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Jaynes-Cummings model with quasiclassical fields: The effect of dissipation
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An approximate solution is given for the Jaynes-Cummings model with cavity losses, i.e., the problem
of a two-level atom interacting with a single mode of the quantized radiation field, in the rotating-wave
approximation, when the field is damped by a reservoir at zero temperature. The approximate solution
is derived for initial coherent field states with moderately large numbers of photons. It is simpler in form
than earlier results derived by other authors and, over the appropriate parameter range, substantially
more accurate than some of them, as shown by direct numerical integration of the master equation. In
particular, it is found that an earlier treatment of this problem based on a secular approximation is seri-
ously Qawed, in that the conditions for its validity are much more restrictive than was previously be-
lieved. Among the results derived it is shown that, just as for the lossless case, when the atom is initially
prepared in one of the semiclassical eigenstates the evolution is very simple, with the field and the atomic
dipole drifting together in phase. For moderate losses this leads, as in the lossless case, to a "state
preparation"; i.e., to a good approximation, the state of the atom at a specific time can be made indepen-
dent of its initial state. The e6'ect of losses on the recently discovered "Schrodinger cat" state of the field
is also analyzed. It is found that, although the dissipation destroys the coherence of the macroscopic su-

perposition very rapidly, preparation and observation of the "cat" should be possible with the cavity
quality factors reported in recent micromaser experiments.

PACS number(s): 42.50.Md, 03.65.Bz, 42.52.+x

I. INTRODUCTION

This paper presents an approximate solution to the
Jaynes-Cummings model (JCM) [1] with dissipation, that
is, to the problem of a two-level atom interacting with a
single mode of the quantized radiation field, in the
rotating-wave approximation, when the field is damped
by a reservoir at zero temperature. This dissipation may
be thought of as "cavity losses" since, in practice, a reso-
nant cavity of some sort may be used to select only one
mode of the field for the atom to interact with.

The solution is derived along the lines of the "quasi-
classical" or "asymptotic" solutions for the lossless JCM
which have been presented elsewhere [2,3]. These solu-
tions were derived for "quasiclassical" initial field states,
that is, states which have a small phase and amplitude
uncertainty. The case of an initial coherent-state field
with a large average number of photons is the one treated
explicitly in this paper. Since the losses eventually reduce
the number of photons to zero, the approximation clearly
ceases to be valid for sufficiently long times. With only
this restriction, however, the solution presented here is,
to the best of this author's knowledge, the most complete
and arguably the simplest yet given for this problem.

The JCM is a model of fundamental theoretical impor-
tance, as the simplest nontrivial model of two coupled
quantum systems (formally, a spin- —,

' system, to which the
two-level atom is equivalent, coupled to a harmonic oscil-
lator in an appropriate way). Without dissipation, it is
exactly solvable (see [1] for the solution in the
Schrodinger picture and [4] for the solutions in the
Heisenberg picture). The solution in the presence of dis-
sipative processes is not only of theoretical interest, but

also important from a practical point of view since such
processes would always be present in any experimental
realization of the model. The "micromaser" setup, in-
volving Rydberg atoms interacting with very high-Q res-
onant cavities in the microwave domain [5], comes
closest to a realization of the ideal, lossless JCM, but
even here the effects of finite cavity losses must be taken
into account. In the optical domain, where great pro-
gress has been made in the past few years in the design
and construction of very small, very high finesse cavities
[6], spontaneous emission would also play a role, and this
has motivated a recent numerical study of this problem
by Tran Quang, Knight, and Buzek [7]. Spontaneous
emission wi11 not be considered in the present paper,
which focuses on the effect of cavity losses only.

Over the years, a number of authors have treated the
JCM with cavity losses in various ways, including analyt-
ical approximations [8,9] as well as numerical calcula-
tions [7,10]. Most of these publications dealt only with
the population inversion "collapses and revivals. " Eiselt
and Risken [10] carried out a comprehensive numerical
study of the state of the field, although again the only
atomic variable they considered was the population in-
version. Puri and Agarwal [9] did present formal solu-
tions for the expectation values of a number of quantities
of interest. It will be shown here, however, that their re-
sults are seriously Aawed, in that the conditions for their
applicability are much more restrictive than they real-
ized. This failure of the "secular approximation" is
perhaps one of the most noteworthy results of the present
paper; it is illustrated in Sec. III and discussed at length
in Appendix A.

The solution to be presented here is a closed-form solu-
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tion for the total state of system, i.e., for the atom-field
density operator. It is extremely simple in form and pro-
vides considerable physical insight into the problem. In
spite of this simplicity, comparison with the numerical
solutions shows it to be remarkably accurate.

Over the past couple of years, several effects have been
discovered in the lossless JCM. Two of the most interest-
ing are the possibility of state preparation, whereby the
atom could be made to be, at a given time, in a state in-
dependent of its initial state [11,2, 12,13],and the possibil-
ity of preparing the field, at the same time, in a coherent
superposition of macroscopically distinct states [2,14,15]
(a macroscopic quantum superposition, also known as a
Schrodinger cat [16,17]). A natural question that is asked
and answered in this article is how well these effects stand
in the presence of dissipation. The conclusion is that ob-
servation of both effects lies within the range of current
experimental capabilities, in particular in micromaser
cavities. (The question of to what extent these ideas may
be carried over to optical cavities has not been answered
yet. )

The outline of the paper is as follows. In Sec. II the
master equation is presented and the basic results of ear-
lier work in the lossless case are reintroduced. The ap-
proximate solutions to the master equation are derived in
Sec. III, where they are compared to the results of the
numerical calculations and of the secular-approximation
based work of Puri and Agarwal. A discussion of some
of the main results follows, in Sec. IV, where the issue of
the effect of losses on the atomic state preparation and
the field Schrodinger cat is also addressed. Appendix A
discusses and explains what is wrong with the secular ap-
proximation. Appendix 8 shows how to reduce the mas-
ter equation to a relatively smaller set of ordinary
differential equations for the purpose of the numerical
calculations.

