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Atomic population inversion and enhancement of resonance Auorescence in a cavity
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We investigate properties of a two-level atom coupled to a single cavity mode, and driven by a strong,
in general oA'-resonance, external field. The cavity field is tuned to resonance with a Mollow sideband.
We show that the steady-state atomic population may be highly (nearly totally) inverted, a phenomenon
forbidden in semiclassical theory, and that a strong enhancement of the resonance fluorescence results.
This system is suggested as an alternative approach to create the atomic inversion necessary for laser or
maser generation without using additional atomic levels. We also investigate properties of the cavity
field, derive an analytical expression for the photon number distribution in the good cavity or strong-
coupling limit, and discuss the conditions under which this system acts as a single-atom dressed-state
laser.

PACS number(s): 42.50.Hz, 32.80.—t, 42.50.Dv

I. INTRODUCTION

The properties of a system of atoms interacting with a
cavity field have been the subject of intense investigation
in recent years in the context of cavity quantum electro-
dynamics [1]. Many interesting quantum effects have
been observed; among these are the enhancement and
suppression of spontaneous emission [2—5], vacuum Rabi
splitting [6—8], micromaser action [9,10], and the
collapse-revivals of the atomic inversion [11].

The system consisting of a single atom coupled strong-
ly to a single quantized cavity mode, and driven by a
coherent external field, has been theoretically investigat-
ed extensively, including the efIects of cavity damping
and spontaneous emission. Dynamical suppression of
spontaneous emission [12], suppression of fiuorescence in
a lossless cavity [13], the steady-state spectrum of reso-
nance fiuorescence in a cavity [14—16], collapse and re-
vival phenomena in the optical domain [17], single-atom
optical bistability [18], photon antibunching and squeez-
ing [19], and the one-atom laser [20] have all been dis-
cussed. Very recently, very-high-Q cavities have been
constructed for optical frequencies [6,7,21,22], allowing
the testing of this model; the vacuum Rabi splitting of a
single atom in a cavity has been observed [7].

In this paper, we investigate properties of a two-level
atom coupled to a single cavity mode, and driven by a
strong external field. Unlike previous works [12—16], we
consider an ofF'-resonance external field, with the cavity
tuned to resonance with a Mollow sideband. First, it is
shown that the steady-state atomic population may be
strongly (near totally) inverted, a phenomenon forbidden
in semiclassical theory. This result is in sharp contrast to
the case of exact resonance [15], where only a very small
population inversion has been reported. This scheme is
suggested as a quantum approach to create the inversion
necessary for laser or maser generation without the use of
additional atomic levels. Second, a strong enhancement
of the atomic resonance fluorescence is predicted. Final-
ly, we investigate the properties of the cavity field, derive
an analytical expression for the photon-number distribu-

tion in the strong-coupling limit, and discuss conditions
under which this system acts as a single-atom dressed-
state laser.

II. MASTER EQUATION

where

a + ~ (o22 o 1 1 )+g(~12 + o21

+E(o.2, +cr,~),

L,p=2apa —a ap —pa a,
L,p —2o &2po. &&

—o 2&o. &2p
—po 2&o. &2 (4)

Here L, and L, are operators, representing the damping
of the field via cavity decay and of the atom via spontane-
ous emission; k is the cavity decay rate; a and a are the
cavity-mode (boson) annihilation and creation operators;
cr, are th"e atomic operators o. ,"=

~i ) (j (i,j = 1,2);
6, =~, —coL, 5, =co, —~L are the detuning of the atom-
ic resonance frequency co, and of the cavity-mode fre-
quency co, from the driving field frequency coL. Equation
(1) is the master equation describing resonance fluores-
cence of the atom in the cavity and has been integrated
numerically for the case of exact resonance 6, =6, =0 in

We consider a two-level atom, with excited state ~2),
ground state

~
1), and transition frequency co, . The atom

is coupled to a cavity mode with coupling constant g,
driven by a coherent external field at a frequency col with
resonant Rabi frequency c, and damped at the rate y by
spontaneous emission to modes other than the privileged
cavity mode. For an optical cavity in which the field
mode subtends a small solid angle, y is approximately
equal to the Einstein 3 coe%cient. For simplicity, we
treat the driving external field classically [12—16]. In the
interaction picture the master equation for the system of
atom-plus-cavity field has the form [13—16]

—p = i [H, p ]
—+ ,' kL,p+ ,' y L,—p, —a
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The master equation is then rewritten in the form

(6) p= —i [Ho+H;„„p]+,'kL, p—+,'yL, —P,atwhere

Refs. [15,16]. We focus here on the case with b,, and b,,
not necessarily zero.

