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Reply to Comment on 'Intrinsic decoherence in quantum mechanics'"
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Finkelstein's criticism [Phys. Rev. A 47, 2412 (1993)] of my paper [Phys. Rev. A 44, 5401
(1991)]presupposes time measurements of an accuracy explicitly ruled out in the paper.
PACS number(s): 0.3.65.Bz, 0.3.65.Ca

Finkelstein's essential point in his Comment I1] is that
the stochastic Hilbert space phase jumps of the model
[2] have no observational consequence, as all systems will
undergo the same number of phase jumps, thus remain-
ing on the same stochastic branch. This is only true if
time measurements are made to a very high degree of
accuracy, far higher than the clock model of Finkelstein
would suggest. In the model, such ultra-accurate time
measurements were ruled out by assumption. Thus two
systems, monitored by identical clocks, could undergo a
different number of phase jumps even though both clocks
are read out at the "same" time. To be more specific let
N represent the dimension of the clock Hilbert space.

The eigenvalues of the clock Hamiltonian will be taken
as E„= hnw, where n 6 (1,2, . . . , N). For the initial
clock state take

P(L, P, t) = cos
I
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where ~ is the frequency of oscillation in the two-state
system.

Finkelstein now proposes integrating t over one period.
This means we are regarding t as a stochastic variable
uniformly distributed over one clock period. In physical
terms we are supposing that the clock variable P is read-
out at a random time over one period. Introducing the
scaled time parameter 7 = w, t the conditional probabil-
ity for the system to be in state L given a clock readout
of P is given by

g(P, 0) = cos (1)

This state is both periodic in P and for N )) 1 sharply
peaked at P = 2~n with n E (0, 1, 2, . . .) . This sat-
isfies Finkelstein's requirements for the clock states. It
is important that in Finkelstein's model time is made
essentially equivalent to a phase, an equivalence that is
probably nec"ssary in any clock model, thus reducing all
time measurements to phase measurements. This is an
important point to which I shall return. Under free evo-
lution the initial clock state evolves as

4(4, t) = 4(4 —~.t)
where w, is the clock frequency. If this clock state is
used to follow the two-level system of Finkelstein, the
joint probability for finding the particle in IL) and the
clock state in P at time t is

P(LIP') =
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where

P (,)
(Vt)", ,t

is the probability for k Hilbert space phase jumps in lab-
oratory time t and p is the rate of such phase jumps.
In this result we see the universal character of the phase
jumps as each term in the sum is the product of two
terms with the same index A:. That is to say, if the clock
suffers k phase jumps the system suffers k phase jumps
as well. This is a point emphasized by Finkelstein.

Now if N is suKciently large the clock can indeed re-
solve a particular stochastic fine-grained history, i.e. , the
exact times at which a phase jump occurs. The condition
that N must satisfy for this to be possible is

(9)

Now one expects that p » u„ i.e. , the rate of phase
jumps in Hilbert space is much greater than any system
at laboratory scales. Thus the condition on N in Eq. (9)
is much more demanding than that in Eq. (5). The clock

the second term in the integrand of the numerator varies
slowly on the scale in which the first term varies, thus we
can write

P(LIP) = cos
f (dP

c

which is Finkelstein's result in Eq. (5) of his Comment.
Now let us see what happens for the stochastic time

model. In this case the joint probability is given by
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must be so constructed as to permit very accurate phase
measurements indeed if the individual phase jumps are to
be resolved. In the model of Ref. [2], I proposed that this
is in principle (or at the very least in practice) impossible
for all systems at laboratory scales. A clock cannot be
constructed to resolve a fine-grained history of Hilbert
space phase jumps and thus one needs a stochastic time
evolution of the sort proposed, when time is the param-
eter read by ordinary clocks of finite accuracy.

Perhaps a few words as to the motivation behind the
model of Ref. [2] are in order. Time is regarded as a pa-
rameter by which states are distinguished. If two states
differ, then they differ by a rotation in Hilbert space, as
the statistical distance between states is determined by
the inner product in Hilbert space. The rotation of a
state is generated by a unitary transformation. In the
case of states distinguished by a time parameter the gen-
erator of this unitary transformation is in fact the Hamil-
tonian. Thus phase changes generated by the Hamilto-

nian are the fundamental fact; time is an inferred pa-
rameter to describe the distinguishability of states which
differ by such a unitary transformation. The value of such
an inferred parameter is limited in accuracy by the sta-
tistical nature of quantum mechanics. In fact to distin-
guish two such states one needs to measure phase, which
we know cannot be measured arbitrarily accurately [3].
The model of Ref. [2] was an attempt to build these fun-
damental limits into the basic description of quantum
dynamics. Perhaps it will be of interest to some read-
ers to note that a very similar universal stochastic dy-
namics was proposed in the classical domain some time
ago by Lewis [4]. However in that work the origin of
the stochasticity was a little obscure. In quantum me-
chanics we have an underlying structure of Hilbert space
in which to locate the stochasticity; perhaps as random
phase jumps of fixed size. Time is an inferred parameter
to distinguish states which have suffered different num-
bers of phase jumps.
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