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Frequency shift in an oscillator with photorefractive gain
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A self-consistent theory is used to derive the frequency shift presented by the oscillating mode in a
cavity that contains a photorefractive crystal. A long-time-limit theory has been used to get the steady
characteristics of the cavity field. The problem of the weak-field approximation is avoided. This approx-
imation is useless in the case studied because the interaction along the crystal is so strong that one has to
take in account the intensity exchange occurring inside the material between the pump and oscillating
beams (two-wave mixing). We have fully analyzed the inAuence of the transverse nature of the beams on
the intensity exchange in the two-wave mixing situation. In the photorefractive resonator case, the fre-

quency shift of the oscillating beam is expressed in terms of a ratio that presents poles. The dependence
on the problem parameters of these poles is studied and a perturbative method is developed; it is based
on the smallness of the transverse overlap between the pump and cavity modes. An analytical expression
for this frequency shift is obtained.

PACS number(s): 42.65.Hw

I. INTRODUCTION

Photorefractive (PR) materials were first used in opti-
cal signal processing, dynamic holography, storage media
in holographic memory systems [1—4], phase conjugation
[5—8], and more recently in photorefractively pumped os-
cillators in a ring cavity or a Fabry-Perot etalon [9]. This
kind of oscillator is based on the photorefractive gain (as
an interaction between light and matter) and on oscilla-
tion in a cavity. It has spurred new devices and phenom-
ena and some review papers concerning these two topics
have been published: the photorefractive oscillator is
largely studied by Kwong, Cronin-Golomb, and Yariv
[10] and the two-wave mixing in a photorefractive ma-
terial is developed by Yeh [11]and in [12—14]. This pa-
per is devoted to the theory describing such an oscillator.

Photorefractive materials are well known for the im-
portant mode-pulling frequency they induce during the
two-wave mixing operation. The frequency shift of the
active mode with respect to the pump frequency has been
experimentally measured and found to be a few hertz
[15,16]. Since the crystal gain line, centered around the
pump frequency, has a linewidth of a few hertz for
BaTi03, for example [a few hundreds of hertz for BGO
(bismuth silicon oxide)], the measured values express the
oscillation condition imposed on the mode and can
represent a frequency shift that the probe beam under-
goes. In a ring cavity configuration where passive modes
of the empty cavity exist, the photorefractive oscillator
presents a dynamical behavior that clearly signs the pres-
ence of this pulling effect: it shows a nearly continuous
succession of the transverse cavity modes defining a
periodic alternation and also a turbulent behavior when
the modes number in the cavity increases (see, for exam-
ple, Refs. [16,17]). This spatiotemporal behavior occur-
ring on a time scale related to the material characteristic
time (1 ms) rather than the cavity time ( 10 s), and

based on this dynamically strong frequency pulling, is
due to the photorefractive nonlinearity connecting the os-
cillating field and the matter. In this theoretical paper we
want to demonstrate that such an important pulling can
be realized for a suitable parametric situation. We
choose to model the simplest configuration [18]: several
oscillators using various photorefractive materials have
been tried [9,19, and references quoted therein]. From
the theoretical point of view, the method used to describe
the PR oscillator is similar to the Lamb self-consistent
theory derived for the lasers. The field present in the cav-
ity is partially (with the pump beam) responsible for the
material index grating. The nonlinear polarization in-
duced in the medium acts as a source term for the resona-
tor field in accordance with the Maxwell equations. This
method has been used recently by Anderson and Saxena
[19] and D'Alessandro [20] to describe the dynamics of
the photorefractive oscillator. The first paper [19]
presents a theory for a multimode oscillation using the
weak-field limit; the pump depletion and the intermode
gratings are neglected. The modulation index of the in-
tensity pattern is also supposed to remain small. This
model is very similar to the laser description and it pro-
duces the same results, for example, a mode-competition
phenomenon which is stronger for modes having similar
transverse distribution. The second paper [20] presents a
study of the dynamics in the transverse plane. The au-
thor also uses the weak-field limit and obtains a laserlike
description, but since the material variable is very slow,
the model can be reduced. A spatiotemporal numerical
analysis is then performed using the Gauss-La guerre
modes expansion: the set of partial differential equations
is boiled down to a set of ordinary differential equations
and 55 Gauss-Laguerre modes, at least, are involved in
the description. The results are very similar to those of
the transverse laser patterns, except that the time scale
corresponds to the material characteristic time. Our goal
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is slightly different from the previous works: we are not
yet concerned with the dynamics of the photorefractive
oscillator even if it is our final aim. However, since the
weak-field limit is invalid for most experimental situa-
tions, one needs to integrate into the description the lon-
gitudinal (or the oscillating field propagation direction)
intensity exchanges that occur inside the crystal, the
transverse nature of the fields, and finally to define more
closely the nonlinearities. Because of the difficulty and
the length of such a study, we only present in this paper a
qualitative and steady analysis leading to the frequency of
the oscillating field. This paper is organized as follows.
In Sec. II, we develop a cavity model following the first
work of Yariv and Kwong [21]. We use the Maxwell
equations to describe the cavity oscillating field and
proceed to an expansion in terms of the empty cavity
transverse modes. The nonlinear polarization, acting as a
source term for the field, is produced inside the crystal by
the coupling between the oscillating field and a pump
beam via the electro-optic effect. Section III will be de-
voted to express this photorefractive coupling using the
rate equations of the Kukhtarev approach [22]. The
power exchange between the pump and the oscillating
field along the crystal length is considered including the
longitudinal dependence of the fields. One then needs to
solve the two-beam coupling problem in the PR crystal
for one passage and the inhuence of transverse field
characteristics on the intensity exchange. This is
developed in Sec. IV. All the elements needed to solve
the steady problem are presented. Returning to cavity
model, we deduce in Sec. V the frequency shift the oscil-
lating field undergoes which is due to the optical activity
of the photorefractive material. Numerical simulations
will give a description of the frequency pulling versus the
problem parameters.

