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Ionization suppression in a very-short-range potential
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We study numerically the photoionization of a one-dimensional model atom, with a very-short-range
potential, in the Kramers-Henneberger frame. In the range where suppression of ionization is found, the
ground-state depletion follows a well-fitted exponential decay. The decay rate has been examined for
different values of the laser frequency and for different intensities. Comparisons with existing analytical
predictions are made where appropriate.
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I. INTRODUCTION

Our knowledge of atomic ionization processes under
strong radiation fields is still incomplete. When the radi-
ation field strength is comparable to the typical atomic
Coulomb field strength, we enter a new region where nu-
merical simulations are a fundamental tool in under-
standing the underlying physical effects. Very recently,
numerical solutions of the Schrodinger equation have
been important in advancing our understanding of cer-
tain unexpected effects such as ionization suppression
(atomic stabilization) and electron localization by very
short laser pulses [1—10]. Ionization suppression, or
atomic stabilization, means that the ionization rate be-
comes a decreasing function of the laser intensity. Both
stabilization of the population in Rydberg levels [6,11,12]
and stabilization of atoms in the ground state [9,10] have
been described in quantum-mechanical theories, and dis-
cussions of stabilization based on classical Newtonian
equations have also been presented [8,13].

In some cases it has been reported that the residual
ionization in the stabilization regime is quite slow, with
well-defined linear rates [4]. Analytical expressions to
predict these slow ionization rates are just beginning to
be reported [14—17]. Few laboratory experiments related
to stabilization phenomena are in progress [18]. There-
fore we consider that numerical tests of these analytical
predictions are desirable.

In the original formulation of stabilization theory,
developed by Gersten and Mittleman [19] and Gavrila
and co-workers [20,21], a laser field of asymptotically
high frequency and high intensity was assumed. They
showed that, under such conditions, the atom remains
stable against both ionization and bound-state —bound-
state transitions because the Hamiltonian that describes
the system (including the field-atom interaction) is well
represented as being time independent in a convenient
reference frame. This is the time-averaged Kramers-

Henneberger coordinate frame [22,23]. In this frame the
entire atom-field interaction is exactly converted to a
time-dependent shift of the argument of the atomic po-
tential. For a sufficiently-high-frequency laser field, the
oscillating potential can be replaced by its time average,
which is a function with two minima instead of one. For
a sufficiently high intensity, the ground state of this new
potential is represented by an electronic wave function
clearly localized near the positions of these two wells, an
effect often referred to as dichotomy. The Kramers-
Henneberger picture has been used very directly, for ex-
ample, for the interpretation of atomic stabilization and
electron localization in electron wave-packet calculations
for one spatial dimension by Su et al. [1,3], Reed and
Burnett [7], Reed, Knight, and Burnett [5], and Ku-
lander, Shafer, and Krause [9] for three spatial dimen-
sions.

The observation of slow ionization raised again the
question of whether a modified perturbation approach
can still be efficient in understanding the physics in an
intense-field domain. So far there are only a few analyti-
cal theories bearing on the question of ground-state sta-
bilization. They are generally restricted in validity by the
use of some form of perturbation theory and the assump-
tion of asymptotically high frequency. Attempts based
on this idea have been applied in analyzing simple mod-
els. These analyses were argued to be accurate for
asymptotically high frequencies, while the question
remains as to how effective they are in the moderate high
frequencies. By moderate high frequency we mean here
photon energies comparable to the atomic ionization po-
tential.

In this paper we present a relatively simple numerical
model for strong-field laser-atom dynamics. We will deal
with a one-dimensional atomic model and we will consid-
er a very-short-range potential. In fact, a short-range po-
tential represents the photodetachment of an electron
from a model negative ion [24] rather than the ionization
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of a neutral atom. Our very-short-range potential can be
considered as a reasonable introductory approach to the
study of negative ions. The advantage of this model is
that it has been analytically studied by other authors
[15,16], so it represents a good test to understanding the
relevant mechanisms leading to stabilization. Moreover,
by studying the photodetachment dynamics for this mod-
el we will find for certain regime rather simple empirical
expressions for the residual probability defining the elec-
tron still in a bound state after the pulse.

