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The statistical fluctuations of a single-mode laser with correlations between additive and multiplicative
white-noise terms are investigated theoretically. The mean, variance, and skewness of the steady-state
laser intensity are calculated through a one-dimensional laser equation. Compared with a laser model of
independent noises, the fluctuation appearing in the laser field is much larger.
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I. INTRODUCTION

The experimental measurements and theoretical analy-
ses of the statistical properties of a single-mode laser that
contains both additive and multiplicative noise showed
anomalously large fluctuations in the system [1-6].
These fluctuations have been interpreted in terms of the
pump noise due to external random disturbances coupled
to the system. Moreover, the pump noise is treated either
as multiplicative colored noise in a dye laser
[1(c),2,3(b),4,5(a)] or as multiplicative white noise in cer-
tain theoretical analyses [1(d),3(a),4(b),5(b)-5(d),6]. The
quantum fluctuation representing spontaneous emission
is usually treated as additive white noise. Though the ad-
ditive and multiplicative noise are presented simultane-
ously in some real processes, both types of noise are as-
sumed to have different origins and are treated as in-
dependent random variables in most of the previous anal-
yses [1—6]. In certain situations both additive and multi-
plicative noise may have a common origin and thus may
be correlated as well.

In this paper, the steady-state fluctuations of a single-
mode laser with correlations between additive and multi-
plicative white noise are investigated theoretically. In
Sec. II the analytic expression of the steady-state laser-
intensity distribution function is derived through a one-
dimensional laser equation and the mean, variance, and
skewness of the laser intensity are calculated. In Sec. III
a comparison of the laser model containing two correlat-
ed noise sources and the one containing two independent
noise sources is presented. A discussion of the results
concludes the paper.

II. STEADY-STATE DISTRIBUTION FUNCTION

If only the intensity fluctuation is concerned, the phase
variable of the laser field can be eliminated [2(b),4,5].
Thus, the single-mode laser model containing two types
of correlated white-noise terms can be described by a
one-dimensional Langevin equation [2(b)]:

dx

P
=4 — 34 2
0t apx — Ax°+ 2% +xp (t)+q(t), (1)

where all the variables and parameters are real. The laser
intensity 7 =x? is dimensionless and the parameters a,
and A stand for net gain and self-saturation coefficients.
The random variables g (¢) and p (¢) represent the quan-
tum and pump noise. The statistical properties of the
noise terms are characterized by their first and second
moments:
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where P and P’ are the quantum- and pump-noise
strengths, respectively. The parameter A measures the
strength of correlations between additive and multiplica-
tive noise terms. If the random variables are changed to

qg(t)=mn,(1), (6)
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with
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Eq. (5) is still satisfied. Then Eq. (1) can be written as fol-
lows [7]:
dx 3, P —
— = - -— v P’
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+V1—A%xmy(t) (0SAS1). (11)

The corresponding Fokker-Planck equation for the
probability density function Q(x,?) of the amplitude of
the laser field x =V'T is given by [8]
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If the additive and multiplicative noise terms are in- 00 —t /L—I\ + __:
dependent random variables with A=0, Eq. (12) reduces 04l yd \\°°'é |
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The steady-state distribution function Q (x) can be ob- 00 -~ TN
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and N and N, are the normalization constants for Egs.
(13) and (14), respectively. For maximum coupling be-
tween the two types of noise sources, the coupling con-
stant A=1. Then the expectation values of the nth power
of the laser intensity I are given by

(== [ "x*Q(xdx , (17

where Q (x) is given by Eq. (14). The normalization con-
stant N is given by the equation

fo“’Q(x)dx=1 )

The mean, normalized variance, and skewness of the
laser intensity are given by the numerical integrations of
Eq. (17). The mean laser intensity is

(1)=f0°°x2Q(x)dx . (18)

FIG. 1. The distribution function Q(x) vs variable x for
'=1.32 with 4 =1and P =2: ,A=0; — — —, A=1.

The normalized variance of the intensity is

(1?)
A(0)= -1, (19)
2 (I)?
and the normalized skewness is
_ (1)
A4(0)= ? —3A,(0)—1. (20)

For independent noise sources, i.e., A=0 in Eqs. (13)
and (15), the mean, normalized variance, and skewness of
the laser intensity have already been calculated explicitly
in Refs. [4-6] and will not be reproduced here. These
two extreme cases (A=1 and A=0) will be discussed in
Sec. III.
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FIG. 2. The mean steady-state laser intensity {I) as a func-
tion of the pump parameter a, with 4 =1 and P =2: s
A=0 with (from bottom to top) P'=1.32 and 4.26; — — —,
A=1 with (from bottom to top) P'=1.32 and 4.26.
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III. COMPARISON OF LASER MODELS
WITH CORRELATED AND INDEPENDENT
NOISE SOURCES

To see the effect of coupling between additive and mul-
tiplicative white noise, it is necessary to compare the
laser model with correlated noise terms (A=1) and the
one with independent noise sources (A=0). The distribu-
tion function Q (x) is plotted in Fig. 1 as a function of the
amplitude x of the laser field for three different values of
ay. It is seen that the height of the peak of Q (x) goes up
as ay becomes small. There is a long tail in Q(x) as a,
becomes large. The peak of Q (x) shifts to a small value
of x as A changes from zero to 1. The value of Q(x) in-
creases as A increases from zero to 1.