II. CAVITY MQDKI.

E(r, t) =— oo

g p, (z, t)E, (r),
& a=i

] OO

H(r, t) = g co, q, (z, t)H, (r),
P a=i

where r=(ri, z). The p's and q's are the expansion
coefficients on the basis set. They contain the charac-

The system we model is represented in the scheme of
Fig. 1. Two coherent beams E (r, t) and E(r, t) interfere
inside a photorefractive crystal: E is the pump beam
and E is the probe and also the oscillating field. The two
beam directions are symmetric with respect to the normal
to the crystal input surface and are separated by 20. To
obtain sustained oscillations of the field E, the system is
placed in a ring cavity. We give a general treatment of
this self-consistent method and following the approach
presented by Kwong, Cronin-Golomb, and Yariv in Ref.
[10] we expand the oscillating field on the complete set of
the transverse empty resonator electric and magnetic
modes E, and H, :

E (r, t)=E (ri, z, t)= — —po(z, t)EO(r),
1

FIG. 1. Simplified scheme of the self-induced optical ring
cavity with a photorefractive amplifier.

VXE, =k,H„VXH =k, E (2)

where k, =co, &ep.
The main difference with previous papers [21] is the ex-

plicit z dependence of the p and q coefficients, meaning
that we keep the power exchange between the pump and
the probe beams which mainly occurs in the crystal.
These exchanges are important enough to make invalid,
in some sense, the mean-field limit (or weak-field limit) as
it is used in the laser case: for example, if the losses are
neglected, a total energy transfer can occur between the
two beams during one passage along a photorefractive

teristics introduced by the crystal presence, which we
reduce to the longitudinal dependence. The E, 's and
H, 's represent the free propagation in the empty cavity.

Experimentally the crystal must be uniformly il-
luminated: the transverse characteristics of the pump
beam are those of the plane wave. The electric and mag-
netic permittivities are e and p ( =go). The a index holds
the characteristics of the eigenstates of the empty cavity.
The frequencies co, are the related passive eigenfrequen-
cies. Following the boundary conditions, the eigenstates
can be expressed differently. As an example, the resona-
tor transverse modes E, are proportional to the Gauss-
Laguerre polynomials when the transverse Laplacian is
taken in cylindrical coordinates, and one can use the fol-
lowing notations: a =X (for the longitudinal coordinate
z), p, I, and i (for the transverse coordinates) [20,23].
They can have also another mathematical expression de-
pending on the dominant symmetry of the considered
system: for a cartesian symmetry, one can use the
Gauss-Hermite polynomials. These transverse modes
verify several properties, such as the orthonormality of a
complete set

E, r .Eb r dV=6,b,
cav

J H,*(r) Hb(r)d V =fi,b,
cav

where V„,stands for an integration over all the cavity
volume and
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medium of a centimeter length. This energy transfer is
held in the nonlinear contribution as follows.

The nonlinear inAuence of the crystal can be included
in a polarization P following the expression P=e0gE
+PNL, where g is the medium linear electric susceptibili-
ty. The Maxwell equations applied to the electromagnet-
ic field in the cavity can be written as

aP
„

V XH=0.E+e +
Bt Bt

aH
V XE= —p0 at

The resonator fields equations are taken as source-free
equations which can be justified by the fact that, although
there may be charges in the photorefractive material, the
charges are not free at times comparable with an optical
period. We have used the constitutive relations linking
the fields E and B to the material quantities D, H, and J
following

~d ~pd
~dpd+ +

Qd dt Bt

1
Ed r -PNL z, t dV, 6b

crys

where the resonator quality factor for the d mode is
defined as Qz =cod(e/o ). On the right-hand side of Eqs.
(6), we have reduced the integration volume to the crystal
volume because all the nonlinearities are limited to the
crystal dimensions. The equation that we get is similar to
that of Ref. [21] except for the z dependence of the pd's
contained in PNL(z, t).

The field source PNL in Eq. (6) represents any interac-
tion between the field and matter, thus this equation is
general. We presently have to specify the photorefractive
nature of the nonlinearity.

III. PHOTORKFRACTIVK COUPLING

[k,q, E, +H, XVq, ]+ —p, E,
a=i P E

Bp+&eE,
ai

oo Bq,
E, XVp, +k, H, p, —

a=1
=0

D=eoE+P, B=pDH, J=o.E .

