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Relation between ideal and feasible phase concepts
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The isometry Ut, Ut U g UUt = 1, which relates the ideal phase measurement to the feasible phase
measurement based on heterodyne detection, is specified here. Consequently, the Shapiro-Wagner
phase measurement [IEEE J. Quantum Electron. QE-20, 803 (1984)] incorporates the ideal phase
concepts of Susskind and Glogower [Physics 1, 49 (1964)] or Pegg and Barnett [Phys. Rev. A 39,
1665 (1989)].
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Quantum-phase investigations belong to the topic of
quantum mechanics which attracts the attention of both
theoreticians and experimentalists. Since the community
of physicists still has not achieved a consensus, the pos-
sible treatments of the quantum-phase problem in quan-
turn optics difFer substantially. It is not the main aim of
this contribution to give an overview of various methods
applied to this problem. Instead of this, we will focus on
the two particular models introduced recently [1,2] and
we address the possibility to realize the ideal phase mea-
surement in the framework of the feasible phase concept.
Our motivation comes from the quantum estimation the-
ory [3]. Addressing the problem of phase measurement
on a single-mode field, the continuous phase-shift vari-
able 8 enters the displacement transformation of the in-
put field as lg(8)) = e ' "lg), n being ata The purp. ose
of a quantum-phase measurement is to get some piece of
information about this induced phase shift 8 by means of
registration of the continuous phase variable P. The fea-
sible measurement of the continuous phase-shift variable
may be treated in the framework of heterodyne (mul-
timode homodyne) detection [1] as measurement of the
phase of complex amplitude

&sw = ++ bt

This concept is known as Shapiro-Wagner (SW) phase
detection. Assuming the performance measure of the
phase resolution as dispersion [3,4]

the best measurement yielding the minimum dispersion
may be characterized as an ideal phase measurement
[2] associated with the measurement of the Susskind-
Glogower (SG) operator E = (n+ 1) ~ a. Nevertheless,
this is the prediction of quantum estimation theory only
and the experimental aspects of the possible realization of
such a measurement are unclear. The fundamental ques-
tion is this: is it possible to specify SW measurement
in a real experiment, which could tend to the maximum
performance allowed by quantum mechanics? We will
show that the SW phase concept includes the SG one,
i.e. , that for every signal state it is possible, at least in

1 for A + 0
0 for n (0.

Equivalently, these states may be associated with the
product of Fock states on both Hilbert subspaces accord-
ing to the rule

ln —m, min(m, n))) = lm)/ ln)/

and the first quantum number of the state In, m)) pre-
diets therefore the eigenvalue of the operator N = a,ta-
bt 6 so that

Nln, m)) = nln, m)).

Further, the basis of the relative-number states is com-
plete and orthonormal, satisfying for m & 0, —oo & n (
oo the relations

m=O n= —oo
(3)

principle, to specify the SW phase measurement yielding
the minimum dispersion.

Let us remember for this purpose the known results
associated with the ideal Susskind-Glogower phase con-
cept in the representation of the relative-number state
(RNS) basis introduced by Ban [5]. Let us consider
the system composed of two independent and distin-
guishable subsystems A and B. The full Hilbert space
can be written as 'R = 'R~ I3 'H~ and the annihilation
operators on both spaces will be designated as a and
6, respectively. The two subsystems can then be de-
scribed by the complete orthogonal discrete bases of Fock
states Im) ~ In) ~, m, n = 0, 1, ... , or alternatively by the
relative-number state basis generated by the states

ln, m)) = e(n)lm+n)~ lm)~
+e(—n —I)lm)AIm —n)~,

where —oo ( n ( oo, m & 0 and the function g(n) is
defined as
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Consequently, the unitary phase operator D may be de-
fined on the full Hilbert space 'H as

D = ) ) In —1, m)) ((rn, n, I,
m=O n= —oo

satisfying the relations

DD~ =DtD = 1

These states are orthogonal,

(ri, nlrb, g') = b„b(g —g'),

and provide the resolution of the identity operator in the
full Hilbert space

(13)

and the commutation rule

[D, N] = D. (6)

Moreover, the relation

In —1, g) = Rln, rl)

Moreover, the reduction of the operator D on the sub-
system A in the vacuum state IO) ~ of the system B tends
to the realization of the Susskind-Glogower exponential
phase operator on the (signal) Hilbert subspace 'R~ as

+ = +sw(+gw+sw)
a+ bt

at +b (8)

E = (ata+ 1) ~ a =a (OIDIO)~.

A similar treatment may be applied to the description
of the realizable SW phase concept. The unitary operator
may be formally treated as

may be easily concluded as the consequence of the defi-
nition of the states ~n, g) and the commutation rule (9).
Using this and the completeness of the LN basis (13), the
unitary exponential operator B may be decomposed as

d& ) (15)

This form represents the desired result analogous to the
decomposition (4) of the operator D in the relative-
number state basis.