Equation (1) is written in the basis of the atomic Hil-
bert space ~i ), i =1,2. We introduce instead the dressed
states [23,24]

(8)

(10)

(12)

cosP= —'+
4Q

(7)

0=—,'(b, , +4s )'~ is the Rabi frequency in the detuned
field; and the "rotation" angle P belongs to the interval
[0,(1r/2)]. In the basis ~i ), the operators o," are re-
placed by dressed-state operators R, =

~i ) (j ~
and

+ga [—,'sin(2$)R3 —sin QR, z+cos QR2, ],

where

Ho=QR3+A, a a,
H;„,=ga [ —,'sin(2$)R, —sin PRz, +cos PR,z]

(13)

(14)

L,p =2[—,
' sin( 2P )R 3
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—sin PR 1 z +cos PR z 1 ]

—
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As is well known [24—28], fluorescence of the atom occurs at the laser frequency ail and at the two sideband frequen-
cies col +20.

We now focus on the case of 6, =20, i.e., the cavity field is tuned to exact resonance with the high-frequency side-
band (however, we note that the tuning 6, = —20 will produce the same results with b, , —6, ). We make the uni-
tary transformation

iHot —iHotp=e pe

and ignore rapidly oscillating terms [29,30]. The master Eq. (1) in the dressed state basis reduces to

a-=
djt

p= —ig, [Rz, a+a R,z,j]+,'L,p+ —si—n (2$)(2R3pR3 PR 3
—R 3p)—

8

(16)

+—cos f(2R izpR21 pR„R „R—„R„p)+——»n $(2R21pR12 pR „R„—R—„R„p),4 4

2 2
(17)

where

gi =g cos P (18)

is the "effective" coupling constant. The errors of this
"secular approximation" are of order y /Q, g, E, /0,
where E, is the amplitude of the cavity field. The ap-
proximation is therefore valid when the driving field is
strong or the detuning b,, large so that [29,30]

A))y, g, E, . (19)

In the ideal case of the lossless cavity (k =0) and exact
resonance (b,, =b,, =0), the steady-state cavity field has
an amplitude equal to that of the external field [13].
Clearly in this case the secular approximation is not val-
id. However, as we will see in Sec. V, in realistic cases,
the intensity of the cavity field can be small and the con-
dition (19) easily satisfied.

Equation (17) describes the interaction of the dressed

III. STEADY-STATE SOLUTION

In this section we calculate the steady-state solution of
Eq. (17). We introduce density-matrix elements with
respect to the two atomic dressed states, denoting
( 2

~ p ~
1 ) by pz 1, etc. The equations of motion then be-

come

Pl I igl(Plza a P21)+1 cos '(tP22Bt
—y sin Pp»+ ,'kL, p», — (20)

atom with the cavity field and vacuum. The last term of
Eq. (17), which is proportional to (y/2)sin P, corre-
sponds to spontaneous emission from the lower dressed
state

~
1) of one manifold to the upper dressed state ~2 )

of the manifold below; hence it plays the role of "pump-
ing" the atom from ~1) to ~2).
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4
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We note that the atomic matrix elements p; (i,j =1,2)
are still operators with respect to the cavity field mode.

