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Unitary operator for an arbitrary number of coupled identical oscillators
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In view of a recent paper [F. Michelot, Phys. Rev. A 45, 4271 (1992)] tackling the Hamiltonian of an
arbitrary number of harmonically coupled oscillators, we present a coordinate representation of the uni-

tary operator that can diagonalize the Hamiltonian. The normally ordered form of the unitary operator,
which manifestly connects two Fock spaces associated with the uncoupled and coupled oscillators, is
also derived by virtue of the technique of integration within an ordered product of operators.
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I. INTRODUCTION

The coupled-oscillator model can describe some in-
teractions in atomic, molecular, and nuclear physics [1];
as a result, in Ref. [2] the solution for four harmonically
coupled identical oscillators has been found through a
unitary transformation approach. The coordinate repre-
sentation of the corresponding unitary operator is
identified and its normally ordered form is derived by vir-
tue of the technique of integration within an ordered
product (IWOP) of operators [3,4]. The normally or-
dered unitary operator can transform, in a straightfor-
ward way, the Fock space of four uncoupled oscillators
into the space in which the Hamiltonian of four coupled
oscillators is diagonalized. Generalizing the work [2],
Michelot [5] proposed a solution to the problem of solv-
ing the Schrodinger equation for an arbitrary number of
identical one-dimensional, harmonically coupled oscilla-
tors whose Hamiltonian is

II. COORDINATE REPRESENTATION OF U

We begin by identifying U with the following x-
representation for d & 3,

(d —1)/4 f" d'xiux)&xl, (2)

where (co/co)' " is a normalization coefficient antici-
pating the unitarity of U, as we shall see later, ~x) is the
coordinate eigenstate

we identify U with its coordinate representation and then
prove its unitarity. In Sec. III, we employ the IWOP
technique to derive U's normal product form, with which
we prove that this U indeed connects the two Fock
spaces. In Sec. IV, we analyze U in more detail to find a
new boson realization for su(1, 1) Lie algebra.

+ —,'mco2x, + —g (x; —x, )4„. /x) =
X)

=~x, x, x )
Xd

~ ~ ~ (3)

He also considered the relat on between the two Fock
spaces of coupled and uncoupled oscillators by using the
Lie-algebraic techniques and the permutational symmetry
of the problem. However, Mechelot only gave the opera-
tor, in his notation ' 'U, to relate the vacuum states of
these two Fock spaces. The form of ' 'U is not unitary; in
other words, this ' 'U cannot relate the excitation states
of these two Fock spaces. In the present work, we show
that the normally ordered unitary operator U connecting
the two Fock spaces can be easily derived by the IWOP
technique. Our work is arranged as follows. In Sec. II,

=~x, )~x, ) . . ~x„),

and u is a d Xd matrix given by (4). Let us explain the
matrix in more cletail. The symbols X(b, ) represent—[(d —1)(d —2)] '

y ( —[d(d —1)] ' y) respective-
ly, the elements in the first column are all d ', the ele-
ments below the center diagonal except for the first
column are all zero, and the new frequency
co=(co +kd jm )'~ is as Ref. [5] defines. In the Fock
space spanned by the eigenvectors of the uncoupled oscil-
lators, the state ~x) is expressed as in Eq. (5).
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(5)

where ~0) is the vacuum state, and a, and a; are related to x; and P; by
1/2 1/2

( + t) p mNA ai ai

1
(6)

To prove the unitarity of U, we first calculate the determinant of u by taking advantage of the fact that if a matrix B is
obtained from A by adding a multiple of one row (column) to another, then detB =det A. The result is

1/2 1/2 (d —1)/2
d —1

d
d 2
GI

—1
detu = ( —1) &d ( v' .'—r)( -v' ',—r)v' -,'r =r-' '=—

CO

Then we use the orthonormal property (x x, ) =5(x —x;) to calculate
(d —1)/2

UU = — Jd xiux)(uxor =1,

because the Jacobian of the integration variables' transformation is just ~detu
~
=(co/co)' "~ . As one can see from

Ref. [2], the coordinate representation of the unitary operator can provide us with a convenient way to calculate the
wave functions for H. Here, instead of doing that, we give the normal product form of U to explain why this U, defined
by Eq. (2), can diagonalize the Hamiltonian.