II. MASTER EQUATION
AND APPROXIMATE SQLUTIQNS

WITHOUT DISSIPATION

The JCM involves a two-level atom, whose energy
eigenstates are written here as

I
a ) (upper) and I

li )
(lower), interacting with a mode of the quantized elec-
tromagnetic field, in the rotating-wave approximation.
The field annihilation operator is denoted here by a; the
coupling constant is written as g. The interaction Hamil-
tonian, on resonance, is

HI=Ag(Ia }(bla+a lb }(aI) .

It will be assumed that the field mode is damped, at a rate
ir, into a reservoir (typically, the cavity walls or the out-
side world) which is taken to be at zero temperature. The
resulting master equation for the atom-field density
operator p is (for a derivation, see e.g. , [18]):

By taking the matrix elements of p between the atomic
states la ) and lb ), Eq. (2) becomes a set of four equa-
tions for the operators (in the field Hilbert space)
p; (i j=a, b):

p„=ig(p, ba —apb, )+~L~(p„),

Pbb ig(pb a a P b )+«f(Pbb )

p.b
= ig (p..a apb—b )+«I(p.b ),

p. =ig(pb 'a —a p..)+«~(p,.) .

(4a)

(4b)

(4c)

The exact solution for the Hamiltonian part of these
equations (i.e., for the lossless JCM) has been known for a
long time [1,4]. Recently, an approximate solution to the
lossless JCM has been derived [2,3] which is much
simpler in form and yields considerable insight into the
evolution of the field-atom system when the initial state
of the field is "quasiclassical, " i.e., has small phase and
amplitude uncertainties. This approximate solution will
be used here as the starting point for the solution when
losses are included.

The key observation is that the evolution of the field
and atom in the lossless case is extremely simple when
the initial state of the field is quasiclassical and the initial
state of the atom is one of either

I+&= -[I.&+I»]
2

(5a)

or

(5b)

Iq' (r)&= —(
'"" "I )+lb&)e g2 n=a

(6a)

and, correspondingly, the initial state
I

—) l@(0)) evolves
as

[to simplify the notation, the initial phase of the field,
which should come into the definition (5), has been taken
to be zero throughout]. The states I+ } and

I

—}are the
eigenstates of the semiclassical interaction Hamiltonian,
i.e., of Eq. (1) with the field operators a and a replaced
by a constant c number. They are not to be mistaken for
the "bare" energy eigenstates

I
a ) and

I
b ) . In the states

I+ ) and
I

—) the atomic energy is not well defined, but
the dipole moment has a nonvanishing expectation value
which oscillates either in phase or 180' out of phase with
the field [3].

As shown in [2] and [3], if the atom is initially
prepared in I+ ), and the initial state of the field is
la (0) & =y„C„ln ), with average number of photons n,
the subsequent evolution is approximately given by

dp 1= ——[HI,P]+«~(p)dt

where the field decay operator is

L~(p)=2apa —a ap —pa a .

(2)
tyre'; 00

(r))= (e'' ' " a) —Ib))g g e'" "c„ln& .v'2

(6b)

These expressions hold for times up to the order of the
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"breakdown time" Tb =em�/g [19]. The most important
thing about them, for the present purposes, is not im-
mediately apparent but has been discussed at length in [2]
and [3]; namely, Eqs. (6) describe states in which the field
and atom remain in phase as they evolve in time. It can
be shown from (6) that both the average phase of the field
and that of the atomic dipole grow in time as +gt /2n
so that the field and the atom remain at all times either in
phase or in opposition, depending on whether the initial
state is I+ & or

I

—&.

For the approximate solutions (6) to hold, it is not
essential that the initial state of the field be exactly a
coherent state; as shown in [3], the essential point is that
the phase and amplitude should be relatively well defined,
i.e., b,P «1 and An In «1. The solutions (6) do predict
a growing phase uncertainty for the field states; for
an initial coherent state, one has roughly
b,g=(1 ln+g t /16n )', which is why one should ex-
pect the approximation to break down when gt is of the
order of n [19]. For large n, this may allow the approxi-
mation to hold over many collapses and revivals, since
the revival period is given by tz =2n+n Ig.

The states I+ ) and
I

—) are orthogonal, and hence a
basis of the two-dimensional space of states of the atom;
therefore, a knowledge of the solutions (6) is enough to
predict the evolution of the system for any initial atomic
state in the lossless case, in which one only has to solve
the Schrodinger equation for the state vector, or wave
function, of the total system of atom plus field. When
dissipation is included, things become a little more com-
plicated, since in general one now has to solve the master
equation (2) for the atom-field density operator p. If the
initial state of the atom is the general superposition
yl+ )+5I —) (with arbitrary y and 5, only such that
Iyl + I5I =1), the initial density operator may be writ-
ten as

p«) =[lyl'I+ & &+ I+ I5I'I —
& &

—
I

+(y5*I+ ) ( —I+H. c.

)]zopf(0),

where pf(0) is the density operator for the initial state of
the field, taken here to be a pure coherent state of average
photon number no and phase /=0. Because of the
linearity of the master equation, the solution correspond-
ing to the initial condition (7) can be written as

significance of the various pieces of the solution, namely,
p'++'(t), ' '(t), and p'+ '(t). The first two, p'++'(t)
and p' (t), are actually the full solutions to the master
equation when the initial state of the atom is one of the
semiclassical eigenstates

I
+ ) or

I

—). On the other
hand, p' '(t) comes into play whenever the initial state
of the atom is any coherent superposition of I+ ) and
I

—), such as, for instance, the "bare" energy eigenstates
la ) and Ib). Accordingly (see also [3]), it is p' '(t)
which, in the limit of large photon numbers, is responsi-
ble for the population inversion oscillations, and their
collapses and revivals, for which the JCM is best known.

III. APPROXIMATE SOLUTION
WITH CAVITY LOSSES

A. Evolution of p'++'(t)

When the initial state of the atom is I+ ), the atomic
dipole and the field are in phase and, in the absence of
dissipation, as long as the solutions (6) are valid, their
average phases grow together at the rate g/2n' [while
the phase uncertainty of the field slowly grows as well, as
indicated in the discussion following Eq. (6)]. Since cavi-
ty losses are phase insensitive, they should not alter this
picture substantially. That is, one still should expect the
field and the atomic dipole to be locked together in phase.
The main change brought about by the losses is a gradual
reduction of the average number of photons, which
should alter the rate at which the phase grows; one might
conjecture that the phase should grow now at a rate given
instantaneously by g/2n(t)'~, and it will be shown in a
moment [see Eq. (20) below] that this conjecture is indeed
essentially correct. The decrease of the average photon
number also increases the phase uncertainty, which has
the added effect that the approximate solutions will lose
validity earlier than they would in the absence of losses.
This will be compensated here to some extent by the fact
that the solution to be derived is an improvement over
the earlier ones derived for the lossless case [2,3], in that
it allows for some entanglement between the atom and
field.

