iy(t) ] 0

0 0 1

(12)

which reveals the detuning caused by the Doppler e6'ect,
leads to the Hamiltonian

Dop
R

2
—e'&0
2

(13)

where ~R:=~oR mR and hz. = cop&
—co& denote the de-

tumngs and 0:= (1/A)E(x, z)(eB le pig & th«abi «e-
quency; b, D „ is given by b,D, =KB+j'. In Eq. (13) we
have chosen the origin of the energy scale in the center
between the states IeB & and Ig &.

As the state IeB & does not couple to the other states it
accumulates during the evolution a phase factor

g &D,p(r)
exp( —b, t)Re pxi J dr

0
(14)

Therefore we will work in the following with the subma-
trix H„„;„involving only the states IeB & and lg &:

AD, Qe'i tt)

~static (15)
Vl e LKDpp

In case of adiabaticity, the time evolution of a state
I 4(t) }is given by [9]

IV(t) & =e " exp ——J E„(R(t))dt In(R(t)) & .
0

Here P denotes the total power, zR the Rayleigh length,
wo the waist, and r (z) the radius of curvature [11]. If we
suppose the atom to cross the x axis at time t =0 with x
component v of the atomic velocity, the phase y at the
atom's position reads

~Rg(t)=, (U t)'.
r(z}wo

The time derivative of the phase g is the momentary fre-
quency kv. Writing the Schrodinger equation in matrix
form and using the rotating-wave approximation and the
transformation

2P
w (z)

E(x,z) =
EpC 7T

with the beam radius

w (z) =wo [1+(z /zB ) ]'

and the phase y:

The field amplitude is given by
1/2 1/2

1
exp

X

w (z)

(16)
The first phase factor denotes the Berry phase, the second
the dynamical phase, and In(R(t)) & satisfies the time-
independent Schrodinger equation [Eq. (3)], with
H=H„„;,. The "dressed" states [14] read:

I+ &=cos(6)lg &+sin(6)e'~leB &,

I
—

& =cos(B)le &
—sin(6)e '~lg &,
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with

cos(26) =-
(g2 +f12)i/2

sin(2e) —=
Q

(g2 +~2)1/2 (20)

and the eigenvalues

E =+—(b, +0 )'
DOP2

(21)

Figure 4 shows the energy-time diagram corresponding
to the configuration presented in Fig. 2. Depending on
the sign of the detuning at the starting point to the atom
will remain in the state ~+ ) [b,D„(to) &0, see Fig. 4] or
in the state

~

—) [ho,~(to) )0] during the adiabatic pro-
cess.

Let p, and (t2 denote the constant phases of the first

(Bi) and of the second (B2 ) Gaussian beam. Between the
two beams, where 0 is approaching zero, the phase can
be thought to change continuously from p, to $2 and
from p2 to pi behind the second beam (see Fig. 2). By
this way R and the eigenstates depend continuously on
the time t during the entire cycle.

The Berry phase [Eq. (1)] for a complete cycle C can be
calculated in the form [15]

y~(C)=+ f [sin [e(t)]P(t)Idt,
C

(22)

where the indices + correspond to the adiabatic states
~+ ) and

~

—). Equation (22) leads to

(23)

(24)

Thus the Berry phase is given by the phase difference of
the Gaussian beams (see Fig. 3).

IV. ASPECTS OF AN EXPERIMENTAL
REALIZATION

With regard to a Ramsey interferometer realized with
the magnesium 457-nm intercombination line 'So~ P&,
the relevant experimental parameters have been calculat-
ed. Splitting the excited state P

&
into its magnetic sub-

levels with quantum numbers I = —1,0, 1 two of them
may serve as the states

~ e~ ) and
~ et' ), for instance:

~e~ ) = P, o, ~equi)
= P, , (Fig. 5). The state ~equi)

is coupled selectively to the ground state ~g ) —= 'So by the
interaction with o. polarized light.

The conditions for adiabaticity have been investigated
by solving the time-dependent Schrodinger equation

(25)

for different values of the experimental parameters P, coo,

Az, v, v„and the crossing point zo between the atomic
trajectory and the z axes of the Gaussian beam (see Fig.
2).

In order to force R to begin its motion at the —3 axes
with only moderate optical power available, a strongly fo-
cused Gaussian beam is necessary. For a waist of F0=2
pm and a laser power of P =20 mW an adiabatic process
requires low atomic velocities of about v„=100 m/s. The
maximum velocity, which will still guarantee an adiabatic
passage, increases with increasing power and decreasing
zo. Experimental parameters leading to the adiabatic
conditions are discussed in [11,12]. Compared to Rabi
oscillations an adiabatic process is relatively insensitive
on a variation of the experimental parameters [12]. If for
a given power Po the state ~%(t) ) follows adiabatically, it
will remain in the adiabatic domain by increasing P. For
very large values of P is it possible to produce a coherent
superposition in the 1 —2 plane for a certain time.