In the case of free-space resonance fluorescence, the
steady-state density-matrix elements p;, which become c
numbers, can be found from Eqs. (20)—(23) to be

In contrast to Eqs. (20) —(23), Eqs. (32)—(35) contain only
bilinear combinations of photon operators in the form
p"a~a, ap"a~, . . . . This has the effect of decoupling the
equations in the photon-number representation for the di-
agonal elements p'„'„and the off-diagonal elements
p„'n+ . The equations of motion for the diagonal matrix
elements P„"—:p'„'„(i =1, . . . , 4;n =0, 1,2, . . . ) are de-
rived from Eqs. (32)—(35) in the form

-(sp)
p»

+8P)
pz2

cos P
cos ())+sin P

sin (t

cos (()+sin P
+8P) +8P)
P12 P21

(24)

(25)

(26)

P„"'=k(n+1)P„"+, knp„—"' 2g, P„' „'+—2g, P„' ',

P„' '= —y cos(2$)P„"' y(cos P—+si ng)p„' '

+k(n+1)P„' ', —knp„' ' —2g, P„' ' —2g, P„' ',

(36)

(37)
Using the steady-state solution (24)—(26) one can investi-
gate properties of the atom and Auorescence field, and in
particular derive the well-known Mollow triple Auores-
cence spectrum [24—28].

In the case of resonance fluorescence in the cavity, in-
stead of the four operators p," (i,j =1,2) we use the fol-
lowing Hermitian combinations [17]:

(27)

(28)

P' '= (n+1)(P'" P'" +P—( '+P' '
) 'kP' '——

n n n+1 n n+1 2 n

——[1+—,'sin (2$)]P„' '+k(n+1)P„'+,

(38)

P(4) — 1 &(p(1) p(1)+p(2) +p(2)) kp(3)
n 2 n —1 n n —1 n n

2

We note that

(29)

(30)

+ ,'kP„' ' ——[1+——,'sin (2$)]P„' '

+ k(n + 1)P„(',—knp( ' . (39)

P =Tr ~ (P) =P22+P)1 (31)

is the reduced density operator of the cavity field. From
Eqs. (20)—(23) we obtain equations of motion for p" in

the form p(3) —p(4) ( + 1 )p(1)k
n n+1 n+1 (40)

We now derive the steady-state solution of Eqs.
(36)—(39), setting P„"=0(i =1, . . . , 4). Comparing Eqs.
(36), (38), and (39), we find that

p 2kL p 2g)p +2g)p

p'"= —ycos(2&)p'" —y(cos /+sin P)p' '

+ & kL p(2) 2g p(3) 2g p(4) (33)

Next, we obtain for the steady state P„' ' the expression

(2) k k(n+ 1)(n+2) (1)

g) k(2n+I)+y(cos /+sin P)

p' '= (p'"aat+aatp"' —2ap'"a )
4
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4 2
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k2(n+1) 2k(n+ —,')+y[1+—,'sin (2p)]

2g, k(2n + I )+y(cos /+sin P)

k (2n + 1 ) +y cos(2)t. )

k(2n+ I)+y(c s(()o+sin P)
and for P„'" the recurrence relation

(41)
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IV. ATOMIC POPULATION INVERSION
AND ENHANCEMENT OF RESONANCE

FLUORESCENCE

In this section we investigate the inAuence of the cavity
on the steady-state atomic population and on the Auores-
cence intensity. In free space, the population inversion
between the dressed states ~2) and

~

1 ) is calculated using
Eqs. (24) and (25):

( i ~sp) ~sp)
3 ~sp P22 P11 4, ~ 4,cos p+ sin p

(43)

Using Eq. (10) and noting that the steady-state off-
diagonal density-matrix elements p, z"'=pz', '=0. We cal-
culate the population inversion between the bare atom
excited state 2 ) and ground state

~
1 ) to be

We have calculated P„'" from Eq. (42) by using a truncat-
ed basis of number states. The validity of the truncation
was ensured by requiring that P,'" not change as the
number of truncated states was increased.

Equations for the off-diagonal density-matrix elements
p(„'„+ (i =1, . . . , 4;n =0, 1,2, . . . , ;m =1,2, . . . ) can be
derived analogously from Eqs. (32)—(35). Using these
equations we can easily show that all steady-state off-
diagonal elements p'„', + equal to zero.

(46)

analogous to Eq. (26) for the free-space case. With the
help of Eqs. (10) and (46) we obtain for the steady-state
atomic population inversion (between the bare states) the
expression

hP =cos(2$)(R3 ) =cos(2$) g P„' ' .
n=0

(47)

0. 6.