It was shown in [3] how, for the lossless case, the cru-
cial assumption of a small phase uncertainty in the field
state led to the following expression:

p(t)= lyl'p~ +'(t)+ I5I'p'--'(t)

+ [y5*p'+-'(t)+H. c.],
where p'++'(t) is the solution to the master equation
with initial condition I+ ) ( + Ipf (0), i.e., with the atom
initially in state I+ ), and analogously for p' '(t); and
p~+ '(t) is the (non-Hermitian) solution to the master
equation with the initial condition

I
+ ) ( —

I pf (0). In
the lossless case it is a trivial matter to write down ex-
pressions for p' +'(t), p' '(t), and p'+ '(t) from the
solutions (6); when dissipation is included, however,
p'+ ' has to be considered separately from p' +' and
p' '. This shall be done in the following section.

Before proceeding, it maybe useful to note the physical

This is Eq. (9) of [3] in slightly rewritten form; here, the
phase p„(t) is just equal to gt&n . Oue can —obtain Eq.
(6a) from (9) simply by replacing P„+i(t)—P„(t) in the
atomic state by the approximate value —1/2+n (ob-
tained by expanding around the mean of the photon num-
ber distribution). Equation (9), which is therefore some-
what more general than (6a), is a good starting point for
an "ansatz" to substitute in the master equation (3) when
dissipation is included, since it is "almost" a solution to
the Hamiltonian part. Accordingly, let
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p'++)(t)= —,
' y r„(t)e " - '~n &&m~

n, m

where the phases P„(t) are to be determined. The
coefficients r„(t), also to be determined, would, in the
lossless case, be constant and equal to C„C;here we are
allowing for the possibility that they may not be of the
product form, i.e., that the combined atom-field state
may not be a pure state anymore, because of the losses.
They are taken to be real in what follows.

When the ansatz (10) is substituted in the master equa-
tion (4), and the real and imaginary parts are taken, one
obtains four different equations for r„and another four
for P„—P . These are all similar, except for small
differences, and the approximation basically consists in
neglecting the slight differences. Specifically, for r„one
finds

r'„= —()nc+m)r„

+2~&'(n + 1)(m + 1)

(Wn +i +1 An+i 0m+j +1+4m +j )rn+), m+1&

in Eq. (11) can be replaced by unity and the four different
equations reduce to a single one. The crucial assumption,
as discussed in [3], is that the field state has a fairly well-
defined phase. To see this, consider the effect of acting
on an arbitrary field state

~

C) ) =Q„c„exp(ig„)~
n ) with

the "phase operator" [20] « exp(i/) )) =g„~n —1) & n~:

«exp(iy))& g C„e' ")n
&

n=0

= g C„+,e' " '~n)
n=0

~+ i '&&. +I

n=0 n

(12)

This is approximately equal to a phase factor times the
original state if the two following conditions hold: (1)
C„+,IC„=I and (2) P„+,—P„=P, independent of n

These two properties of "quasiclassical" states will be
used repeatedly in what follows.

For as long as the field state has a relatively well-
defined phase, the four equations (11) for r„reduce to
the single one

r„=—v(n +m)r„+2m&(n +1)(m +1)r„+, +, .

(13)

where i and j can be 0 or 1. Under the assumption that
P„+,—P„ is approximately independent of n, the cosine

As for the phases P„(t), the four equations for them may
be put in the form

p„+,. —p +.———g(il, V'n +i —g,'. .V'm +j )
—2 ' +(n +1)(m +1)sin(p„+;+1—pn+; —pm+J+1+pm+j) ~ 14

rnm

where again i and j can be 1 or 0, and the coefficients g;
and q,'" are of the form r„+i /r„, r„+,/r, . In ac-
cordance with the well-defined phase assumption, such
ratios will be set equal to 1 (note the similarity of this ap-
proximation to the original derivation of the asymptotic
solutions for large n in Appendix A of [2]). Also, the sine
function in (14) may be expanded to first order. The fac-
tor in front of the sine function turns out to be indepen-
dent of n and m when Eq. (13) is solved under the as-
sumption that the initial field state is a coherent state;
indeed, under this condition, the exact solution to (13) is

preserves a coherent state. In this case, the state is not
coherent because of the phases P„(t), but it is sufficiently
similar to a coherent state for its decay to be, in this ap-
proximation, very simple. In particular, the factorization
of r„ implies that the total atom-field state represented
by (10) is pure, in spite of the cavity losses.

When the solution (15) for r„ is used in Eq. (14) for
the phases, after setting g,"=g,'" =1, and expanding the
sine function to first order, the four equations for P„—P
simplify to just the following equation for P„:

—(t)(n +m)/2
r„(t)=e

&n!m!

with

n(t) =noe

(15a)

(15b)

1t„= g&n +2~noe —"(p„+,—p„) . (16)

The easiest way to solve Eq. (16), always within the as-
sumption that the numbers of photons are fairly large
and the phase is well defined, is to treat n as a continuous
variable and replace

This is the only point at which the assumption that the
initial state is a coherent state is used explicitly. If r„
were the total field density operator, the solution (15)
would just be a coherent state again, with an average
photon number n(t) It is well .known, in fact, that the
usual linear-loss master equation (at zero temperature)

BP(n, t)
n+1 n

The resulting first-order partial differential equation is
trivially solved [with the initial condition P(n, 0)=0].
The result is somewhat complicated: when n )n(t), one
has
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P(n, t)= ——Qno+n —n(t) &—n + '+— n —n(t) ln
K

0
+no+ n —n (t) —+n —n (t) v'„+Q„—„—(t)
+no+n —n(t)++n n—(t) &n —+n n—(t)

(18a)