We will consider only the nonrelativistic problem, al-
though for the upper limit of the intensities considered in
this paper this assumption can be questioned. The in-
teraction Hamiltonian is considered in the electric dipole
approximation. The laser field will be taken in the form

E(t)=6'f (t)singlet,

where f (t) is a pulse-shape function with unit amplitude,
and 6 is the peak field strength. In this paper we calcu-
late the time evolution of the electron's wave function nu-
merically in the Kramers-Henneberger frame. In this ap-
proach, the relevant parameter of the theory is a0, the
classical excursion amplitude of a free electron in an os-
cillating external field with peak field strength 6 and fre-
quency co

g(x, t)=&ge e (4)

1
i P~H(x, t)= —— + V(x+a(t)) QKH(x, t) (5)

where ED= —g /2 is the bound-state energy and g )0 is
the strength of the 6-function potential. However, this
state will not be the initial state in our computations.
Our interest is in the nature of the photodetachment pro-
cess at a given intensity, and we will neglect all practical
complications arising from the turn-on of the laser pulse.
Thus we will assume that the atom is initially prepared in
the corresponding Kramers-Henneberger ground state, a
condition assumed also in the theoretical work with
which we will compare our results.

By doing so we are not able to answer the question
about the degree of stabilization. Instead we study the
residual ionization rate once the atom or negative ion
survives a smooth turn-on of the laser pulse. Clear evi-
dence from other simulations [4] suggests that having a
significant fraction of the population pumped into very
few Kramers-Henneberger eigenstates just after the
turn-on is a reasonable assumption.

The Schrodinger equation in the Kramers-
Henneberger (KH) picture is well known to take the form

a =eW/mes =6'/co (2)

(in atomic units). We have monitored the ionization pro-
cess by analyzing the depletion of the ground-state popu-
lation. For a wide range of frequencies and laser intensi-
ties (0.25&co& 1.41 a.u. , 1.3X10' &I &9X10
W/cm ), we have found depletion to be well represented
by a pure exponential decay.

We present a survey of the decay rate considered as a
function of both a0 and co. We show that the decay rate
appears to follow simple scaling laws. We compare these
scaling laws with the analytical predictions done by
Grozdanov, Krstic, and Mittleman [15]. We have
verified that for a large range of field parameters the scal-
ing relations hold very well. The numerically found
values of these rates are more than one order of magni-
tude smaller than these recent analytical predictions.
Nevertheless, we have been able to identify the origin of
this discrepancy.

II. DESCRIPTION OF THE MODEL

The very-short-range atomic potential is mathematical-
ly represented by a Dirac 5 function [25,26]. In the usual
reference frame, the laboratory frame, the Hamiltonian
that describes the evolution of the electron is, using di-
pole approximation,

and the time dependence is now included in the
Kramers-Henneberger potential

V(x+a(t)) = —g5( +xa(t)), (6)

V(x +a(t) ) = g V„(x,a0)e

where the coefficients of the expansion are

where

a(t)= —f dt" fE(t')dt'=a+(t)sincot .

Obviously the second equality holds for f (t) =1, but it is
also true whenever f (t) is a very smooth function of the
time. The classical excursion amplitude aa was defined in

(2).
It is easier to solve the Schrodinger equation in the

Kramers-Henneberger frame (5) than in the laboratory
frame (3). In the former case, only the points between
+a0 and —cxa contribute to the potential, while in the
latter case the electric dipole interaction term is unbound
for large Ix I.

To be more precise about the meaning of the
Kramers-Henneberger eigenstates, which is necessary at
the initial time of our calculation, we make a Fourier-
Floquet expansion of the potential (6)

(3)
1

i P(x, t) = —— go(x) xE (t) g(x, t) . — —
9t 2 g&~

1 +~
V„(x,a0)= f V(x+a(y))e'"+dy, y=cot .

2&
(9)

here and throughout this paper we adopt atomic units,
for which m =e =6= 1.