Let us specify the relation between the two unitary
operators B and D. Let us define the operator U as

and fulfills again the commutation rule [6] ). 1»[n])) (rl &I. (16)

[R, N] =R.
Assuming the operator

Ystw Ysw = at a + bb~ + a~ 6~ + ab,

(9)

Consequently, the operators N and

the algebra of SU(1,1) generators may be introduced [7]
as

Ki = 2(aiba + ab),

K2 = (at bt —ab—).,2i
Ks ——zi(ata, + btb+ 1),

and the Casimir operator as

K' = K,' —K,'+ K,' = —,'N(-,'N+1).

Let us emphasize that in this notation the bra states
belong to the LN basis, whereas the ket states are the
relative-number states, [ ] being the integer part of a
non-negative number. One can easily verify that such an
operator fulfills the relation

UUt = ). l~ [~])) (([n] nl (17)

=). ). I ))((
m=O n= —oo

The orthogonality of the LN basis (12) was used in the
derivation of the equality (17) and the completeness of
the RNS basis (3) in derivation of the equality (18). Let
us emphasize that U is not a unitary operator, since the
relation

A t A A

—,YS~YS~ = K3+Ki
UtU = (19)

may be diagonalized simultaneously on the subspaces
characterized by the discrete index n, —oo & n & oo
yielding the eigenstates In, q), q & 0 being the continu-
ous variable

Nln, g) = nln, g),

(Ks+Ki)l~, g) = pl~, n)

These eigenvectors have already been investigated as
the so-called Linblad-Nagel (LN) basis [8] described by
the discrete parameter n and the continuous variable g.

is valid. The integration over g, g' is restricted by the
conditions

0 & g, g' & oo and [il] = [g'].

The operator Ut is therefore isometry ("one-sided uni-
tary"), since the norm of the state Ut Ig) is preserved

The relation between the unitary operators B and D
is now simply given as the transformation

UBU~ = D
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representing the main result of this contribution. Let us
emphasize that this relation cannot be simply inverted,
since U is not an unitary operator. Particularly, assum-
ing the relation (7), the Susskind-Glogower phase mea-
surement performed in the state ]g) may be treated as
the feasible measurement of Shapiro-Wagner performed
in the correlated state

dry ) g„~n, rl),
n=O

(22)

~(&+k] ~(kl& n) =
ql'(n + k + —,')I'(k + —,')

x W~+ +z +z (2'), (23)

where Wk+ ii +i is the Whittaker function and k, n &
2 i 2

0. The decomposition of the correlated state ~4') on the
full Hilbert space is then simply given as

~e) = ) 4„) Z„g~n+ k)~~k)~,
n=o k=0

where

(24)

Zn, k =
I'(k + n + —,')I'(k + —,')

1

dil W&+ +x -+i (2').+ ~

Our conclusion explicitly demonstrates the ability of
the feasible phase concept based on the annihilation of

where we used the decomposition on the Hilbert subspace
'R~ as ~Q) = QQ„]n) and the definition of the RNS (1).
We can also give a more explicit form of this state by
taking into account the known decomposition of the LN
basis [8]. The scalar product may be specified as

photons to incorporate also the ideal phase measurement
yielding the minimum dispersion. Of course, this result
cannot be interpreted as a suggestion of how to perform
the ideal phase measurement. The experimental aspects
are beyond the scope of this contribution and represent a
more complex problem. Let us mention some open ques-
tions concerning this topic: (i) It is not clear whether
the proposed solution is unique. (ii) The fields enter-
ing the SW phase concept are not mutually independent
but strongly correlated. It is not clear how the transfor-
mation U can be achieved experimentally.

It might seem that the fundamental problems of exper-
imental realization of the ideal phase concept are only
replaced by similar problems of different (in principle
feasible) phase measurement. Nevertheless, this is not
the main purpose of this contribution. The experimen-
tal motivation for ideal phase measurement is question-
able. Frankly, the only reason why the ideal phase con-
cept seems to be interesting is its (relative) mathematical
simplicity; there is no physical justification for the exper-
imental realization of such a measurement. Particularly
in the case of strong signal field, the SG phase measure-
ment is equivalent to the SW phase measurement with
the infinitely squeezed field on auxiliary input port [6].
On the other hand the ~2 times worse resolution may
be achieved for limited energy if the auxiliary field is
suitable matched to the signal in the SW model. Con-
sequently, the ultimate resolution predicted by the ideal
concept does not represent the optimum measurement.

The purpose of this contribution is therefore to sup-
port the role of the Shapiro-Wagner phase measurement
in quantum optics. This concept could be accepted as the
desired quantum-phase operator by theoreticians as well
as experimentalists. The measurement is feasible and the
accuracy is not far from the ultimate quantum resolution.
The ideal phase concept may in principle also be incor-
porated into this framework, even if it is not suKciently
clear why and how to do it experimentally.

This contribution was partially supported by an inter-
nal grant of Palacky University.
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