Introducing the modal expansion (1), we get

(4a)

(4b)

The nonlinear polarization PNL driving the oscillation
of the resonator field is that produced by the incidence of
the input field E (r, t) on the index grating created pho-
torefractively by the interaction between E (r, t) and
E(r, t). The charges in the nonuniformly illuminated
photorefractive medium migrate in the presence of light,
creating a space-charge field and hence an index change
via the electro-optic coefficient of the material. The non-
linear polarization takes the form

PNL(r, t) =F06 n (r, t)E~(r, t),

Outside the crystal, no longitudinal transfer occurs and
one can neglect Vp, and Vq, . Equation (4b) leads to the
relation p, =B,q, for each index a. Inside the crystal,
this condition is still valid as a first order of an approxi-
mation that leads to neglect the transverse contributions:
if one compares the contribution of each component of
Eqs. (4b) and (4a) for experimental situations, the V terms
due to the crystal nonlinearity are negligible with respect
to the k, terms. To get a self-consistent field equation, a
time derivation is performed on Eq. (4a) that gives

oo Q) Bp — 8 p—k,p, E, + —E, +&eE,

PNL

at2

We can then make a projection on one mode of the cavi-
ty, say Ed, by multiplying Eq. (5) by Ed and integrating
over the volume of the cavity. Using the orthonormality
relation verified by the cavity modes and neglecting the
partial integration over the crystal with respect to the in-
tegration outside the crystal, we get the following equa-
tion for each mode:

o. ~Pd ~Pd 1
codpd +— + —= — Ed (r ) PNi (z, t)d V

e dt Qt Edt'
(6a)

where e0 is the vacuum dielectric constant, b,n(r, t) is the
index grating formed by the input beam and oscillating
field interference. In the Kukhtarev formulation [19,22],
based on steady rate equations, the index grating can be
written as

p0 (z, t)p, (z, t)[ED(r).E,(r)]
bn(r t)= g, , (8)

a=1 ~a IT(r, t)

where the numerator expresses the vectorial coupling (in-
terference) of the pump with each of the modes of the
probe beam (the brackets stand for a scalar product).
This expression is derived for two-wave mixing in a crys-
tal placed in a suitable position along the wave propaga-
tion direction. The denominator follows the notations of
Refs. [10,19,21] and is given by

IT(r, t)= —p0(z, t)E0(r)~ +—g ~p, (z, t)E, (r)
1 1

~ a=i

It represents a kind of normalization of the refractive in-
dex. This has no physical justification to our knowledge.
For two-plane wave mixing realized in such materials,
the usually dimensionless refractive index is normalized
with the total intensity: without absorption this is the
conserved quantity of the problem. However, in a more
general description involving the transverse dimensions
of the modes, the refractive index normalization is still an
opened problem from the nonlinear point of view. In our
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case, we have kept the total intensity and remark that it
can be taken outside the summation in Eq. (8). We also
note that the active model frequency is cu'. From the sta-
tionary standard photorefractive theory involving two
beams E (cpz ) and E (co'), the Pockels effect is at the ori-

gin of the coupling. By identifying the microscopic de-
tails of the photorefractive process and the three different
mechanisms that can affect the motion of the photoexcit-
ed carriers, the complex coupling constant y takes the
form [10,21]

3
effn 0

4c
Eq(E t+iED )

[E,„,tp(E—D+E„)(tp' tp—)]+i [ED+E +tpE,„,(rp' to —)] (10)

where the following notations have been used: r, ff is the
relevant electro-optic coefficient, n0 the ordinary refrac-
tive index of the crystal, to=N„/(aDNIo) the charac-
teristic time in the crystal, X~ the concentration of the
trapping centers, aD the intensity cross-section
coefficient, E„,the externally applied dc electric field,
and E„,ED, and E the internal electric fields due to
drift, diffusion, and maximum space-charge, respectively.
These parameters can be deduced from the crystal prop-
erties and orientation with respect to the interacting
beams. The coupling constant being a complex expres-
sion, it can be taken in polar representation as I e
where 4 is the phase mismatch between the wave in-
terference grating and the refractive index grating. One
can control this parameter via the externally applied elec-
tric field Eo. In the Yariv-Kwong description [21], this
parameter is around ~/2 because they use a BaTi03 crys-
tal: the main microscopic process occurring in the sys-
tern is the diffusion. In that case, the intensity transfer
between the beams is maximum, but the phase spatial
evolution is frozen [see Sec. IV, Eqs. (37) and (38)]. Re-
turning to our problem and including Eqs. (7) and (8) in
Eq. (6), we obtain

~Ed
~dPd+

~
+

Qd t dt'

2c60 ~
y ()2

, f lp, (z, t)l'p. (z, t)e,=, co' Bt

I. Ed Eo]l:Eo Ea]
X

Iz-(r, t)

The integral occurs over the z and transverse com-
ponents. The following step concerns the time depen-
dence of the p components: one can subtract the optical
oscillation term through the relations

I

pp(z t) Pp(z, t)e ~, p, (z, t)=g, (z, t)e

and release the slowly varying unknown amplitude in the
g, terms. In this situation, the cp,

' are the active mode
frequency (to be distinguished from co, , which are the
passive cavity frequencies). Then Eq. (11) can be written
as

I
cod cod COd

~od )+i pd+ +2i~pd
Qd Qd

Bgd 8 pd+
Bt

2cep —;„, ). (P;„', [Ed Ep][Ep E, ]
e " g, e '

Qp(z t)I'p(z t) dV,e2, , u,' Bt2 IT(r, t)
(12)

6)d cod 2c 60
(Cdd COd )+I pd =— VtpdF,

Q~ e
(13)

where Iz (r, t) has the same form as in Eq. (9) and the p
variables are replaced.