When n (n (t), one has

n(t) —n

1/2
no+ n —n(t)

P(n, t)= ——Qno+n n—(t) V'—n +—'+n(t) —n tan
K

0
—tan

n(t) n—
1/2

and when n = n (t), one has simply

P(n, t)= ——[+no —+n (t)] (18c)

p«tional to —(~~ &, where o. —=~b &(a~. The results are

(&(t) &
—1 ~ —n(t) n(t) ~—

(
[p„+&( )

—0~+i[ ~]

2
n=0 n.

with n(t) given by (15b).
Equations (10), (15), and (18) form the complete solu-

tion for the JCM in a lossy cavity if the initial state of the
atom is ~+ &. Equation (10) shows that the field and
atom phases evolve together, just as they do in the ab-
sence of losses; Eq. (15a) implies that, in this approxima-
tion, the total state of the field and atom remains pure in
spite of the cavity losses, which cause the average number
of photons to decay as given by Eq. (15b). In this approx-
imation, therefore, one may actually replace the density
operator (10) by the state vector

The overall phase of the field and the atom may be de-
rived from Eq. (18): to do so, note that the states which
at any given tiine have greater weights in (10) and (19) are
those corresponding to numbers of photons close to the
instantaneous average n(t) One ma. y then expand the n
dependence of P„+i

—P„ in a power series in

I n —n (t) ] /no, and the result, to lowest order, is simply

'[p„+)(t) p„(t)]-+e (21)

and

„-[,i n(t)" [p„,(t) —p„(t)]

n=1 nt
(22)

with n(t) given by Eq. (15b) and P„(t) given by Eq. (18).
Equations (21) and (22) have the simple form of averages
over the Poisson distribution corresponding to the instan-
taneous number of photons.

Figure 1 shows the evolution of the real parts of (a (t) &

and (o(t) &, calculated from a numerical integration of
the master equation (solid lines), compared to the predic-
tion from Eqs. (21) and (22) (dashed lines), for the
moderately large initial number of photons no=25 and
the also moderately large losses K/g=0. 01. The initial
state of the atom is

~
+ &. The agreement with the numer-

ical calculation is excellent for times up to around
gt =50, for which the average number of photons left in
the cavity is only about 9.2. By the end of the time inter-
val shown, n is down to only about 4. 1 photons; in spite
of this, the approximate solution still exhibits good quali-
tative agreement with the numerical calculation.

(20)

Re(a)

4-

-Re(O)

Hence the phase grows at an instantaneous rate—g/2+n, just as in the absence of losses, only tT is the
instantaneous average number of photons. It is tempting
to make the replacement P„+,(t) —P„(t)=P(t) in Eq.
(19), which allows one to write the state of the field and
the atom as a product of pure states, in complete analogy
to (6a) for the lossless case. This should be a good ap-
proximation for as long as n remains large, but if the
losses are substantial it is better to stick to the more exact
form (19), which (somewhat surprisingly) remains fairly
accurate even for rather low values of n, as will be shown
presently.

Two quantities of interest which can be easily calculat-
ed from (19) are the expectation value of the field ampli-
tude (a & and of the atomic dipole moment, which is pro-

- 0.5

0

-2- - -0.5

I

20 40 60 80 gt

FIG. 1. Real parts of the expectation values of the field am-
plitude and the atomic dipole moment, calculated numerically
for the case no=25, ~=0.01g (solid lines), and calculated from
the analytical approximation presented here [Eqs. (21) and (22),
dashed lines]. The initial state of the atom is ~+ ).
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(3 e n(g)y2 n(t) (I))„(&)(

&n!
(23)

in complete analogy with the lossless case [Eq. (6a)]. The
time over which (23) is a good approximation increases
for larger numbers of photons and/or smaller losses. The
atomic state purity is lost through entanglement with the
field, which takes place over a time scale proportional to
the average number of photons; the cavity losses hasten

R3. R3

/. z

The total time shown in Fig. 1 is three times the loss-
less revival period 2m+no. In fact, however, Eq. (20)
shows that the frequency of the oscillations in the atomic
dipole (or the field) amplitude grows as n decreases, and
Fig. 1 actually shows four "revivals" (i.e., maxima and
minima) of the real part of the atomic dipole amplitude.
This is seen more clearly in Fig. 2 (to be compared to
similar figures in [3]), which displays the evolution of the
atomic state in the Bloch sphere, as given by the numeri-
cal integration of the master equation, over the time
range of Fig. 1, both with and without cavity losses. The
~=0 case shows three revivals, i.e., one and a half turns
around the Bloch sphere, whereas the ~/g=0. 01 case,
corresponding to Fig. 1, shows more than two complete
turns around the Bloch sphere [for a thorough discussion
of these Bloch sphere characterizations of the state of the
atom, see [3]; note that the real and imaginary parts of
(o(t)) are, except for a factor of 2, the components Ri
and Rz of the Bloch vector]. In spite of this shortening
of the revival period with time, Fig. 1 shows that the field
and the atom stay "in step" throughout (i.e., always in
opposition), as in the lossless case.

It is instructive to compare the solution (19) to other
possible (in general, less accurate) approximations. As
discussed in [3], the atomic state is pure if its Bloch vec-
tor has unit length, that is, if it lies on the surface of the
sphere. From Fig. 2 it may be seen that the state is
indeed approximately pure for early times. This means
that for these times one can in fact carry out the approxi-
mation (20) and factorize the total state into a field part
and an atom part,

this entanglement merely by reducing the number of pho-
tons. It is still a good rule of thumb to say that Eq. (23) is
approximately valid as long as gt «~n, where now, how-
ever, n depends on t. For the case illustrated in Figs. 1

and 2, one has gt =~n at gt = 37; Fig. 1 shows that the
better approximation (19) is valid well beyond that point.

