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Resonant-second-harmonic generation of laser radiation in a semiconductor
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A high-power laser radiation, with frequency co& and wave vector k& z, propagating through a semicon-
ductor produces a second-harmonic longitudinal current at 2'& and 2klz. When a wiggler magnetic
field (O, koz) is simultaneously present in the system, the JXB force on the electrons produces a trans-
verse second harmonic current at 2'& and (2kl+ko)z, driving second-harmonic electromagnetic radia-
tion. For a specific value of wiggler wave number ko =ko, the phase-matching conditions for the process
are satisfied, leading to resonant enhancement in the efficiency of energy conversion. ko, decreases with
the frequency ~& of the laser.

PACS number(s): 42.65.Ky

I. INTRODUCTION

Harmonic generation of electromagnetic waves [1—10]
is a well-known nonlinear process in dielectrics, semicon-
ductors, and plasmas, with wide-ranging applications. In
this process, two (or more) photons of energy A'co& and
momentum Ak& each combine to generate a photon of
second- (or higher) harmonic radiation of energy A'co2 and
momentum Akz, where co„k, and co&, k2 satisfy the linear
dispersion relation for electromagnetic waves. The ener-

gy and momentum conservation in a second-harmonic
process demand

c02 —2' ~, k2 —2k
~

These conditions are quite restrictive. Semiconductors
and plasmas, in particular, are dispersive media; hence
Eqs. (1) are not satisfied; i.e., under usual conditions, one
cannot have efficient generation of harmonics. In a plas-
ma, the efficiency of second-harmonic generation is seen
to be enhanced significantly when the plasma has a densi-
ty gradient and the laser undergoes significant linear
mode conversion into a Langmuir wave. The mode-
converted Langmuir wave couples with the laser to pro-
duce efficient second-harmonic generation. Such a
scheme may not work in a semiconductor, where linear
mode conversion into Langmuir waves has not yet been
reported.

In this paper, we propose a scheme for generating the
resonant second harmonic of laser radiation in a semicon-
ductor by applying a transverse wiggler magnetic field to
it. The latter can be produced by placing bar magnets of
alternate polarity over the semiconductor. The wiggler
can be viewed as a photon (O, koz) of zero energy and
momentum Ako that can compensate for the unbalanced
momentum between the second harmonic and fundamen-
tal photons:

E, =x3,exp[ i(co, t ——k, z)],
ck, XE)

CO)

II. NONLINEAR CURRENT DENSITY

Consider the propagation of a laser beam

E, =x 2, exp [ i ( co, t —k, z )—],
B)=

in an n-type semiconductor (cf. Fig. 1) in the presence of
a wiggler magnetic field

yBoe (3)

The nonlinear interaction of the laser with electrons in
the presence of the wiggler produces a second harmonic
whose self-consistent electric vector can be written as

the electrons acquire an oscillatory velocity along E,.
The V X B force on them produces a longitudinal electron
velocity parallel to the z axis at (2co&, 2k&). When a

ikoz
wiggler magnetic field B„=yBoe ' is simultaneously
present in the system, the V X B force (due to the beat of
the longitudinal electron velocity and the wiggler mag-
netic field) produces a transverse second-harmonic
current along x at ( 2co &, 2k

&
+ko ), generating the second-

harmonic electromagnetic radiation.
In Sec. II, we obtain an expression for the second-

harmonic transverse current density, including the effect
of a self-consistent field. In Sec. III, we solve the wave
equation to obtain the second-harmonic field. A discus-
sion of results is given in Sec. IV.

Ak2 —26k, =A'ko E2 =x 32exp[ i (co~t —k~z )], — (4)

The physics of the second-harmonic generation process
can be understood as follows.

In the presence of a laser wave

where co2 =2~ i ~

The fundamental and second-harmonic electromagnet-
ic waves obey the linear dispersion relation (cf. Fig. 2)

47 2281 1993 The American Physical Society



2282 JETENDRA PARASHAR AND H. D. PANDEY 47

'

N or

k2) 2k, ;

1NClDENT LASER
BEAN

N

SEM1CONDOCTOR
SPECIMEN

GENERATED WAVE

i.e., the sum of the momenta of two pump photons 28k,
is less than the momentum Ak2 of a second-harmonic
photon (cf. Fig. 3). The difference of momentum can be
provided to the second-harmonic photon by the wiggler,
i.e.,

N

0

N

k2=2k1+kP .

Taking all the k's parallel to each other and employing
Eq. (5), one obtains

A,
Y

'

A
Z

B) Bo

= ko

Bp

C
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FIG. 1. Schematic of a second-harmonic generator.

CO
k — ( Eicos'/co )

C
2 (5)

The response of electrons to the electromagnetic fields is
governed by the equations of motion and continuity [11]

dU
m = —eE——vXB—mvv,

dt c
Bn +V (nv)=0,
at

where eL is the lattice permittivity, cop=(47rnoe /m )'~

is the plasma frequency, c is the velocity of light in a vac-
uum, no is the carrier (electron) concentration, and —e
and m are the charge and eftective mass of an electron.
The wave vector k increases more than linearly with fre-
quency co; hence,

k(2', ))2k(~, ),

where v is the collision frequency of electrons. At low
temperatures, v is predominantly due to the ionized im-
purity scattering, whereas at higher temperature it is due
to the acoustic phonon scattering. We expand,

—i(co t —k z), —i [co t —(k +k )z]v=v e ' ' +v'e
1 1

—i(2cult —2k lz) &
i[2colt (2k

1
+ko)z]

+v2e ' ' +v2e
i [ ct)

~
t ( k

&

+ k 0 )z ]
n =np+n1e
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FIG. 2. Dispersion relation for electromagnetic waves in a
semiconductor with lattice permittivity e~ = 14.