Our task in this paper is to get the frequency of the os-
cillating beam. For the multimode oscillation, this sta-
tionary model can be used, but only for degenerate
modes. Otherwise the beating terms between the d mode
and the other transverse components of the oscillating
field exclude any complete stationary theory.

At this stage, we consider a monomode situation. The
oscillating transverse mode is the d mode. Then Eq. (12)
takes an easier form. In the long-time limit the steady
state is reached: gp(z, t)=pp(z) andgd(z, t)=gd(z). The
time derivatives of+ vanish and we get at first order

I

where

F= f 'dzQ (z)l p (z)

IE,* E,l'
X fdr, g (z)E

I
+ g (z)E

(14)

and L is the crystal length. We note that Eq. (14) gives a
constant value with respect to space, while in Eq. (13),
they'd variable is taken outside the crystal such that one
can consider its value at either z =0 or I. To perform
the z integration we need to know g(z). We choose to
derive this dependence using a single-passage model
through the crystal. This can be justified in the long-time
limit compared to the crystal characteristic time. In the
next section we shall focus on the single passage through
the photorefractive medium.
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IV. TWO-BEAM COUPLING THEORY

BE B2E
EE(I t) (rpo @pe 2

=(Lto
at at' at'
BE BE BP'

b,E (r, t) ohio
— p—pe z =pp
at at' at'

(15)

and use the transverse expansions of Eq. (1). The expres-
sions

In this section we describe the passage through the PR
crystal of the two beams E (r, t) and E(r, t). We start
with the wave equation for each field. The input and
probe fields are governed by the following wave equa-
tions:

affects the probe field E is due to the medium polarization
created by the pump field. The polarization term
PNL(r, t) can be written as

PN„(r,t)=epbn(r, t)E~(r, t) . (19a)

For the pump field, the medium polarization is due to the
probe field

PNL(r, t) =epAn *(r,t)E(r, t) . (19b)

In these relations, b, n is given by Eq. (8), completed by
Eqs. (9) and (16),

2c y i(k —k )z t(ro' —co )t
An r, t= e ~ ' e

a=1 ~a

Eo(r) =Ep)(r) )e

/kp (z t)Jk (z t)[ Ep) E ) ]
X

IT(r, t)
(16)

where the total intensity density is still given by

(20)

directly subtract the optical frequencies, keep the slowly
varying amplitudes p, and separate the z and the r)
dependences: the smallness of the crystal length with
respect to the Rayleigh length allows us to neglect the z
dependence of the E, (r~)'s [21,23]. Using the slowly
varying amplitude approximation [(()p/Bz )

«k ((3&IBz)], the transverse eigenvector definition, and
keeping in mind the stationary case Q(z, t) =p(a)], one
easily gets for the two beams

(co', ) —k, z)'. ()8aE,~e
' ' 2ik, +imp' cry~,

a =1

IT(r, t) = Qp(z,—t)E„I'+—g Q, (z, t)E„I'.=1 2 1
(21)

0
2ik +i p) o porr)o=2cpoeoy*co~ Qd(z) I po(z)G(z) .~ dz

We restrict the analysis to a monomode description and
in the long-time limit, we get

d
2)kd +)codcrp()hd=2cpoeoyto'd Qo(z)I pd(z)G(z),

dz

(22a)

a
terms

at

B PNL= —p V'e
0 (17a)

(22b)

The function G is directly related to the transverse
characteristics of the beam and also contains the refrac-
tive index normalization. It is given by

(3~p ()Po i(co t —k z)
Ep~ 2ik +io) p+p+ terms e

Bz at
G(z)= Jdr)

IEd~ EQJ I'

I/ p(z )Ep) I

'+ Qd (z )Ed J I

' (23)

B PNL
po+e

at2
(17b)

As in the preceding section, a projection on a trans-
verse mode Ed~ is performed, leading to

()Pd ()ad
2ikd +i todo pohd + erms

az Bt

One can note the evident relation between Eqs. (14) and
(23). The crystal smallness compared to the Rayleigh
length has been used here to get rid of the complexity
since the z dependence in the denominator is well located
in G: the spatial dependences are separated and one can
write

(24)

P0e at2
(18a) We note that k and kd are the z components of the wave

vectors inside the medium. They are given by the follow-
ing expressions:

()Pp
2ik +imp„crit&o+~ a.

0
terms

at
=2" =2~k = no cos(8), kd = no cos(0) .

d
(25)

~2—i(co t —k z) B= —(Mov'ee ' ' dr) [E()j PNL] .
Bt2

(18b)

Now the integrals are performed along the crystal trans-
verse dimensions. As before the polarization terms must
be expressed. In general, the nonlinear coupling that

For convenient notation, we take A, =A, d
=k, which cor-

responds to fixed fringe patterns. But even if X Wk, d, the
medium response time is so slow that this difference is
neglected [11]. We also take a=co go, the linear absorp-
tion coefficient in the PR, and use the following notation:
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Z Cc) 277
knQ= —= nQ, y=re+'&,

cos(8) ' c
(26)

TABLE I. Values of the fd parameter for diff'erent cavity
transverse modes.

d d +—pd = i—e—+'~Q, (z') ~'p„(z')G(z'), (27a)

+—g,= i —e—'&Q„(z')
~ p, (z')G (z'), (27b)

and can use the polar expansion of the form

where I is the gain factor and P is the phase mismatch
between the beams and material gratings. One gets final-

ly
1=0
1=1
1=2
1=3
1=4
1=5
1=6
1=7

p=0
0.0776
0.0586
0.0442
0.0369
0.0323
0.0291
0.0267
0.0248

p =1

0.0385
0.0367
0.0295
0.0254
0.0227
0.0207
0.0192
0.0179

p =2

0.0264
0.0274
0.0229
0.0202
0.0182
0.0168
0.0156
0.0147

p —3

0.0204
0.0223
0.0191
0.0170
0.0154
0.0143
0.0134
0.0127

go=+Ice, pd =QIde

Since G has real values, we finally deal with the following
real equations for the intensities and the phases:

dIQ
, +aIo= —I sin(P)I&&IdG(z'),

dId
, +aId=I sin(P)IdIoG(z'), (28b)

0„,=r cos(y)I„G(z ),
dz

dpd = I"cos(P)Io G (z') .

