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Fabry-Perot interferometer for atoms
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We investigate the prospects of a Fabry-Perot interferometer for atomic matter vraves.

PACS number(s): 42.50.Vk, 32.80.Pj

The Fabry-Perot interferometer is arguably the most
important type of optical interferometer, and is ubiqui-
tous in spectroscopy and in the design of laser resonators.
In this article, we investigate the possibility of building a
similar Fabry-Perot device, but for the matter waves (de
Broglie waves) of neutral atoms. This study is motivated
by recent progress in atom optics, where Mach-Zehnder-
type atom interferometers have been demonstrated [1—4]
as well as by developments in atomic cooling and trap-
ping [5], where it is now possible to localize atoms in the
ground state of one-dimensional optical molasses [6—8].
As compared to these advances, a Fabry-Perot device for
atoms would present two immediate advantages: (a) in
contrast to the situation in a Mach-Zehnder interferome-
ter, it would produce a localization of the de Broglie wave
between the cavity "mirrors"; and (b) in contrast to op-
tical molasses, it would act as a coherent atomic trap, the
Fabry-Perot resonances r'esulting from constructive inter-
ferences between the de Broglie waves bouncing back and
forth inside the cavity.

An atomic cavity with light-induced mirrors has previ-
ously been proposed by Balykin and Lethokov [9], using
evanescent waves as mirrors. The present system oper-
ates in the quantum regime, where the center-of-mass
wave function is delocalized between the two mirrors. In
contrast, Ref. [9] considers the classical regime where the
size of the center-of-mass wave function is small com-
pared to the distance between mirrors. In this ballis-
tic regime, the confinement of the atom does not result
from constructive interferences between partial atomic
wave functions. Rather, it is akin to the classical con-
Bnement of a baH on a billiard table. Prom this point
of view, our system is more closely related to the recent
proposal [10] of a gravitational cavity operating in the
quantum regime. Note, however, that the gravitational
cavity lengths that are likely to be achieved in practice
are also of the order of milhmeters, corresponding to un-
resolvable mode spacings. Our proposed geometry offers
the considerable advantage of micrometer-size resonators
and resolvable longitudinal modes.

In contrast to one-dimensional optical molasses, the
proposed interferometer presents the advantage that the
atomic wave function would largely be localized in a
Beld-free region, with a number of obvious advantages.
In potential applications of the atom Fabry-Perot inter-
ferometer, the spectral selectivity of the interferometer
could be used to prepare atomic beams of excessively

high monochromaticity (see Ref. [11] for an alternative
approach also using a cavity). More interestingly, its co-
herent storage capability may be used, e.g. , to build "de-

signer atoms" out of neutral atoms, the center-of-mass
wave function playing the role of the electronic wave func-
tion in normal atoms.

We consider light-induced mirrors deriving from the
spatially varying dipole interaction energy between an
atom and a near-resonant optical field in regions of high
field gradient. We restrict our discussion to one spatial
dimension x perpendicular to the optical axis of the fields

that act as end mirrors of the interferometer; see Fig. 1.
One way to produce high field gradients is to use focused
laser beams. Although they invariably lead to unsta-
ble resonator configurations, the recent one-dimensional

(1D) molasses results show that one can still obtain longi-
tudinal modes with low diss'ipation. Purthermore, unsta-
ble resonators are advantageous in producing the cavity
modes of large transverse dimensions required for single
longitudinal mode operation, as discussed later on. Al-

ternatively, one might consider using evanescent waves

at concave surfaces [9], with the drawback that the res-

onator could then not operate in transmission. However,
the details of the cavity geometry are not essential for
the present discussion, which is mostly concerned with a
proof of principle.

We describe the atom in a two-level approximation in-

volving two electronic states ~e) and ~g) separated by a
transition frequency w close to the field frequency a~.
Transforming away the fast oscillations at the field fre-

V+ (x)

FIG. 1. Possible geometry of a Fabry-Perot device for
atoms, illustrating the potentials V+ and V due to the op-
tical fields, and sketching the resonant modes for the dressed
state

~

—).
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~

—)(x) = S(x)~g) = cos ~g)
—sin ~e)

8(x) . 6(x)
(2)

and

~+)(x) = S(x)~e) = sin ~g) +cos ~e),
8(x) 8(z)

respectively, where S(x) = exp[ —i6(x)02/2] and 8(x)
is the Stiickelberg angle, defined by 6 = A(x) cos8(x),
'R(x) = A(x) sin 6(x).