In Fig. l we plot the atomic population inversion AP,
Eq. (47) as a function of the scaled detuning 5=5, /2s
for fixed k/g and various values of k/y, comparing it
with the case of free space, Eq. (44). Clearly for y)g, k
(long-short-dashed curve) the influence of the cavity on
the atomic behavior is small and the population inversion
AP differs only slightly from that of free space (dotted
curve). With increasing cavity decay rate k, b,P increases
and even becomes positive in a large region of 6(0
(long-dashed, short-dashed, and solid curves). For k ))y
(Fig. 2) the atomic population is very highly inverted and
even reaches a nearly total inversion: for the case of
k /g =0. 15 and k /y = 10 (solid curve in Fig. 2) nearly

AP, —= (o ~&)
—(o» ) =cos(2$)(R3 ),

cos (24)
cos /+sin P

(44)

0. 4.

0. 2

0. 0.

Clearly AP, 0, i.e., interaction with the classical field
does not lead to a population inversion in the two-level
atomic system. Additional atomic levels must be used in
order to create the population inversion necessary for
laser or maser generation [31].

In the cavity, the steady-state atomic population inver-
sion in the dressed-state basis takes the form

—0 2

—0. 4.

—0. 6.

—0. 8.

(~ ) —Tr ( (2)) y P(2)
n=0

(45)

—1.0.,—4
I—2

where P„' ' is given in Eq. (41) in terms of the photon-
number distribution P„'". Because the steady-state off-
diagonal density-matrix elements p'„'„+ equal zero, we
can easily derive

FIG. 1. Atomic population inversion AI' as a function of
scaled detuning 6=6, /2c, for k /g =0.3 and for k /y =0.2
(short-long-dashed curve), 1 {long-dashed curve), 2 (short-
dashed curve), and 10 (solid curve). The dotted curve corre-
sponds to the case of free space.
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FIG. 2. Atomic population inversion hP as a function of
scaled detuning 5 for k/g=0. 15 and for k/@=2 (short-long-
dashed curve); 10 (long-dashed curve); 10 (short-dashed curve);
and 10 (solid curve). The dotted curve corresponds to the case
of free space.

FIG. 3. Ratio between intensities of resonance fluorescence
in the cavity and in free space, I, /I, ~ as a function of scaled de-
tuning 6 for k/g =0.3 and for k/y=0. 2 (short-long-dashed
curve); 1 (long-dashed curve); 2 (short-dashed curve); and 10
(solid curve).

97% of the atomic population is in the excited state ~2).
As is well known, two-level atomic population inversion
is not possible in free space; thus strong steady-state
atomic population inversion is a feature of resonance
Auorescence in a cavity. These results are in sharp con-
trast with the case of exact resonance, where only a very
small b.P —=0.028 is reported [15].

This efFect has a clear physical interpretation: In the
steady-state, detailed balance requires that [24]

P22 2~ ] P»
— r- -=- r- (48)

where I —. —. is the total transition rate from ~i ) to
~j ).

The cavity with large k, which is tuned to resonance with
the dressed-state transition ~2) =.

~
1), strongly enhances

the transition rate 12
&

from ~2) to ~1) compared to
that of free space [5,14]; this in turn requires an increase
in the population p» to maintain detailed balance. The
dressed state

~
1) is a superposition of the bare atomic

states ~1) and ~2) [Eq. (5)]. For b, , &0 (i.e. , cosP& sing),
increasing the population p» is equivalent to increasing
the population of the excited state ~2), and consequently
AP, of the bare atom.

The total intensity of the atomic Auorescence, radiated
out the sides of the cavity, is proportional to the popula-
tion of the atomic excited state [12—16,23,24]

1-7 & ~„)= ~ (1+aP), (49)

where b,P is given by Eq. (47) for the cavity, and by Eq.
(44) for free space. The increasing population in state ~2)
thus leads to an enhancement of the resonance Auores-
cence intensity. In Fig. 3 we plot the ratio between
fluorescence intensities in the cavity I, and in free space

Clearly the cavity, especially the cavity with large
decay rate k, strongly enhances the total fluorescence.