(29a)

(29b)

The parameter I is twice I '. We note that whatever the
function G, the relation [t),.+a](Id+Io)=0 is verified:
the total transverse average intensity is conserved for
weak losses. For $=7r/2, gd o(z') =fd o(0).

At this stage we introduce an approximation that we
can justify by the following arguments. As G is related to
the normalization factor, its dimension must be an inten-
sity inverse. It also expresses the transverse overlap be-
tween the two beams. Thus we propose to approach it by
the following expression:

G(z')= 1

Q.(z ) '+f, Q, (z )I'
(30)

Intuitively we conserve a kind of "total intensity, " but
the transverse mode intensity is weighted by some
coefficient directly related to its transverse profile. In a
multimode description, one can easily generalize this
idea, since each transverse mode has its own space occu-
pation. We have verified numerically this assumption by
integrating the exact Eqs. (27) for several cavity modes
characterized by p =0, 1,2, 3 and l =0, 1,2, . . . , 7. We
have calculated the fd values for which the intensity z
profile corresponds to the approximated case profile with
an accuracy less than 1%. The results are displayed in
Table I and Fig. 2. One can note qualitatively the de-
creasing values of fd as p or l increases, more pro-
nounced for p =0. This is easily understood if we remind
the reader that EQ~ is a Gaussian function transversally
much larger than the cavity mode. As the transverse in-
dex increases, this corresponds to multispots patterns:
the overlap integral G(z') decreases, and the weight pa-
rameter fd seems to follow.

These low values that we have obtained for the fd are

Io d(z') =Io d(z')e (31)

We get then nearly the same equations as in (28) and us-
ing the condition

0,08
I

0.06

0.04 (

0.02'

0.00
0

FIG. 2. Validity of the approximation leading to Eq. (30):
the f„values are evaluated when the z profile is obtained using
the exact Eq. (25) merged with the profile deduced from the ap-
proximated version of Eq. (30).

also related to the transverse nature of the chosen EQ~. If
one considers another Eot profile, the calculated fd can
be quite different and may approach unity: in case of a
plane-wave probe field, the fd value is unity and one finds
again the usual equations [11]which give the z evolution
of the plane waves inside the crystal. The approximation
applied to Eq. (23), which leads to Eq. (30), can also be
used in Eq. (14) since the integration occurs only on the
crystal: the arguments related to the crystal length are
also valid there.

We can solve Eqs. (28) and define a new coupling pa-
rameter as g=l sin(p) [g'=r'cos(p)] for convenient no-
tation and subtract the loss terms by using the relation
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dI~ Iq(K I~ )—

dz' K +(f& —1)I&
(33)

The exact solution verifies the implicit relation

Iq(z') K —Iq(0) =e"'
I&(0) K I&(z')—

(34)

0.8

cn 0.6
Q3

4

N

G3 0.4

Io(z')+I&(z') =Io(z'=0)+I~(z'=0) =K =const, (32)

one can reduce the problem to solving

We represent in Fig. 3(a) [Fig. 3(b)] the longitudinal evo-
lution of the pump and probe intensities for f&=1,0.5,
and 0.1 (1, 0.0776, and 0.0127) and observe that for the
same initial condition, the intensity (energy) exchanges
occur earlier along the crystal in the non-plane-wave case
when compared to the plane-wave case. Figure 3(b)
displays the same feature, but for more realistic fz
values: we have taken the extremal values of Table I to
get a striking comparison between the diA'erent situa-
tions. We also observe that all the transverse patterns we
have considered give nearly the same intensity exchange.
The exchanges are activated: the grating nonlinearity is
reinforced by the coupling between two transversely
difT'erent beams. In the grating interaction, the nonuni-
form transverse intensity distribution produces a longitu-
dinal increase of the photorefractive gain (due to a varia-
tion of the constructive interferences between the beams):
mathematically, since fz takes decreasing values (less
than unity), the 6 contribution becomes larger and the
nonlinear term increases. This activates the energy cou-
pling and the exchanges in the crystal.

We can also evaluate from Eq. (33) the maximum value
reached by the probe intensity; it is characterized by the
following implicit relation:

K(1—a)
1+a(fq —1)

(35)

If we replace Eq. (34) in Eq. (35), we get the position of
this maximum along the crystal

0.0
[

I I I I I I I I I
(

I I I I I I I I I
)

I I I I I I ~ I+I ~ IMI ~ I+I ~ IMI f~
0.0 0.2 0.4 0.6 0.8 1.0

z (cm)
gz,

' = ln —in[a(m +1)f&],(1—a)(m '+ 1)
1+a q

—1
(36)

1.0 g

0.8—

where m is defined as I&(0)/Io(0). To get the most
efficient crystal, the power transfer between the two
beams can be optimized by choosing the crystal length.