Before the field is turned on, t (0, the electron is
bound by the 5-function potential and the bare ground-
state wave function is

Now we neglect, as usual, all the terms except for the cy-
cle average of the Kramers-Henneberger potential. This
is obviously better justified the greater the laser frequency
compared to the characteristic frequency of the ground
state of the system in this frame. This is the origin of the
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asymptotic assumption made in the earliest treatments.
The surviving term reads

Vo(x, ao) = — f 5(x +a(y) )dy2~

g
z sir~ ' ~ ~

— o~
~(ao —x )

0, (10)

can be obtained using standard numerical techniques, and
the only two points that need some special consideration
are the two singularities at x =+ao [27j. These eigen-
functions form a complete set of states. As usual, the
wave function is

KH(x, t) =@KH(x)e (12)

where the quantum number specifying each state is omit-
ted. Equation (11) cannot be worked out analytically.
Some approximate solutions have been reported [16].
These were obtained by replacing the static dressed po-
tential Vo(x, ao) by an approximated dressed potential
with two 5 functions at the singularities (x =+ao), prop-
erly normalized in order to preserve the original area.
Although the singularities are fairly well represented by
the 6 functions, the approximation will work correctly
only for asymptotically high values of ao. Moreover, the
number of eigenstates that can be supported by two 6-
function potentials in one dimension is equal to 2. How-
ever, the true Kramers-Henneberger version of a 6-
function potential can support a finite number of bound
eigenstates, and the number of bound eigenstates in-
creases with ao. Therefore we solve numerically Eq. (11)
without introducing approximations.

This new potential Vo(x, ao), the so-called "dressed" po-
tential, has of course an area equal to g. Here and
throughout we will consider g =1, to work in an energy
regime similar to that of the electron in a hydrogen atom
(the energy of the bare ground state, in the laboratory
frame, is —g /2= —0.5 a.u. ). The dressed potential has
been depicted in Fig. 1. If ao) 0 it always presents this
two minima structure.

The solutions of the time-independent Schrodinger
equation of the dressed atom in the Kramers-
Henneberger frame,

1 a' + Vo(x +0) @KH(x) +KH@KH(x)
2 ax2

~&o«o)~ "&o '" (13)
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We have sought the eigenvalues and eigenfunctions of
the bound states of the Kramers-Henneberger static po-
tential for uo ranging from 0 to 100 a.u. It corresponds
to the interval of laser intensities that we will study in our
simulations. We find from one to six bound states de-
pending on the value of ao. The results are plotted in
Fig. 2, where we can see the energies of the bound states
for different values of eo. As the potential is central, par-
ity is a good quantum number, and the eigenstates are
even or odd.

The behavior of the eigenvalues is clear. For very
small o;o this Kramers-Henneberger potential has only
one bound state with even parity which is very similar to
the bare potential ground state. When ao increases, the
ground state begins to be able to reAect the two-well
structure of the potential. Then it starts to present a typ-
ical structure with two maxima around x =+no and a
minimum close to x =0 (dichotomy of the wave func-
tion). Increasing ao larger than about 8 a.u. , a new
bound state, of odd parity, appears. Because of the parity
of this new state, at x =0 its wave function vanishes. As
ao increases, the dichotomy of the ground-state wave
function is more clear and therefore its amplitude at
x =0 is smaller. This implies that for very large o.o,
ao) 50 a.u. , these two bound states are effectively degen-
erated. Finally, pairs (even-odd) of quasidegenerate states
are found at large o.o.

We have also analyzed the behavior of the ground state
as a function of the classical excursion amplitude ao. Di-
chotomy start to be significant for relative small o.o values
(ao) 5 a.u. ). Even so, for small ao, the two singularities
of the potential are so close that the mutual inhuence is
important. Only for values of o;o~ 50 a.u. are there sim-

ple scaling laws for the ground-state energy ~Eo(ao) ~

and
a scaling law for the ground-state wave function at the
"return" points

~
@(ao)~:

+ CX

0

10
n (au)

0

100

V (x, o, )
0 0

FIG. 1. The static dressed potential Vo(x, ao) in the
Kramers-Henneberger frame.