It is useful to note that although we consider here only
the case of a single-mode cavity, corresponding to experi-

V. STATISTICAL PROPERTIES
OF THE CAVITY FIELD

In the previous section, we focused on the bad cavity,
in which the inAuence of the cavity on the atomic popula-
tion and Auorescent intensity is strong. In this section,
we investigate the statistical properties of the cavity field
and focus mainly on the case of the good cavity. In par-
ticular, we derive an analytical expression for the steady-
state photon-number distribution in the good cavity or
strong-coupling limit.

We calculate the mean photon number

&n)= y nP„"'
n=0

(50)

and normalized variance (Mandel q parameter) [32]

&n') —&n )'q= —1,
&n)

where

(51)

& n 2) y n 2P(1)
n=0

(52)

The normalized variance q is used to characterize the de-
viation from Poissonian statistics. A negative (positive) q
value indicates sub-Poissonian (super-Poissonian) statis-

ments performed by Raizen et al. [6], Thompson et al.
[7], and Rempe et al. [21,22], an analogous result would
also be obtained in the case of a large number of modes
having the same frequency [5]. The steady-state inver-
sion of a population of two-level atoms is in itself an in-
teresting quantum eftect, forbidden in semiclassical
theory. The above-described scheme may also be useful
as a method to create the atomic population inversion
necessary for laser or maser generation without the use of
additional atomic levels.
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ties, while q =0 corresponds to a Poissonian distribution.
In particular, the case of q = —1 corresponds to 100%
noise reduction. The photon-number distribution P„'" is
calculated numerically from Eq. (42) by using a truncated
basis of number states.

In Fig. 4 we plot the mean photon number ( n ) of the
cavity field as a function of the scaled detuning 5=6, /2E
for k /g =0.01 and for various values of k /y. Clearly for
5) 0, i.e., co, )coL, (n ) is very small, while for 5&0,
(n ) is significantly larger. This difference is emphasized
if the cavity decay rate k is much smaller than the spon-
taneous emission rate y (solid and long-dashed curves),
and can be understood as follows. For 5 &0, the driving
field creates a population inversion between the dressed
states ~2 ) and

~
1 ) [ see Eq. (43)]. As a result, the process

of stimulated emission into the cavity field dominates ab-
sorption from that field, in analogy with the amplification
that would occur of a probe field at coL+20 [24]. Equa-
tion (17) is the same as the master equation of the
dressed-state laser [30] for the single active atom case.
As discussed in Sec. II, the term in Eq. (17) which is pro-
portional to (y/2)sin P has the effect of pumping the
atom from the lower dressed state

~
1 ) to the upper

dressed state
~
2 ), while k is the loss rate of the cavity

field. As occurs also in laser generation [31], the
amplification coeKcient of the dressed-state laser is pro-
portional to a product of the pumping rate and the
"effective" coupling constant g&. As a result, for con-
stant k/g the mean photon number (n ) increases as the
ratio between the pumping rate (y/2)sin P and cavity de-

cay rate k increases, as is shown in Fig. 4; for 6«0,
g, =g cos P becomes very small, causing ( n ) to decrease
for all k/y. The system acts in this case as a one-atom
dressed-state laser, in agreement with recent publications
on the dressed-state laser [30,33]. For 5)0, on the other
hand, no net stimulated emission can occur at the cavity
frequency and the mean photon number of the cavity
field remains very small.

q
1. 1

0. 9

0. 7-

0. 5-

0. 3

0. 1-

—0. 1-,
I

—3

FIG. 5. The Mandel q parameter as a function of 6 for the
same parameters as in Fig. 4.

k k « 1

g) g cosf
(53)

all terms of order k /g, in Eq. (42) are neglected. Equa-
tion (42) then reduces to

In Fig. 5 we plot the Mandel q parameter as a function
of 6 for the same parameters k/g, k/y as in Fig. 4.
Clearly the normalized variance q is large in the region of
5=0 and 5«0, while for the values of 5 where (n ) is
large q is small and even tends to zero, as it does for
coherent states. In Fig. 6 we plot the variance q as a
function of 6 for the case of k =y and for various values
of k/g. Clearly, for a wide range of 5 the photon statis-
tics of the cavity field become sub-Poissonian. However,
we note that the mean photon number in the case of
k =@ is small ((n ) =0.5), and the degree of quantum
noise reduction is only about 14%.