From the definition of the Rabi frequency A(x), the
eigenvalue V (z) is positive and can provide a repul-
sive potential for the atomic center of mass; in contrast,
V+(z) corresponds to an attractive potential which tends
to drag the atom through the optical field profiles. As-
suming for now that the electronic states adiabatically
respond to the dressing provided by the field as the atom
moves along the Fabry-Perot axis, we conclude that the
atom in the dressed state

~

—) behaves effectively as a
scalar particle in the repulsive potential V(x) =— V (x),
its dynamics being governed by the effective Hamiltonian

= p'H= +V(x), (4)

where p is the atomic center-of-mass momentum and M
its mass. Because of the need to reduce the effects of
spontaneous emission as much as possible, it is desir-
able that the dressed state

~

—
) evolves adiabatically into

the bare atomic ground state ~g) in the field-free region.

quency, the dynamics of the internal state of the atom is
governed by the Hamiltonian

H (z) = n-S~, ~ ——,'nZ. (x)~r (1)
where o, , i = 1, 2, 3, +, —are usual pseudospin opera-
tors, h—:ai —w is the detuning between the field and
the atomic frequencies, and 'R(x) is the (bare) Rabi fre-
quency of the atom-field interaction. Its x dependence
accounts for the varying intensity across the two field
profiles.

The local eigenvalues of H(x) are given by V (x) =
(h/2)IA(z) —6] and V+(x) = —(tr/2)[A(x) + 6], respec-
tively, where A(x) = gb~+ 7Z(x)2 is the local general-
ized Rabi frequency. The corresponding local eigenstates
are given by

The defining relation of the Stuckelberg angle and of the
dressed state

~

—) shows that this is accomplished for pos-
itive values of the atom-field detuning.

We restrict the following analysis to the sub-barrier
motion for which the center-of-mass energy E of the atom
is such that E ( V „=—~ (/7Zp + 6z —6). This is the
energy range where the light fields act most eKciently as
refiectors and the Fabry-Perot device should operate best
as a coherent storage device. Table I shows some values
for V „and peak Rabi frequencies 'Ro which may be
obtained from the focal intensity of a diffraction limited
laser beam (cr = A) of spectral power 10 mW/p, p = w

being the natural linewidth. Our estimates for the peak
Rabi frequencies are based on a relation I = I, (7Zp/p)
between Rabi frequency 'Rp = pE/h and intensity I =
tpeS /2, which is obtained by expressing the transition
matrix element p by means of the Eintein A coefficient
p—:~ ' = 4~sp~(4vre 3hcs) '—i.e. , I, = 27|eh/(3As~).

As is the case for conventional Fabry-Perot devices,
the double-humped potential V(x) efFectively imposes
boundary conditions on the solutions of the Schrodinger
equation, thereby selecting a quasidiscrete set of "res-
onant longitudinal modes" where the corresponding
center-of-mass wave function is large between the two
"mirrors, " and small outside.

To estimate the energies of the cavity resonances, we
temporarily replace the two barriers by impenetrable
walls. This is a reasonable approximation for center-
of-mass energies E & V „and barriers separated by a
distance I )) A, where A is the field wavelength. In an in-
finite square well approximation, the modes are sinelike,
with nodes at the mirrors. The wave numbers of the cor-
responding wave functions are integral multiples of vr/l.
The resonance energies are E„=(nba/l) 2/(2M), n inte-
ger, or in terms of the recoil frequency iv„, = vrh/MA,
E„=hu„, (nA/2l) —see Table II for some specific num-
bers. The number N of resonances in a well of finite
depth V „, N gV „/E„,2l/A is displayed in Table
I.

In potential applications of the interferometer as a ve-
locity filter for atomic beams, it is useful to express the
locations of the resonances in terms of the atomic veloc-
ity. With v = p/M and p = nhvr/l, we readily find that
the resonances are equally spaced with v„= nv„, (A/2l),

TABLE I. Relevant parameters for three possible atoms. The saturation intensity
I,2vrch (/A3~) and 7Zp corresponds to the intensity at focus of a diffraction limited laser beam
of spectral power 10 mW/p. The number of cavity resonances, N, is for a mirror distance l = 10A.