In case of adiabaticity the wave function ~%'(t) ) will be
given after the interaction with both Gaussian beams at a
time t, by

r

~%(t, ))=e' exp i j (6—+f1 )' dt ~g) .
0

(26)

The second factor in Eq. (26), the dynamical phase, is a
sensitive function of the experimental parameters. In or-
der to avoid destructive interference the dynamical
phases of atoms which contribute to the Ramsey fringes
in a real experiment have to differ by less than m.. This re-
stricts the spatial width Az as well as the velocity distri-
bution Av of the atomic beam.

3pi

77l = +1
m=O
77l = —1

FICx. 4. Energy-time diagram corresponding to the
configuration in Fig. 2.

FIG. 5. Part of the magnesium level scheme. The transition
~g ) —

~equi ) is used by the Ramsey interferometer and the transi-
tion ~g ) —

~
e~ ) for the cyclic evolution leading to a Berry phase.
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The following example clarifies the experimental
difficulties due to this condition. The dynamical phase
@dy is calculated for an atomic beam with mean velocity
v =50 m/s, U, =0 m/s, mean crossing point zo =200 pm,
and two strongly focused Gaussian beams with waist
mo =2 pm, distance D =64 pm, total power I' =10 mW,
and detuning hz =0. For this set of parameters, we have
calculated from Eq. (25) a probability for nonadiabatic
transitions of 0.04%. The dependence of the dynamical
phase on zo, u„U is shown in Table I. Thus a very nar-
row spatial width of bz —3 pm and a velocity spread of
AU & 1 m/s is required.

Due to the momentum transfer during the interaction
with the two Gaussian beams, this arm of the interferom-
eter is displaced by 5z =DAk /mv . In the example given
above the displacement reads 6z=46 nm. In order to
maintain a good fringe contrast the transversal coherence
length i.e., width of the atomic wave packets I, =A/Ap,
has to be larger than this displacement. This requires a
width of the transverse velocity EU, of less than 5 cm/s.

A possibility to circumvent these strong experimental
demands is offered by a pulsed Ramsey interference ex-
periment on atoms captured in a magneto-optical trap
[16]: Here the spatial sequence of the four Ramsey laser
beams, shown in Fig. I, is replaced by a sequence of two
pairs of counterpropagating laser pulses in time, applied
to a dense laser-cooled ensemble of trapped atoms. The
coupling between the states ~g ) and

~ es ), shown in Fig.
3, can be realized by one or two additional pulses, which
are applied between the first and the second Ramsey laser
pulse. By chirping their frequency an atomic evolution
analog to the adiabatic following in the Gaussian beams
B& and B2 can be achieved. With the results given above
scaled to a trap experiment, a rapid adiabatic passage can
be produced by a chirp rate dA!dt of 0.5 GHz/ps, a

TABLE I ~ Dependence of the dynamical phase on variations
of the experimental parameters. The values refer to the exam-
ple given in the text.

ZQ

ZQ

zp+3 pm
ZQ

zp+3 pm
ZQ

zp+ 3 pm
zp+3 pm

ux

ux

u +1 m/s
ux+1 m/s

ux

ux

u +1 m/s

Uz

Uz

Uz

Uz

u, —1 m/s
u, —1 m/s
u, —1 m/s

Ndy„= 38. 1m

4gy„—0.54m

4dy„—0.5a
4qy„—1.04m
Cl dy„+ 0.4m

Ndy„—0. 14m

Ndy„—0.64m.
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pulse length of 3 ps, and an intensity of 20 W/cm .
These values are well within experimental reach; the fast
frequency chirp can be achieved with, e.g., an electro-
optical modulator [17]. As these parameters lead to a
probability for nonadiabatic transitions of 0.04&o, setting
less stringent conditions on adiabaticity would also sim-
plify the experiments both on an atomic beam as on
trapped atoms.

In conclusion we have presented an idea for measuring
a Berry phase by a Ramsey atom interferometer. In case
of an atomic beam arrangement an experimental realiza-
tion is very demanding on handling the atomic parame-
ters, especially the spatial width of the beam. The experi-
mental situation can be substantially improved by a
pulsed Ramsey interferometer using laser-cooled and
trapped atoms.
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