FIG. 2. Eigenvalues of the static dressed potential in the
Kramers-Henneberger frame, as a function of ao. As ao in-

creases, quasidegenerate pairs of odd-even wave functions ap-
pear. Even states (n = 1,3, 5) and odd states (n =2,4, 6) are in-

dicated by the quantum number n, being n =1 the ground state.
The bare ground state (the bound state for ao=O) lies far below
the window of this drawing (it is the end of the continuous line
n = 1 that goes down as ao decreases).
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co=0. 5 a.u. and a =60 a.u. The e6'ect of considering the
population of all the excited bound states will change the
total ionization population by an amount less than
2X10 '.

III. COMPUTED DETACHMENT RATES

co, XI (co, )=co~XI (co~) . (17)

Therefore we can suggests a simple empirical expression
for the decay rate in this range of values of both intensity

each frequency, for a constant o.0, leads us to a simple
empirical relationship

We define the detached population as usual:

P;,„=J l(t/l (x, t)lu" (x))l dk

=1—y l(q (x, t)la" (x) &I', (15)

10 '

10

where u ~H (x ) and @KH(x ) are the free (positive-energy)
eigenstates and bound eigenstates in the Kramers-
Henneberger frame. Because the number of bound states
is always finite, and not large for this potential, the
second form of Eq. (15) is easier to calculate.

Rather than keeping our attention on the detached
population, let us now consider the ground-state de-
pletion, which is mainly responsible for the dynamics.
What we obtain, as shown in Fig. 5, is a very-well-fitted
exponential decay (for each value of ao and co). This al-
low us to define in a unique way the decay rate of the pro-
cess, so we can write the time dependence of the
Kramers-Henneberger ground-state population as

P „„„d(t)=Ps„„„d(0)e

In order to know the dependence of the decay rate I on
ao and co, we have obtained the ionization rate for four
different laser frequencies (co=0.25, 0.5, 1, and 1.41 a.u. )

and a wide range of values of ao (from 10 to 80 a.u. ).
This corresponds to a huge range of intensities, between
3.5X10' and 9X10 W/cm which are mostly still far
away from experimental parameters now available. Ex-
cept for the case co=0.25 a.u. , the lowest frequency stud-
ied, we have considered the square pulse only of 15 opti-
cal cycles instead of the standard 30 optical cycles.

If we plot the decay rate versus o.0, as in Fig. 6, it is
clear that the behavior within a large range of a0's and
~'s is well described by a straight line. From now on we
will constrain ourselves to this regime. On the other
hand, a careful analysis of the rates I associated with

10

10

10'

103

10

10'

10

10

10

10'

(X
0

fo = 0.25

co = 0.5

100

100

100

0 1.0 I I I I
I

I I I
I

I I I
I

I I I

0 cx =80-
Q
&D

0.5

0 +=24
0

cx =16
0

0.2 I I I I I I I I I I I I I I ) I I ) I

0 50 100 150 200 250

0

time {a.u. )
FIG. 5. Ground-state depletion, in logarithmic scale, vs time.

It corresponds to a square pulse of frequency co=0.5 a.u. and
several values of ao. One can observe that the decay is well as-
sociated with a pure exponential.

10
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10

O,
0

co = 1.41

100

FIG. 6. Ground-state decay rate I vs the electron's classical
excursion amplitude ao (both in atomic units) for four different
values of the laser frequency, ~=0.25, 0.50, 1, and 1.41 a.u. , cal-
culated from the numerical simulation (dots). These dots have
been then fitted by a straight line in each case, according to Eq.
(18).
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and frequency: I (P)r= ln(2coao),
COCXp

(22)

I (ao, co) = A, (co)+
COep

(18)

b, T=Axo/v =1/(coao) (19)

in the vicinity the potential every cycle. Thus there is
only a probability Pd„, = I 6T that the electron becomes
ionized every cycle. Now we can apply (18) and evaluate
this probability:

where A2 is found to be close to a constant ( 22=0.07
a.u. ) We do not have enough data to get an accurate ex-
pression for A, (co), but its contribution to expression (18)
is always smaller than the term proportional to A2. We
will neglect the A I(co) term in this paper and focus on
the validity of a detachment rate inversely proportional
to map.