Closely related to (23) is the "neoclassical" approxima-
tion. As discussed in [3], as long as the factorization (23)
holds approximately, the expectation values of products
of field and atom operators in the Heisenberg equations
of motion could be faetorized as well. Doing this in the
Heisenberg-Langevin equations for the lossy cavity, one
obtains the system

d(a& = —a&a &
—ig( r(), (24a)

dt

d((r ) =ig &

dt
(24b)

d &
o., & = —2ig(( ~ )*(a ) —(~ & *(~& ),

dt

where cr3—= ~a ) (a —~b ) (b
~

is the population inversion.
It is a fairly straightforward matter to verify that the

numerical solutions of (24) agree indeed with the results
shown in Figs. 1 and 2 as long as gt «~n is satisfied,
whereas for longer times both (a ) and (cr ) decay rather
faster than (24) predicts, because of field-atom entangle-
ment. In particular, Eqs. (24) lead to a conserved Bloch
vector length (as was the case when a =0 [3]), which Fig.
2 shows is approximately the case only for early times.
The conclusion, therefore, as in [3], is that the initial con-
dition ~+ ) (or equivalently

~

—)) leads to an evolution
which is well described by a "neoclassical" approxima-
tion for times which can be rather long if no is large.

By contrast, one may consider the so-called "secular
approximation" which has been used by other authors to
treat the JCM with cavity losses. According to Puri and
Agarwal [9], the terms neglected in making the secular
approximation are of the order of (ir/g ), which for the
present case is 10; hence the approximation would
seem to be quite justified. Puri and Agarwal have given
expressions [Eqs. (4.5) and (6.4) of [9]] which allow one
to calculate (a(t)) and (o(t)). For the present case
(a=0.01,no=25, initial atomic state ~+ )) the result is
shown in Fig. 3. Comparing it to Fig. 1, one must con-
clude that the secular approximation is, in fact, totally
inadequate for this problem. The reason for this some-
what surprising result is discussed in Appendix B.

B. Evolution of p' '(t)

(a)

. ''R2 R, ';

(b)

It is straightforward to verify that, just as in the loss-
less case, the evolution of p' '(t) is identical to that of
p'+ '(t) except for the sign of the phases, and, of course,
the relative sign between ~a ) and ~b ) in the wave func-
tion. Thus one can write

p' '(t) =
—,
' g r„(t)e "

~n ) (m
~

FIG. 2. Evolution of the atomic state in the Bloch sphere for
the initial condition no =25 and initial atomic state

~
+ ), for (a)

no losses and (b) re=0. 01g. The initial state is (1,0,0); the total
time shown is gt =30~=94.

n, m
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calculations. An approximate analytical derivation fol-
lows along lines similar to those for p'++'(t). One may
assume a form

3.
2- - 0.5

p'+ '(t)= —,
' y f„(t)e "

~n )(m~
n, m

-2
0 20 40 60 80

- -0.5

gt

with r„(t) and P„(t) given by the same expressions, (15)
and (18), as for p'++'(t). To the same approximation,
one may alternatively use the atom-field wave function

~qy (t)) — y e
—n(&)/2 n t '(n(

&n!

X( '(((„,( ( —0„( &)~ ) ~b ) )

in complete analogy with (19).

(26)

C. Evolution of p'+ '(t)

The part of the density operator that evolves from the
term proportional to

~
+ ) ( —

~
(and it complex conjugate)

is responsible for the mutual coherence between the solu-
tions which evolve from the initial conditions ~+ ) and

~

—). Hence this term is important whenever the initial
state of the atom is a coherent superposition of

~
+ ) and

~

—). In the limit of large photon numbers, this is the
term essentially responsible for the population inversion
oscillations and the famous collapses and revivals, as has
been shown in [2] and [3].

The discussion in [2] provides some physical insight
into the nature of this term and allows one to predict
qualitatively how it is likely to be affected by the cavity
losses. Essentially, p'+ '(t) represents a coherence or in-
terference term between two "paths" —the one evolving
from + ), and the one evolving from

~

—)—which, in
the limit of a large number of photons, become macros-
copically distinct over the collapse time scale. This is be-
cause the field is potentially a "large" system (in energy,
or number of quanta) whose phase evolves in opposite
ways along the two paths. It is well known how sensitive
such macroscopic quantum superpositions are to cou-
pling to the environment, i.e., to "dissipation" in general
[21]. By coupling the field to a loss reservoir, one may
expect the coherence between the two macroscopically
distinct parts of the wave function to disappear very rap-
idly, in a time scale inversely proportional to some power
of the size of the system. Hence one expects the term
p'+ '(t) to be damped away much faster than the pho-
tons leave the cavity and to become negligible very rapid-
ly even for very small values of ~.

These considerations are borne out by the numerical

FIG. 3. The prediction of the secular approximation [9] for
the quantities shown in Fig. 1.

(27)

by analogy with the product ~%'+)(0'
~

[see Eqs. (19)
and (26)]. One might consider making the phases g„(t)
identical to the P„(t) derived earlier [Eq. (18)], but these
are too complicated for the present purposes. If no is
reasonably large, p'+ '(t) may be expected to become
negligible very rapidly, for all but the smallest values of
the loss coeKcient Ir. Hence it is simplest to let the g's
have the value for the lossless case

g„(t)= &n gt— (28)

f„= ~(n +—m)f„

+2(r&(n + 1)(m + 1)
—i (+n+i +1—+n+i +'(/ m+j +1—+m +j )gtXe

xf„ (29)

again with i,j equal to zero or one. Always assuming
that the losses are small, and therefore that the average
number of photons does not change much from the initial
value no before the term p'+ '(t) becomes completely
negligible, one may simplify the exponent in Eq. (29)
rather drastically to

—igt(&n +i +1—&n +i +&m +j+1—&m +j )

gt
l
Qn,

(30)

With this, it is easy to solve for the f„by assuming the
coherent-state-like form [compare Eq. (15)]

n ( t )
( n + m ) /2f„(t)=F(t)e

&n!m! (31)

Substitution of (30) and (31) into (29) yields, for the factor
F(t),

o —( —g/i/ )

1 ig /2Ir+no—

—no(1 —e ") (32)

Equations (27), (28), (31), and (32) constitute a solution

and to allow for the f„ to be complex if necessary.
When (27) and (28) are substituted in the master equa-

tion (4), the lossless part of the equation (i.e., the part
proportional to g) is satisfied provided that, as was done
in Sec. IIIA for the r„, the ratios f„+, /f„and
f„+i/f„are set equal to 1. The result is the following
equation for the f„
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for p'+ '(t) valid for as long as the losses do not
significantly deplete the field. The factor F(t) [Eq. (32)]
accounts for the loss of coherence between the I+ }
branch and the

I

—} branch. Essentially, p'+ (t) is of
the form F(t)I%'+ }(iIi I, with I%'+ }given by the small-
loss limit of Eq. (19) and IV }by the small-loss limit of
its mirror image Eq. (26). If F(t) has magnitude close to
1, the total state of atom and field remains approximately
pure and a coherent superposition of the paths I'Ii+ } and

}, but, even for very small losses, F(t) decays very
rapidly. At the revival time t~ =2~"t/no lg, one has

—471.~n 0 /g
(33)

to lowest order in ~ in the exponent. For the values con-
sidered in the preceding subsection, ~/g = —0.01,
no=25, and Eq. (33) predicts IF(t)l=e =1.5X10
which is already quite negligible.