The knowledge of the intensities is always sufficient to
define the phases and solve the phase equations (29). We
have found the following relations:

m 0.6
G3

N

Q3 0.4

Io(z')
Po(z') —tIrc(0) = — ln .

Io(0)

K Iq (z')—
ln.

7) K —Iq(0)

(37a)

t)'jg (z' )
—fg (0)=

7l

Iq(z')
ln .+ CXZ

Iq(0)

I„(z')
ln

I~(0)

(37b)

0.& I I I I 1 i I i I

0.0 0.2
I I I I I I I I

)
I I I~I VI~IQI~IMIMIMf+IW'I~I~I~I

0,4 0.6 0.8 1.0
z (cm)

FIG. 3. Solutions of Eq. (28) that give the intensity exchange
occurring between the pump and probe beam during one pas-
sage in the crystal. The parameters are as follows: (a) f~= 1

(squares), 0.5 (asterisks), 0.1 (circles) and (b) f~= 1 (squares),
0.0776 (asterisks), 0.0127 (circles). The other parameter values
are I =10 cm ' and o.=0.6cm

We have used the initial relation l(z(0)
=(g'lg)lnII&(0)]. For large z', Iz increases asymptoti-
cally to K and Ic to zero. The slope of P&(dg& ldz') be-
comes zero while the Po slope is rj'If&. This is displayed
on Fig. 4 for two values of f& (1 and 0.1). The main
difference occurs for go. at the crystal output, if it is long
enough, the transverse nature of the beams has an impor-
tant inAuence on the pump beam phase. The wavelength
change of the pump beam is more important in case of
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60.0

40.0—

where we have taken the oscillating field in z =0 for nota-
tional simplicity. Using the polar form of y and the real
and imaginary parts of Eq. (38), we obtain the following
system:

(cod co'd—)+Id(0)

2ceO, L Io(z)+Id (z)
I cod dz

e o Io(z)+ fdId(z)

X cosI pd(z) —l(!d(0)+p),
(39)

2c&0 L Io(z)+Id(z)
Id(0) = I dz

Qd e o Io(z)+ fdId(z)

Xsin[ ttjd(z) —tt!d(0)+PI .

0.0 V~V~MQI Yl IV'I I r I (T
0.0 0,2 0.4

I I I I I I I I
J

I I I I I I I I I
i

I I I I I I I I !

0.6 0.8 1.0
(cm)

As in Refs. [10,21] we define td the decay time constant
of the photon density in the dth mode with no refractive
interaction by 1/td =rod /Qd. This time is much less than
the material characteristic time and it is also given by the
relation

FIG. 4. Solution of Eq. (28) for the phases. The asterisks
stand for tt ~(z), the probe beam phase, while the circles
represent t(0(z), the pump beam phase. The parameters are
I =10 cm ', a=0.6 cm ', (t =m/4, Id(0)=0.01, and
Io(0)=0.99 for all curves, and f„=1 (0.1) for the lower (upper)
it!d (z) (asterisks) and /II(z) (circles) functions.

transversely complex shapes due to the increase of the
nonlinearity (medium refractive index) while the probe
beam phase is not affected.

We present in Appendix A two limiting cases of two-
wave mixing in a PR crystal that can provide a full
analytical study.

These are the general features of the solutions of Eqs.
(28) and (29). We have completely characterized the z'
dependence of the pump and oscillating fields. At this
stage, the numerical way to solve exactly the problem is
to go back to Eq. (14), get the F value using the&(z') de-
rived in this section, insert them in Eq. (13), solve its real
and negative parts, and get the frequency shift of the os-
cillating field. Following this aim, we shall be concerned
in the next section with deriving the frequency pulling
that the oscillating beam undergoes, using the cavity
model of Sec. III.

2ce01 L Io(z)V Id(z)
dz

e+Id(0) 0 Ip(Z)+fdId(Z)

XsinIgd(z) —ttId(0)+PI . (40)

We deduce the following expression for the difference:
I

~d C
CO Q)d d t gd

(41)

where the cosine (C) and sine (S) integrals are given by
the expressions

Io(z)l/ Id(z)
C = f dz cosI Q&(z) —gd(0)+I)) ), (42a)

o Ioz+ dId z

Ip(Z)t/Id(z)S=f dz sinIQ&(z) Pd(0)+PI .—
o Ioz+ dIdz

At this stage we remind the reader that the half-
linewidth of the material gain line is around a few hertz
and the d mode is allowed to oscillate if its active fre-
quency is close to the pump frequency: cod-m . If the
frequencies (active and passive) are all around ro, which
supposes a slight mode pulling, then cod —

cod—(cod —
cod )2cod and one can easily approach the frequen-

cy pulling by

V. THE FREQUENCY SHIFT
OF THE OSCILLATING MODE

I 1
d 2 g (43)

+i gd2ceO, L Io(z)+Id(z)e
QCOd dz

0 Ip(Z)+fdId(Z)
(38)

We now consider Eqs. (13) and (14). The integral
occurs in the crystal only: one can use the approximation
(24) followed by (30). We easily obtain

r

Qd

This will be the case when p is around Tr/2 (mod Tr). If
the ratio C /4 diverges, then the expression md

—cud

-co& —co takes very large values and this supposes a
very strong mode pulling effect.