The mean laser intensity (I ) is plotted in Fig. 2 as a
function of the pump parameter a,. It is obvious that the
mean laser intensity (I) increases as A increases when
the laser is operated below or slightly above threshold.
However, when the laser is operated well above thresh-
old, the mean intensity (I ) increases linearly with a, and
there is almost no difference between the curves of A=0
and A=1.

The normalized variance A,(0) and skewness A;(0) of
the laser intensity are plotted against the pump parame-
ter a, in Figs. 3(a) and 3(b) for two different values of P’.
The curves of A,(0) and A;(0) exhibit a peak before de-
creasing to zero. The magnitude of A,(0) and A;(0) in-
creases and the peak position shifts to smaller values of
a, as the coupling strength A is increased. Large devia-
tions in A,(0) and A;(0) between different values of A
occur when the laser is operated well below threshold.
However, the differences become quite small when the
laser is operated well above threshold. If the coupling
strength A is greater than zero but less than 1, the curves
of A,(0) and A;(0) should lie between the curves for the
two extreme cases of A=1 and A=0.

IV. DISCUSSION

The statistical fluctuations of a single-mode laser that
includes correlations between additive and multiplicative
white noise are investigated theoretically through a one-
dimensional laser model. The mean, normalized vari-
ance, and skewness of the steady-state laser intensity are
calculated through an analytic expression of the distribu-
tion function Q (x) for the coupling strength A=1. The
fluctuations appearing in A,(0) and A;(0) for A=1 are
much larger than that for A=0 especially when the laser
is operated well below threshold. The deviations in A,(0)
and A;(0) for A=1 and A=0 are quite small but notice-
able when the laser is operated near and above threshold.
The effect of coupling between additive and multiplica-
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FIG. 3. (a) The normalized variance A,(0) of the laser inten-
sity as a function of the pump parameter a, and (b) the normal-
ized skewness A3(0) of the laser intensity as a function of aq.
The parameters are 4 =1 and P =2. , A=0 with (from
bottom to top) P'=1.32 and 4.26; — — —, A=1 with (from bot-
tom to top) P'=1.32 and 4.26.

tive white noise can produce larger fluctuations in A,(0)
and )»3(0)

ACKNOWLEDGMENTS

The help of Yuhua Chen in the numerical computa-
tions is deeply appreciated. Financial support from the
National Natural Science Foundation of China is grate-
fully acknowledged.

[1] (a) K. Kaminishi, R. Roy, R. Short, and L. Mandel, Phys.
Rev. A 24, 370 (1981); (b) R. Short, L. Mandel, and R.
Roy, Phys. Rev. Lett. 49, 647 (1982); (c) P. Lett, R. Short,
and L. Mandel, ibid. 52, 341 (1984); (d) R. Graham, M.
Hohnerbach, and A. Schenzle, ibid. 48, 1396 (1982).

[2] (a) S. N. Dixit and P. S. Sahni, Phys. Rev. Lett. 50, 1273

(1983); (b) R. F. Fox and R. Roy, Phys. Rev. A 35, 1838
(1987).

[3] (a) P. Jung, T. Leiber, and H. Risken, Z. Phys. B 66, 397
(1987); (b) T. Leiber, P. Jung, and H. Risken, ibid. 68, 123
(1987).

[4] (@) R. Roy, A. W. Yu, and S. Zhu, Phys. Rev. Lett. S5,



2408 BRIEF REPORTS 47

2794 (1985); (b) S. Zhu, A. W. Yu, and R. Roy, Phys. Rev. [6] M. R. Young and S. Singh, Opt. Lett. 13, 21 (1988); Phys.
A 34, 4333 (1986); (c) R. Roy, A. W. Yu, and S. Zhu, in Rev. A 38, 238 (1988).
Noise in Nonlinear Dynamical Systems, edited by F. Moss [7]11. 1. Fedchenia, J. Stat. Phys. 50, 1043 (1988); 52, 1005
and P. V. E. McClintock (Cambridge University Press, (1988); A. Fulinski and T. Telejko, Phys. Lett. A 152, 11
Cambridge, England, 1989), Vol. III. (1991).

[5](a) S. Zhu, Phys. Rev. A 40, 3441 (1989); (b) 41, 1689 [8] H. Risken, The Fokker-Planck Equation (Springer-Verlag,

(1990); (c) 42, 5758 (1990); (d) 45, 3210 (1992). Berlin, 1984).