As mentioned earlier, when the number of photons is
large the population inversion oscillations come mostly
from p'+ '(t). In the approximation represented by the
expressions (10), (25), and (27), in fact, only (27) leads to a
nonvanishing population inversion at any time. Hence, if
these expressions are used in (8) to calculate the evolution
of the generic initial coherent superposition (7), the re-
sult, for the population inversion, is

(o3}=Tr[(la}(al—lb }(b )p]
00

V~ F(r) y e
—n(t) n( )

(
—2igt+n+1

n1

the agreement is not so good, but then the revivals are
vanishingly small anyway.

What about the secular approximation? Use of Eqs.
(3.1) and (3.3) of [9] leads to an excellent agreement with
the numerical results for this case, so good, in fact, that
they look indistinguishable at the resolution of the figure.
Thus it would seem that the secular approximation is
quite good for the diagonal elements, in the basis of
la },I

b },and
I
n },needed to calculate ( o 3 }.On the oth-

er hand, the results from Sec. III A indicate that it is ter-
rible for the off-diagonal elements (in the same basis)
needed to calculate (a }or (o }.

This, however, is not the whole story, for, as discussed
in Appendix A, the secular approximation also breaks
down eventually for the diagonal elements, for su%ciently
large values of ~, even though one may still have
(a/g) «1. Figure 5 shows the collapse of the popula-
tion inversion oscillations for ~=0.05g and no =25, along
with the predictions of Eq. (34) (dashed line) and of the
secular approximation, Eqs. (3.1) and (3.3) of [9] (dash-
dotted line). The secular approximation does poorly, as
explained in Appendix A, because for these parameters
one no longer has a. «g/2+no. The present approxi-
mation, Eq. (34), is significantly better for the short times
shown in the figure. This is because the main approxima-
tion made in its derivation, Eq. (30), amounts to the re-
quirement that the losses should not significantly change
the number of photons over the time considered, which
in this case would mean gt ((g/2~=10 or so.

2igiV'n
) +

(34)

coming entirely from p'+ '(t).
If the initial state of the atom is the upper energy

eigenstate Ia }=( I+ }+
I

—})/+2, one has y =5= I /V 2
and Eq. (34) predicts, for the lossless case, the usual col-
lapses and revivals of the population inversion. There is
a small difference with the exact formulas in that the
phase factor being averaged in Eq. (34) is neither
exp( igV'n +1) no—r exp( —ig&n ), but the average of
the two; this difference, however, is not very significant
for large n, and in particular it is largely negligible
around the revival times, which are the only times when
(34) is substantially different from zero [see, in this con-
nection, the discussion of Eq. (28) of [3]]. When a&0,
these collapses and revivals are multiplied by F(t), which
introduces both damping and a time-dependent phase
shift.

Figure 4 shows the average value of the population in-
version, according to the numerical integration of the
master equation (4), for no =25 and a=0.002; the initial
atomic state is now Ia }. The disappearance of the re-
vivals has of course been observed by a number of previ-
ous authors [8—10]. The inset shows an enlarged view of
the revival region and the comparison between the nu-
merical calculation (solid line) and the prediction of the
approximation (34) (dashed line). The agreement is quite
good, in spite of the small size of the revivals. Smaller
losses lead to similar or better agreement; for larger losses
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FKJ. 4. The population inversion as a function of time for
the case no=25, ~=0.002g, as calculated numerically (solid
line) and from the analytic approximation (34) (dashed line).
The enlargement shows the region of the first revival. The ini-
tial atomic state is la }.
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FICx. 5. The population inversion as a function of time for
the case no =25, a.=0.05g, as calculated numerically (solid line),
from the analytic approximation (34) (dashed line), and from the
secular approximation [9] (dashed-dotted line). The initial
atomics state is ~a ).

IV. DISCUSSION

The conclusion, then, as regards the secular approxi-
mation of [9], is that it is better for the diagonal elements
than for the o6'-diagonal ones, but it still breaks down for
moderately large losses, even if they still satisfy
()~/g) ((1. The reasons for this, and the actual condi-
tions for the secular approximation of [9] to be valid, are
set forth in detail in Appendix A.

To summarize, in this section a complete solution, for
the field and atom, and arbitrary initial atomic state, has
been presented for the Jaynes-Cummings model with cav-
ity losses. The solution agrees very well with the results
of the direct numerical integration of the master equa-
tion, provided that the number of photons be large
enough; np=25 has been illustrated as a typical case.
Some of the main results are discussed in the next sec-
tion, which also addresses the question of how two of the
most important recent predictions for the lossless JCM,
namely, the atomic state preparation and the field
Schrodinger cat, are modified by the presence of cavity
losses.

two field states again approach each other.
The main result of Sec. III C, not altogether surprising,

is that for any but the smallest cavity losses and very
small numbers of photons, the coherence between the two
branches is in fact all but lost by the revival time [see Eq.
(33)], and hence the interference is most likely to be unob-
servable. The conclusion is that, for most practical pur-
poses, for large number of photons and moderate losses it
is a good approximation to regard the two branches of
the wave function after the collapse time as mutually in-
coherent; i.e., to neglect )o(+ '(t) completely for all times
after the collapse time. If this is done, expectation values
of system operators are given merely by a weighted sum
of the expectation values calculated with ~)II+(t)) and

(t) ) [given by Eqs. (19) and (16)]. The population in-
version revivals disappear in this approximation. In-
terestingly, as has been pointed out by other authors, oth-
er features, such as field squeezing, are not aA'ected so
much by moderate losses [10]. In the present picture,
this may be understood by noting that both the field
states associated with ~%+(t)) and ~(I( (t)) are squeezed
[2], along approximately the same direction, and by the
same amount, at the revival time; hence, even if there is
no interference left between the two branches at the re-
vival time, the underlying squeezing of each branch re-
sults in an overall squeezing of essentially the same mag-
nitude.