III. THE NORMAL PRODUCT FORM OF U

d
1/2

i=1
+a1

Using (3)—(5) and the normal product form of ~0) (0~
d

/0)(0( =:exp —$ a;ta; (9)
L

i=1

as well as the IWOP, we are able to perform the integration (2) [note that all the bilinear terms x;x (iWj) cancel each
other in the state

~
u x ) when expressed according to (5)]:

(d —1)/4
co oo 1U= dx, —exp. —x, +v'2x,
CO

' v'
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where

4COCO

(co+ co)

(d —1)/4
CO CO

exp
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d
tz y a tat

i=1 ij =1

Wz ——.exp[(a
&

a z
. a&)(F —I)(al az . . a&) ]:, (T means transpose operation) (12)

CO COW3—=exp Qa;
2(co+co); =p

with JL being the d Xd unit matrix and g indicating that the summation is restricted to i (j. In Eq. (12), F is also a
d X d matrix that possesses the same structure as (4), except y in (4) is now replaced by I,, e.g. ,
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(14)

Following the same procedures as used in deriving Eqs. (3.1)—(3.9) of Ref. [2], we obtain the transformation property of
a„(1( r (d ) and a

&
under the U transformation, e.g. ,

1/2 1/2
co+ co r —1 r —1

Ua„U a„— a„— a;
2+coco r " r —1,.

(16)

d
Ua&U '=d ' pa; =bz . (15)

i=1
Note that our bz and —b„ I have the same expressions as Eq. (5.1) of Ref. [5].Operating the normally ordered U on
the vacuum state of the uncoupled oscillators gives

Uio&=w, io& .
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a„+a„— g (a, +a; )
r —1.i=1

(.

(b„,+b„,)=
2m co

It is not strange to see that our W, is the same as Eq. (5.18) of Ref. [5], except for a minus sign difference in their ex-
ponents, because from the transformed operators b„, and bd we can define the Jacobian coordinates as

1/2 1/2 1/2

X r —1

1/2
r —1

vr( r'—1 );
1/2

(bd+bdt)=d '~ gx

(17)

(18)

Fquation (17) differs from the definition of Ref. [5] [see Eq. (3.2) of Ref. [5] by a minus sign. Nevertheless, this
difference does not affect the result of using our U to diagonalize the Hamiltonian. In our new coordinate system of
X„ i and Xd, the Hamiltonian is also diagonalized as (3.9) of Ref. [5].

IV. NEW BOSON REALIZATION OF BB(1,1) GENERATORS INVOLVED IN U

From Eqs. (10)—(13), we see that U is a rather complicated unitary transformation that includes frequency-jump-
related squeezing. Thus we need to analyze Eq. (11) in more detail. Taking d =4, for example, let us denote the opera-
tor in the exponential of 8'1 as R

4—pat' —g' atat=R t .
2 I l

i =1 i j =1

Using the commutator [a, , a ]=5;, we calculate

(19)

R R
4 ' 4

4
1 3+a, a, —(a&+a 3+a&)ai —(a i +a3+a4)az —(a

& +a&+a&)a3 —(a
&
+a2+a3)a~+6 =—2J . (20)

It then follows

R R—J4' 4'
R RJ J =J
4 7 4 (21)

L

which shows that R /4, R "/4, and J make up a su(1„1) Lie algebra. In other words, they are a new boson realization of
su(1, 1). Further, it is not difficult to know that U(d =4) can be decomposed as a product of a su(1, 1) transformation
exp[ —(R —R )Iny] and a rotation operator (this can be generalized to d )4 cases). Our analysis is consistent with the
observation that the Hamiltonian in Eq. (1) has a dynamical algebra isomorphic with su(1, 1).

In summary, we have presented the coordinate representation and normally ordered form of the unitary operator for
diagonalizing the Hamiltonian. The IWOP technique plays an essential role to normally order the structure of U,
which reduces Michelot's ' 'U when it operates on the vacuum state of the uncoupled oscillators. Equation (2) tells us
how this U is constructed in terms of a simple mapping of the classical transformation to quantum-mechanical Hilbert
space in Dirac s coordinate representation. The explicit expression of U is useful. For example, if we want to calculate
that density matrix ( x'

~ exp( /3H )
~

x ) =p„.„,—where /3 is Boltzmann's constant, we can rewrite it as
p„„=( x

~
U exp( —/3' ) U

~
x ), where & is d-independent harmonic oscillators, e.g. ,

d —1
co(a,a, + —,

' )+ca g a„~a„+
I' =2

The coordinate representation of U and the orthonormal relation (x, ~x ) =5(x,. —x ) then make the calculation very
easy, which again shows that solving the dynamics for a given Hamiltonian is equivalent to finding its diagonalizable
unitary operator [6].
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