There is a restriction on the parameters o:p and co cor-
responding to this ionization regime inversely propor-
tional to coap. The restriction amounts to the satisfaction
of the inequality apso 10 a.u. This product is the ampli-
tude of the classical velocity of the electron in the field.
This restriction can be interpreted as follows. First, we
understand that ionization is possible only when the laser
field and the binding potential act together. Neither is
adequate by itself. In the Kramers-Henneberger frame
the oscillations of the binding potential past the (almost
stationary) electron are relatively rapid and the electron
only spends an amount of time

where I' ' is of the order of unity and independent of co

and ap. Our numerical results show good agreement with
the general behavior of expression (22), but very poor
agreement with the numerical values of the width. Our
numerical rates are approximately one order of magni-
tude smaller than those predicted by expression (22); in
other words, our rate fits (22) for I ' '=1/35 a.u. For
this reason, instead of making some approximations on
the dressed potential and therefore on the initial wave
function, we directly use the computed values of I@(ao)I
already showed in Fig. 3(b) to evaluate the width through
expression (21). Then we compare it with the results ob-
tained from the ground-state decay plots. In this range of
parameters ( 10~ ao ~ 100 a.u. and 0.25 ~ co + l.41 a.u. ) a
good fit with the behavior o;p is also suitable without
contradicting the ao ~ behavior of Eq. (22). In Fig. 7(a),
we plot the analytical prediction (21) for the range of pa-
rameters tested in our numerical simulations. We have
included the linear fit of these data in order to better
compare with our the numerical results, which are re-
peated in Fig. 7(b) at the same scale and also with the
linear fit. Actually, the agreement between both
results —expressions (18) and (21)—is quite good, taking
into account the approximations made in the analytical
calculation.

10'

decay
CO O.'p

(20)
10

(per cycle). For velocities above the "critical" value
v =10 a.u. we are safely in the regime where ionization
occurs with negligible probability (Pd„,„(10 ) during
a typical encounter of the electron and the potential.
Below this critical value of velocity we enter into another
regime of ionization where the overlap time during an en-
counter is long enough for ionization to be significant.

IV. COMPARISON
WITH ANALYTICAL PREDICTIONS

10

10

10'

- analytic prediction

10

- ~ ~ oa
~ gg 4~y ~

100

0.25

0.5
1

1.41

(b) -'

Now we will compare our numerical results of the
ground-state decay with the predicted rate found in the
literature [15,17]. For this potential, and assuming that
the frequency of the process is high enough so that the
final state is considerable as a plane wave, the properly
normalized decay rate is given by

10 =~

10

10
numerical fit

~ ~

co = 0.25

co = 0.5
(0= 1

co = 1.41

100

21C (a, ) I'
I = g —[ 1+( —1 )"sin(2ao&2n co ) ]

7T COAp
(21)

after imposing the condition that q„ap&)n, where q„ is
the final momentum of the electron (q„=&2nco). The
main difhculty in evaluating this expression comes from
the lack of knowledge of the initial wave function. Csroz-
danov, Krstic, and Mittleman [15] used some approxima-
tions for the initial wave function that allows to reduce
the above expression to

O,
0

FIG. 7. Comparison between the analytical prediction and
the numerical result. Both drawings represent the ground-state
decay rate I vs the electron's classical excursion amplitude o.0
in atomic units, for four different values of the laser frequency,
co=0.25, 0.50, 1, and 1.41 a.u. Dots in (a) show the results of
the analytical prediction (21) at the same laser intensities stud-
ied in Fig. 6. They allow a reasonably good linear fit. (b) is a re-
petition of the numerical results (dots) with the corresponding
linear fit suggested from (18).
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V. CONCLUSIONS

We have analyzed the behavior of the ground-state de-
cay in the ionization-suppression regime, in the
Kramers-Henneberger frame. We have been working
with square pulses and with the atom initially prepared in
the Kramers-Henneberger ground state corresponding to
the pulse intensity, without considering the dynamics
during the pulse turn-on. Numerical computations show
that for high intensities, but for frequencies close to the
ionization potential, the decay is nearly purely exponen-
tial and slow. This allows one to identify a unique rate
associated with each process. This rate has been com-

pared with the analytical expression developed by Groz-
danov, Krstic, and Mittleman [15], and qualitatively
good agreement has been found.
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