As mentioned in the Introduction, two important re-
sults have recently been derived for the lossless JCM.
One is the "Schrodinger cat" state for the field, to be dis-
cussed in a moment; the other, closely related, is the
"state preparation" for the atom. This is the result, first
pointed out in [11], that at half-revival time,

to = ttt /2=m. "(/n /g, the state of the atom is almost pure
and independent of its initial state. On the Bloch sphere
(Fig. 2) this state is the point (0,1,0).

Figure 2 shows that losses as large as K=0.01g do not
substantially alter this result, except for the time at which
it occurs. The point (0,1,0) is reached when the phase of
the atomic dipole is equal to —~/2, and hence, from Eq.
(20), the equation for the time to is

(35)

The approximate solution developed here provides a
fairly complete picture of the evolution of the atom-field
system for an initial quasiclassical field state and for not-
too-large cavity losses. The first phase of the evolution,
up to the collapse time, involves the usual damped Rabi
oscillations. By the time of the collapse, the two
branches of the wave function which evolve from each
one of the states

~
+ ) and

~

—), in the superposition
representing the initial state of the atom, have evolved to
be associated with macroscopically distinct states of the
field, with the same amplitude but opposite phases [2].
At that point, it is best to think of the system's wave
function as being split into two alternate "paths. " It was
pointed out in [3] that the macroscopic nature of the field
makes it very hard (in the limit as n ~ ao, impossible) to
observe interference between these two branches after the
collapse, until the revival time, when the phases of the

so that

tp =—ln 1+1

K

7TK 71 p
(36)

(37)

The evolution of p' ', being the mirror image of that
shown in Fig. 2, would also lead to the same "almost"
pure state at the same time, and hence so would any ini-
tial coherent or incoherent superposition of the states

~
+ ) and

~

—), i.e., any general initial state of the atom.
The loss of state purity by the time tp, relative to the

lossless case (compare [19]), can be estimated from (10).
One has, for the trace of the square of the reduced atomic
density operator,
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To obtain a value different from 1 for the right-hand side
of (37), the difference P„+)(t)—P„(t) must be evaluated
to one order higher in n —n(t) than that shown in Eq.
(20). Expansion of Eq. (18) around n =n leads to

P„(t)= ——+no 1 —e "+—(e ' —1)

a state arises [2,14]. Because the state of the atom at to is
to a good approximation lgo), regardless of the initial
condition, the total density operator at that time can be
written

p«o)= lgo&&@ol[lyl'I@ &&~' I+ I&l'I@

+yn*F(t)l@+ &&@
I

(
3K' 1)

24 no

and hence

n

Tr(p„) =—+ —g e "'" e'"~1 1 „-, n(t)"
2 2 nt

+y*SF"(t)le &&a I],
(38)

where the field states I@+) and IC& ) are given by

(t )n/2

)
—n(to)I2 n o +i/„(to)l )&n!

(41)

(42)

where

e
—4n(t)sin (g/2)1 1

2 2' (39a)

g
(

3n~ 1)12Kn'"0
(39b)

which goes as gt/4n for small K.
For the example shown in Fig. 2, with K =0.01g and

no=25, the "half-revival time" to is equal to 14.6/g,
somewhat less than the lossless value 5~/g. Equation
(39) predicts a state purity at this time, as measured by
Tr(p„), of 0.988. This is a little off, according to the nu-
merical integration, which yields instead Tr(p„)=0.979.
Using the latter figure, the conclusion is that an atom in-
teracting with the field for this time, regardless of its ini-
tial state, has a probability I 1+[2 Tr(p„)—1 ]

' ]!2
=0.989 of emerging in the state (0,1,0), that is, the state

—(
—ilo &+ Ib &)

1

v'2 (40)

This is practically the same as if there were no losses.
(Compare with the similar discussion in [3]; note that be-
cause of an error in [3], the discussion of state purity on
p. 541 goes with Fig. 4, not Fig. 3.)

The conclusion, then, is that the state preparation at
the half-revival time in the JCM should be readily observ-
able even in lossy cavities. This could be an extremely in-
teresting effect to observe (see the discussion in [2] for
more details). For one thing, the atomic evolution lead-
ing to the unique state

I go ) at t = to is incompatible with
the semiclassical theory, in which the atom is assumed to
interact with a nonquantized field, since under such con-
ditions unitary evolution requires initially orthogonal
atomic states to evolve into states which remain orthogo-
nal at all times. This state preparation is therefore an ex-
ample of the unique effects that may arise when a quan-
tum system is driven by another quantum system. The
importance of such systems has recently been pointed out
also by Ballentine [22], who has studied another solvable
example.

As discussed above, losses are much more destructive
towards the other effect predicted in the JCM, the macro-
scopic quantum superposition state (or Schrodinger cat
state) of the field at the time to. It is easy to see how such

[this is in the very-small-loss limit, where
P„(t)= gt&n ].—These two states represent fields which
have opposite phases and a relatively large amplitude.
The field density operator, according to (41), would be a
coherent superposition of both, with coefficients y and 5,
respectively, but for the factor F(t) not being equal to l.
As F(t) goes to zero (which, as explained in Sec. III C,
happens very rapidly even for very small losses) the state
of the field becomes an incoherent mixture of IN+ ) and
l~ ).