We shall evaluate expression (43) to derive the frequen-
cy shift using the exact formulas given by Eqs. (34) and
(37). A general idea of the behavior of such a ratio versus
its parameters can be derived by taking ponctual situa-
tions. For example, when p=+m/2, l(d(z) =pd. (0), and
C =0, then cod =cod and no frequency pulling occurs. An
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analytic form of the ratio C /4 can be obtained when

fd =1 (two-plane-wave mixing) and for small fd. These
results are presented in Appendix B.

We have analyzed the ratio C /S [and C' '/4' I of Eq.
(B3)] versus the main parameters: P the phase mismatch
between the material and the field gratings and m the ra-
tio of the oscillating intensity on the pump intensity at
the crystal input (or crystal length, respectively). The nu-
merical investigation of Eqs. (42) and the first order of the
expanded form (Bl) leads qualitatively to the same con-
clusions: the presence of some divergence in the exact
calculation appears also at the lowest order of any related
expansion. The most global view on the evolution of this
ratio can be obtained, however, by analyzing the approxi-
mated case. The results that we shall present need some
definitions.

We call a pole a double increase of the ratio to
"infinity": the appearance of a sharp line to plus (or
minus) infinity followed by a second sharp line to minus
(or plus) infinity defines then a narrow domain of P for
which the frequency shift presents very important varia-
tions. When a parameter is varied, the pole appears very
progressively. It can also change its "sign": the positive
(negative) infinite branch becomes the negative (positive)
infinite one. As shown previously, for /=+sr/2 the ratio
is always zero and the frequency shift cancels. At least
two poles, P, and Pz, for /=0 (=0 in the approximated
case) and P = sr always exist when we represent the ratio
C /S (or the frequency shift) versus the parameter P. The
creation of new poles occurs in the surroundings of /=0
and ~ by pairs (for example, a pole minus-plus and plus-
minus): we call that a double pole. As the parameter is
increased the poles move along the P axis.

We shall present the successive form of the ratio
C ' '/4' ' vs P when L is increased from very small values
(10 cm) to L = 1 cm. We have chosen this approximat-
ed case because one can get the full description for
reasonable values of the parameters. The following ob-
servations of the behavior of the ratio C /4 are displayed
on Figs. 5 and 6. The limits of the P space are —ir/2 and
+3m/2, keeping in mind the periodicity of the diagrams.
For L (0.19 cm, only P, and P2 are present in /=0 and

As L increases, the poles move away from each other.
Then, symmetrically with respect to P=ir/2, two oppo-
site (one positive and one negative) growths of the ratio
appear. For L =0.24 cm, in each curve deformation dou-
ble pole appears whose components then move away
from each other: as L increases, the motion in the double
pole seems to be strictly repulsive. When the poles are
uniformly distributed with respect to P for L =0.32 cm,
the closest poles to P, and P2 change their signs (see
above) (L =0.35 cm), leading to the constitution of a
double pole with the P's and their immediate neighbor.
The general motion of the poles (except Pi and Pz)
occurs then in the opposite direction: in the double
poles, the components have to move away and the four
central poles start to gather around P = ir/2. For
L =0.53 cm, the P distance between the components of
the double pole is large enough, and near /=0 and vr a
new decrease and increase appear, respectively. New
double poles are present for L =0.6 cm and the previous

FIT&. 5. Evaluation of the ratio C' '/S' ', zero order of the fd
expansion given by Eq. (B3), for various crystal lengths. We
note the creation and growth of the double poles.

scenario repeats itself. For large L one can see a concen-
tration of poles around P=ir/2 and a creation of a pair
of double poles between P, and P2 and these poles bunch.
In Fig. 5 one can observe the creation of two double
poles, their evolution as L is varied, the change of sign,
and the creation of a second pair of poles. In Fig. 6 the
same previous elements are reported following only the
trace of the poles (a view from above).

When fd&0, the analysis parameters are P, and m is
the intensity ratio. We have fixed the cavity length to 1

cm and observed qualitatively the above scenario, but for
decreasing m values: the pole bunching is present for
very low values of m, and the parameters L and m play
opposite roles. This result can be deduced from the rela-

1.0

U

0.5

0.0
03K:(

I

0.3
I

0.4
I

0.5
I

0.6

L (cm)
FICy. 6. Same as Fig. 5, but the exact ratio C/4 is calculated

for f„=0.0776. The crystal length L is taken equal to unity and
replaced by the parameter m, the ratio of the oscillating beam
on the pump beam at the crystal entrance.
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the crystal and the losses in the cavity; then the ratio m
can be difFerent from one lap to the following (then time
dependent) until the steady state is reached. If one sup-
poses that this state is never reached or dynamically any
steady state is stable, then the system continuously
evolves between its possible steady states (the cavity
modes). Our present investigations are oriented in that
direction.
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APPENDIX A

FIG. 7. The ratio C /g vs P and m for f„=0.0776.
We can get more analytical information from Eqs. (34)

and (37) by treating two limiting cases.

tion (B2) where these two parameters always appear via
the relation e " +m. Moreover, the poles I'& and I'2
seem fixed (their motion is, in fact, imperceptible when m
decreases). The nascent poles are already present for
m =1, but appear clearly for m =0.1. Figure 7 displays
all these features.