Na

He

Mg'

A (nm)

589

1083

16.3 ns

100 ns

4.6 ms

I, (W/cm )

1.25 x 10

3.28 x 10

0.95 x 10

Rp/2n (GHz)

151

81

0.025

R.p/6

1.0
0.1
1.0
0.1
1.0
0.1

V .„(10-'eV)

129
16
69
8

0.02
0.002

N (10 )

227
80
123
42
2.2
0.8

D2-line 3 Sry2 ~ 3 P3j2j see, e.g. , Kibble et al. , Phys. Rev. 153, 9 (1967).
Metastabie helium 2 Si ~ 2 P2 transition; see, e.g. , Sleator et al. , Appl. Phys. B 54, 375 (1992).' 'Sp ~ Pi intercombinatiorr transition; see, e.g. , Sterr et al. , Appi. Phys. B 54, 341 (1992).
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Na (589 nm)
He (1083 nm)
Mg (457 nm)

v„, (kHz)

25.0
42.5
39.3

TABLE II. Recoil values.

E„, (10 eV)

1.0
1.8
1.6

Vrec Cm S

2.9
9.2
3.6

T„, (10 K)

1.2
2.0
1.9

where v,« ——(2E„,/M) ~ is the recoil velocity of the
atom —see Table II. We note that although the velocity
spacing is smaller by a factor A/l « 1 than the recoil ve-
locity, such velocity resolutions should be experimentally
accessible.

It is important to realize that the small velocity spac-
ing required for single longitudinal mode operation im-
plies rather large transverse mode dimensions. Assuming
for simplicity that the longitudinal and transverse atomic
temperatures are the same, the separation of the longitu-
dinal modes also implies, e.g. , for the transverse direction
z, Ap, = hx/l, or, with AzAp, & h/2, Az & l/2~. For
l = 10A, this gives Az & 1.6A. A mode of such large
transverse dimensions is best maintained in an unsta-
ble resonator geometry. We can obtain an estimate of
the number of "bounces" that the atom will undergo be-
fore escaping the resonator from the well-known Gaussian
beam expansion relation iv (z) = ivp(1+ z /xp), where
zp = au)p/AgB, top is the Gaussian beam waist, and AgB
is the de Broglie wavelength of the atom. (Note that
this equation remains valid for unstable Gaussian modes
despite the fact that their waist is outside the cavity. )
With ivp l/2vr and A~B = 2l/n for the nth longitudi-
nal mode, we find that the transverse beam area doubles
after a distance z nl/8~. For effective mirror radii of
a few optical wavelengths, this shows that hundreds of
bounces can be achieved, thus allowing the resonator to
operate as a true Fabry-Perot interferometer.

Consider now quantum tunneling due to the finite
width of the potential walls. One can estimate its rate I'„
quasiclassically by noting that an atom in the nth Fabry-
Perot mode bounces at frequency 7„between the confin-
ing light walls, where r„= l/v„ is the time to travel from
one mirror to the other. At each bounce, it may tunnel
out with probability P„" such that I'„=~„P„'".When
compared to the frequency separation AE„/(7rh, ) = r„
this yields a quality factor Q = AE„/I'" = P„'".

The quasiclassical tunnel probability may be expressed
as P„'" exp (—jK„(x)dx), where the "tunnel inte-
gral" extends over the classically forbidden region and
K„(x) = (2M[V (x) —E„]/h )i~2. For resonances far
below the potential maxima, E~ (( Vm«, the tunnel in-
tegral can be estimated as ['Rp/~„„] ~2 where we have
assumed that the thickness of the classically forbidden
region is of the order of the diffraction limit A of the field
profiles. (This thickness would be somewhat smaller for
evanescent waves. } Typical laser powers correspond to
Rp )) (d, so that the tunneling probability is exceed-
ingly small, and the Fabry-Perot device is mostly suited
as a coherent trap rather than as a filter.