FIG. 3. Optimum wiggler wave number versus the frequency
of the laser for resonant second-harmonic generation in a semi-
conductor with el = 14.
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v', and v2 are longitudinal velocity components that give
rise to density perturbations at co, , k, +kp and 2', , 2k, .
However, for co, ))co~, these two modes have frequencies
much higher than the natural frequency of plasma oscil-
lation; hence the amplitudes of the density oscillations,
and the space-charge fields thus generated, are not large,
and we have ignored them.

From the equation of motion, we get the linear velocity

IJ2= npeV2 —n 1eV1

2E
—i [2'& t —(2k

1
+ kp )z ]"oe E2 90e ~1Bpe+

mi (2', +i v) 4icco, m (ro, +iv)

3k, (k, +ko)x +4', (co, +iv)

l(colt k
&
z)

eA1e
V1=X

mi(co, +i v)

The ponderomotive force [12] on electrons at (~o„k,+ko)
turns out to be

eF1=— v1X B„.
2c

V1=
2c co

~
m ( co

~
+ l v )

Z

(10)

It gives rise to oscillatory velocity v', and density pertur-
bation g, :

i[ca) t (k
&

+kp )z]

III. SECOND-HARMONIC FIELD

The wave equation for the second-harmonic field is
written as l13j

J2 eZ BE2
c2 ~t c2 gt2

(16)

Using the expression for current density from Eq. (15) in
Eq. (16), one gets

e Bok12~no A1 3 1+kp/k1
E2= +4', cm (co, +iv) 4'~ (co&+i v)

i[2M&t (2k
1
+ kp )Z]

X

n1=
(k, +ko)nov', 4', eL —c (2k, +ko) —cop 1—2'

1

(17)

v1 and B1 also beat to exert a ponderomotive force on
electrons at (2'&, 2k& )

—eF2= v1X B, ,2c

For resonance, the denominator in Eq. (17) must vanish.
However, it is complex with a small imaginary part, aris-
ing due to the collisional damping of the second-
harmonic wave. We set the real part of the denominator
to zero, corresponding to phase-matching conditions

producing
4rolEL c (2k' +ko) rop 0 (18)

V2=

I (2' l t 2k
&

z )—e 21k, e

4m ro, (ro, +iv)
Z

Under this condition,

E
E1

eB0 eE, k1 +
mc rn co1 co1 v 4e)1

v', and v2 beat with B, and B, respectively, to produce
a transverse second-harmonic ponderomotive force at
(2'„2k, +ko):

7 co IU] lk co]

4 c01 c01 v

—e, e
F2 — v1X B1— v2 XB~,2c 2c

(12)

which yields an oscillatory velocity

3 2
—i [2'&t —(2k

& +kp)z]
0 1 1e

2
16ciro, m ( ,coi+v)

(13)

eE2
V2 mi(2', +i v)

(14)

The self-consistent field E2 also produces an oscillatory
velocity

where co, =eB0/mc, and we have assumed v/co, «1,
kp /k 1 ( 1. For a typical case of an n-type germanium
semiconductor with electron concentration 10' cm
eL =14, v=2X10'' sec ', m =0.3mo (mo being the elec-
tron mass in free space), wiggler magnetic field Bo = 100
kG, irradiated by a 10.6-pm CO~ laser (ro=1.8X10'
rad sec '), one obtains lEz/E, l

=0.34, giving a power
conversion efficiency of a few percent. Here we have
neglected the insertion loss of the incident laser power,
which can be minimized by placing an inhomogeneous
dielectric of suitable refractive index profile at the entry
port.

IV. DISCUSSION

The total velocity at (2'&, 2k
&
+ ko ) is vz= v2 +v2

The second-harmonic nonlinear current density can now
be written as

A wiggler magnetic field aids the generation of a
second harmonic in two ways. First, it produces a trans-
verse second-harmonic current J2„ from a longitudinal

1
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current Jz, through the JXB force. Second, it provides
momentum Ako to the second-harmonic photon, making
harmonic generation a resonant process. It could be
effective in generating higher harmonics also.

The wiggler wave number required for perfect phase
matching in the second-harmonic generation process de-
creases with the frequency of the laser. For a CO& laser
propagating through a typical n-type Ge semiconductor
with a doping level no —10' cm, the wiggler period
(2~ko '

) turns out to be -0.2 cm, which is technically
feasible. Wiggler strength 10 kG is required to achieve
high efficiency. In addition to the wiggler field, if one ap-
plies a strong guide magnetic field, one could improve the
efficiency of harmonic generation a great deal through
the cyclotron resonance. For short laser pulses, where v
can be taken to be constant, the second-harmonic power

scales directly as the square of the power of the funda-
mental wave. However, for longer pulses of pulse dura-
tion exceeding the energy relaxation time, the collision
frequency could be significantly changed due to the ohm-
ic heating of electrons, affecting the output power.

The technique could also be applied to study second-
harmonic generation in semiconductors where carrier
mass is energy dependent, e.g. , in n-type InSb. In gase-
ous plasmas, one could employ higher-power densities
while collision frequency is much smaller, hence one may
achieve higher efficiency of harmonic generation.
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