VI. CONCLUSIONS

We give in this paper a suitable justification of the ex-
perimental observations in [16,17]: as soon as the fre-
quency shift occurs, the transverse mode moves towards
the crystal gain line frequency region, centered around
the pump frequency (co ), and then is allowed to oscillate.
From the physical point of view, the frequency pole has
no meaning; it just represents large absolute increases of
the mode frequency and shows that arbitrarily large
shifts may be realized bringing in resonance passive
modes of the cavity which were detuned from the gain
profile by large amounts. This is necessary to allow
several transverse modes to oscillate simultaneously in a
nondegenerate cavity. Our description is a monomode
one. A (active) degenerate bimode description is now in
progress to follow the evolution of the poles, and such
large frequency shifts should remain in that case.

This model is a first step towards a dynamical descrip-
tion of the photorefractive oscillator avoiding the mean-
field limit (or the weak-field approximation): in that case
one has to separate what happens inside the crystal from
the field-cavity behavior. This explains the exhaustive
study of the beam passage through the crystal: the result
is that because of the transverse intensity distribution, the
exchanges inside the crystal are reinforced. We expect
that the intense interaction inside the crystal is a non-
negligible phenomena and it can explain the experimental
observations such as periodic alternance and chaotic
itinerancy. Our study is also realized in the long-time
limit, and the ratio m is fixed. In a dynamical description
this parameter may become time dependent: during the
round-trips one has to integrate the effective gain inside

1. Mixing two plane waves

This case is characterized by fd =1 and the solutions
are well known [11]. We remind the reader of the expres-
sions of both intensities and phases:

Io(z') =Io(0), e
1+me"'

Id(z') =Id(0), e

(A 1)

o(z') —go(0) =
[ gd (z') —fd (0) J

vI'z', —
I

pd (z') —
gd (0)= ln .

e "'+m

(A2)

These intensities and phases are also given in Figs. 3 and
4 (lower curves).

2. Mixing a plane wave and a transverse cavity mode

We can use the presence of a small parameter (fd ) fol-
lowing Table I, the order zero of the fd expansion
representing the second limiting case. We consider the
expansions

Id(z') =Id '(z')+ fdId''(z')+o (fd ),
K'=Ko+ fdK, ,

where

K, =I,(z =0)=I,(0)=I,(0),

(A3)

(A4)

K, = —Id (0) ln
K —Id (0)

K
=Id(0) ln[m +1] .

Replacing Eqs. (A3) and (A4) in Eq. (34), one easily gets

I"'(z ) =K,e''
d

(A5)

I"'(z')=K e"'+K e"' ln 1 — e"'
d 1 0
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In terms of the intensity variables, the expanded solutions
of Eq. (27) are

I„(z')=I„(0)e'"
X [1+fd I ln(m +1—me"' )]+o(fd)], (A6)

Ip(z') = [Ip(0)+Id(0)]e ' Id(—z') .

At this level we must note that the convergence of such
an expansion places a strong condition on the crystal
length: ln(m +1—me"' ) must take order one values
with respect to the small parameter fd. As z' increases
along the crystal, this negative function increases rapidly
in absolute values. To limit this growth and avoid the
divergence, one needs g (m + 1 —me "' ( 1 with g of or-
der 10 . We easily obtain that z' has to be strictly below
z',„,defined by ilz', „=1n[(m + 1)/m]. This last relation
provides the condition of a total intensity transfer be-
tween the beams for low losses: Id(L) =Id(0)+Ip(0). Us-
ing the smallness of g, the analytic expression leading to
z 1S

APPENDIX 8

1. Case of two plane waves mixing

For fd=1, the exact expressions of the C and
coefficients are

Q(1+m)Id(0)
C, = cos(9)

e '['9

X dz'
p ( 1 + gz')3/2

(1+m)e"'
X cos ln.

1+me"'

Q(1+m)Id(0)
g) ——

cos(0)

(B1)

We present the integral calculation (C and g) in the
two limiting cases for which the exact (or expanded ana-
lytic) expressions of the fields exist.

m+1qz'= ln
m

—o(g).m+1

(q —~)Z'/2
X dz'

p ( 1 + gz')3/2

From the technical point of view, depending on the gain
parameter g and the initial intensities ratio m, one can
deduce the maximum crystal length to never exceed (for
example, when ri is around 10 cm ') z',„=0.12 cm for
m =50%%uo while z' „=0.3 cm for m =5%.

(1+m )e"'
Xsin ln .

'g 1+me "'

where L' is L cos(9). The ratio C, /4, can be integrated
for small losses. Let us take a =0; we obtain

1/2
(1+m)e"
1+me"

cos ln ~

(1+m)e" .+p+ p —cos[p+ p]1+me &L'

1 /2
(1+m)e"
1+me"

sin ln . (1+m)e" +p+ p —sin[p+ p]1+me"

(B2)

where we have defined e'~= [(rl —a) —2irl']/[(ri —a) +4'' ]'

2. Mixing a plane wave and a transverse cavity mode

Keeping in mind the smallness of the fd parameter and the expansion (A6), we can derive a first order of Eq. (42) in
terms of C' ' and S' ', which are integrable, and their ratio is given by

e '" '/ cos(ri'L '+P+ tti) —cos(P+ (b)

e~ '" '/ sin(rl'L'+P+P) —sin(P+P)
(B3)

This last case corresponds to the previous one (Appendix B 1) but for m =0: small fd is similar to a large intensity
difference at the crystal input with two-plane-wave mixing.
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