For the good cavity or strong-coupling limit

&nk
16.

14-
q0. 00.

(54)

12.

10-
—0. 03.

—0 06.

—0. 09.

2

0
4

I

—2

—0. 12.

—0. 15.,—4 —3
I—2

FIG. 4. Mean photon number ( n ) as a function of scaled de-
tuning 6 for k/g =0.01 and for k/y =0.1 (short-dashed curve),
0.05 (short-long-dashed curve), 3'o (long-dashed curve), and
0.025 (solid curve) ~

FIG. 6. Mandel q parameter as a function of 5 for k/@=1
and for k/g=0. 3 (short-long-dashed curve), 0.15 (long-dashed
curve), 0.008 (short-dashed curve), and 0.05 (solid curve).
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where In this case the photon-number distribution (56) becomes
a thermal distribution

cos /+sin P+ —(2n+1)

cos /+sin P+ —(2n —1)
'V where

( )n

(( )+1)n+1 (59)

sin P

cos P+ —(2n+1)
(55) (n)=

cos(2$)
(60)

With Eqs. (54) and (55) we find the steady-state photon-
number distribution for the cavity field ysin P

2kn
(61)

For values of 5 such that ( n ) )) 1 (see Figs. 4 and 7), Eq.
(57) reduces to

p(1) p(1) (56) and the photon-number distribution (56) becomes Pois-
sonian, as in the laser operated far above threshold [31]

where Po" is a normalization constant.
The mean photon number ( n ) is plotted in Fig. 7 as a

function of the scaled detuning 6. The solid and dashed
curves correspond to the numerical evaluation of P„"'
from Eq. (42) for k /y =

—,', , and for various values of k /g.
The dotted curve corresponds to the analytical solution
(56) for the same parameter k/y= —,', . Clearly, reducing
the parameter k/g causes the region of validity of the
analytical solution (56) to become wider.

For k «y, Eq. (55) reduces to

sin P

cos P+ —(2n+1)k

For 5) 0, (n ) is small (see Figs. 4 and 7), and Eq. (57)
reduces to

where

n!
(62)

2k
(63)

This result is in agreement with the results shown in Fig.
7, where for values of 5 corresponding to large (n ), the
photon-number variance q tends to zero.

In this paper we studied the case of only a single atom
in the cavity. If N atoms are simultaneously present, the
collective coupling constant g&N will play an important
role+14]. In this case the strong-coupling requirement
g &N ))k, y, for N atoms, is less restrictive than that for
a single atom, and the experimental requirements to see
the effects discussed above can be more easily met [6,7].

(n&
16-

12

10-

2

0
—4

cos P

—3
I

—2

(5g) VI. CONCLUSION

In this paper we investigate the atomic and cavity field
properties in the problem of resonance fluorescence of an
atom in a cavity. Unlike previous publications, we con-
sider the case when the driving field is detuned from the
atomic transition frequency, and the cavity is tuned to
resonance with a Mollow sideband. We show that in the
bad-cavity case the steady-state atomic population is
highly inverted, a phenomenon forbidden in semiclassical
theory. This system is suggested as a way to create the
atomic inversion necessary for laser or maser generation
without using additional atomic levels. Under certain
conditions, the fluorescent intensity out the sides of the
cavity is strongly enhanced above the free-space value.
We also investigate the statistical properties of the cavity
field, deriving an analytical expression for the photon-
number distribution in the strong-coupling limit, and dis-
cuss the conditions under which the system acts as a
single-atom dressed-state laser.

FIG. 7. Mean photon number (n ) as a function of 5 for
k/y= 3(j and for k/g =0.04 (short-dashed curve), 0.02 (short-
long-dashed curve), 0.01 (long-dashed curve), and 0.005 (solid
curve). The dotted curve corresponds to the analytical photon-
number distribution (56) for the same parameter k/y = 3o.
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