Beside ordinary tunneling, coherent trapping inside the
Fabry-Perot interferometer is threatened by nonadiabatic

(Landau-Zener) transitions between the quasibound level

~

—) and the unbound level ~+). Such transitions appear
if the atom cannot adiabatically follow the local changes
in the Rabi frequency R(x) as it bounces between the
mirrors. This situation is met most likely in the region
where the field driving of the atom takes over from its free
evolution, R(x) = b. Assuming a Gaussian beam profile,
'R(z) = 'Rp exp( —xz/2a2), nonadiabatic transitions oc-
cur predominantly in an interval Ax"z —a/r centered
around z"z = ari~2, where r = —21n(b/'Rp). Nonadia-
batic transitions will be strongly suppressed if the time of
flight of the atom through this region, A~„"z = Ax"z/v„,
is longer than a Rabi period 1/'R(x" ) = 1/b. For b »
Rp this is generally the case. For b « 'Rp and v jo « 'Rp,
the equality Kr" = 1/b gives an upper bound of the
critical Landau-Zener detuning as bLz —[R pv„ /a]

i~ 2.

Combined with the diffraction limit u ) A, the maxi-
mum trapping velocity v~ then yields 6 = w,«'RpLZ &/4 3/4

or b"z j'Rp = [~ «/'Rp]i~4. This and a quick glance over
the numbers in the tables confirms that it is generally
suKcient to work with detunings of at least one-tenth of
the Rabi frequency to suppress nonadiabatic transitions.

We finally turn to the ultimate threat to coherent
atom optics, spontaneous emission. Treating the atomic
center-of-mass motion classically, the probability to un-
dergo a spontaneous emission act during a time in-
terval dt while the atom is at x = z(t) is given by
dPP = ddt sin 8(x)/2, where p is the natural linewidth
and sin 0(z)/2 = V(x)/[M(x)] is the excited state pop-
ulation. Using dt = dx/v(x) with v(x) = +(2[E—
V(x)]/M) ~2 being the local velocity of the atom, we ob-
tain for the probability to undergo spontaneous emission
during one roundtrip

sE „V(z)
hA(z) 2[E —U(x)]

'

where the integral extends from the left to the right turn-
ing point and back. The results of a numerical evaluation
of this integral are displayed in Table III for various val-
ues of the atomic energy and detuning. For radiatively
strong transitions such as the D2 line of Na, the sup-
pression of spontaneous emission requires a detuning of
the order of 10 Rabi frequencies. In contrast, for weak
transitions such as the intercombination transition of Mg,
no significant detuning is required. Table III also shows
that the low lying states are most robust against spon-
taneous emission. This is because at larger energies the
atom penetrates deeper into the reflecting laser fields and
requires more Rabi flops to reverse its momentum.

In summary, we have demonstrated that a Fabry-Perot
device for atoms may indeed be feasible. Such a device
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TABLE III. Spontaneous emission probability per round-
trip, Pz, for various values of the atomic energy and detun-
ing. The mirror distance / = 10A and the Rabi frequencies as
displayed in Table I.

Na (589 nm)

He (1083 nm)

Mg (457 nm)

1.0
0.1
1.0
0.1
1.0
0.1

PsE&=0 5Vmax

0.08
0.19
0.013

2.4 x 10
1.7x10 6

psE&=O.& Vmax

0.02
0.06
0.004

7.3x10 '
4.7 x 10

could be used as a Filter for atomic beams, as an ordinary
Fabry-Perot device is a frequency Alter for light. How-
ever, the small tunneling rate through the light mirrors
practically limits this application to atomic energies close
to the maximum of the potential barriers.

More interestingly, the resonant one-particle states de-
scribe atomic wave functions which are coherently de-
localized over the macroscopic cavity volume. As such,
they may be considered in much the same way as elec-
tronic wave functions in atoms, which are coherently
spread throughout an orbital. Carrying out this anal-
ogy further, we may envision the possibility of building

truly macroscopic "designer atoms" by efFectively treat-
ing the Fabry-Perot interferometer as the "nucleus" of
the "atom. " Since atoms come in two species —fermionic
or bosonic —an atom Fabry-Perot would even be isotope
selective [12]: A particular resonance mode may be filled
with an unlimited number of atoms if the atomic spin
is integer (like 4He), while it may be filled with at most
2s+ 1 atoms if the atomic spin is half-integer (like sHe).
It is evident that a proper analysis of isotope sensitive
many-atom efFects requires taking into account the mu-
tual interaction of the atoms in the cavity.

The present discussion omits a number of effects that
need to be considered when designing a practical device.
They include a detailed discussion of transverse effects,
in particular for unstable resonator configurations. An-
other important efFect is gravity, which is important at
the atomic velocities considered here. These, and a de-
tailed presentation of our calculations, are planned to be
discussed in the future.
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