It was pointed out in [2], and should be clear from all
the foregoing, that, when the initial state of the field is a
coherent state with a well-defined phase, the revival of
the population inversion oscillations is an indication of
the mutual coherence between the two branches of the
wave function. Thus it may be regarded as a signature of
the Schrodinger cat realized at the earlier time to. Equa-
tion (33) may be used to estimate how large the losses can
be if one is to see still, at the revival time, any trace of the
cat. Figure 4 suggests that, if no=25, K/g should not
exceed 0.002. This is not entirely beyond reach. In [23],
Rempe, Schmidt-Kaler, and Walther report on a micro-
maser cavity with K=2. 3 s ' and a coupling constant,
for the Rydberg atom considered, g/2~=20 kHz, so
K/g -3.7 X 10 . For such small losses, and no =25, Eq.
(33) predicts F!tz )=0.94, that is, almost perfect coher-
ence. Hence the Schrodinger cat should be observable in
such a system.

It is not clear at present whether the very few residual
thermal photons in current micromaser experiments
(n,h =0.15 was reported in [23]) might pose a problem in
the detection of the cat. A recent study by Vourdas [24]
on the effect of thermal noise on coherent superpositions
of the form Ia)+I —a) suggests that one would need
n, h ((1/no to be able to tell a coherent from an in-
coherent superposition of coherent states, but this would
apply only at the time to, when the states being super-
posed have opposite phases; the detection technique
based on waiting until the revival time to see the oscilla-
tions in &

o.3) should be able to get around this problem.
The atomic state preparation at the time to also should
not be very much affected by a number of thermal pho-
tons as small as those reported, although here also a de-
tailed calculation remains to be made.

Perhaps the most difficult part of any of these experi-
ments would be to prepare the initial state of the field. It
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has to be a quasiclassical state with a fairly well-defined
phase and amplitude. It does not necessarily have to be a
coherent state; it could be a cotangent state such as those
studied by Meystre and co-workers [25], which could be
prepared in a micromaster cavity by pumping it with
atoms in a coherent superposition of ~a) and ~b). Such
a coherent superposition is a small radiating dipole, and
the trick of the preparation is to phase these dipoles care-
fully as they enter the cavity. This would require, among
other things, very careful control of the incoming atom
velocity.

It should be pointed out that the generation of a co-
tangent state as proposed by Meystre and co-workers is
in itself an example of state preparation of a quantum
system (the field, in this case) by another (a stream of
atoms). Not only that, but some cotangent states may
also be regarded as Schrodinger cats in and of them-
selves. Hence the realization of such states would already
be of considerable interest. On the other hand, the state
preparation and Schrodinger cat discussed here and in
[2,11,14] have enough unique features of their own to jus-
tify the comparatively small additional effort necessary to
produce them: the state preparation leads to a unique
state completely independent of the initial state ("ideal
atom polarizer"; see [2]), and the Schrodinger cat is in
fact produced by the interaction of a single atom with the
field, just as Schrodinger's original cat was supposed to be
placed in a superposition state by just a single photon.

In conclusion, the results of this paper show the useful-
ness of the approach to the study of the atom-field dy-
namics developed in [2] and [3]. It is very likely that the
same approach wi11 be useful to deal with other related
problems of current experimental interest, such as
optical-cavity quantum electrodynamics [26].

Note added in proof The review. of earlier work in the
Introduction should have included the very recent paper
by Daeubler, Risken, and Schoendorff [29], who have de-
rived a formal exact solution for the intensity and popula-
tion inversion of the JCM with losses in the form of an
infinite series.
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APPENDIX A: LIMITATIONS
OF THE SECULAR APPROXIMATION

The use of a secular approximation to simplify the
JCM equations goes back at least to Haroche and Rai-
mond [27], but it was Puri and Agarwal who applied it
most systematically to the study of the JCM with cavity
losses in their classic 1987 paper [9]. The only condition
they expressly state for the validity of their resu1ts is that

~/g be small; specifically, they claim that the terms they
neglect are of the order of ~ /g . In view of the results
presented in this paper, this cannot be the whole story,
and more serious restrictions must apply if the secular
approximation is to be trusted. The purpose of this ap-
pendix is to determine more precisely the size of the
terms neglected by Puri and Agarwal, and hence what
the actual restrictions are on the applicability of their re-
sults.

Following Haroche and Raimond, Puri and Agarwal
work with eigenstates of the JCM Hamiltonian ("dressed
states"). Following their notation, the excited states will
be denoted here by ~)It„—), whereas the ground state,
which they write as ~0, —,

' ), will be denoted here by ~b, O)
(atom in lower state ~b ), zero photons in field). One has,
in the interaction picture in which the free atom and field
evolution has been absorbed in a redefinition of the
operators and the states,

H, ib, o) =0,
H, le'+;& =ogden + 1lq „+- &,

(Ala)

(A lb)

with

~)P„—) = —(~a, n )+~b, n + I ) ) .
1

2
(A2)

are transformed annihilation and creation operators,
given explicitly by

These ~)It„+—) are not to be mistaken for the states
~
I+)t(t))

used elsewhere in this paper. The connection between
the present work and the eigenstates ~%'„—) is actually
rather simple: if the initial state of the atom is ~+ ), and
the field is in a quasiclassical state, the total initial state is
mostly a superposition of the ~)It„+ ), i.e, the coefficients of
the ~%„) are then vanishingly small; and conversely if
the initial atomic state is

~

—).
Next, Puri and Agarwal write the annihilation opera-

tor in term of these states, and transform away the Ham-
iltonian part of the evolution by defining

W(t) =e ' pe (A3)

Here, the interaction Hamiltonian instead of the full
Hamiltonian has been used, since everything is already in
the interaction picture. As a result, the master equation
for W(t) becomes

W(t)=~(2aWa —a aW —Wa a), (A4)

where

a =exp(iHt t )a exp( iHtt)—
and

a =exp(iHtt)a exp( iHtt)—

a = —( e ' '~ b, 0 & & )Po
~

e'g'~(b, 0 ) & %0 ~

)—1

+-' g (&n+I+&n )(e 'g' "+' ""~e+ &&q ~++'' e"+' ""~e &&+ ~)
n=1

+ ( y (Q + 1 + )( ig(vn+1+vn )t~@+ ) & @
—

~+
—ig(v n 1 +v+n )t~@

—
) & qt+ )

n=i
(ASa)
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—(e'"Iq'(~) &&b, 01 —e "'I+0 &&b, ol)
1

+ ' y (v'n+I+& )(e'" "+' ""I++&&q'+ I+
n=1

n=1

—i g(v'n +(+Vn )(I(I(—
& &

y+
I
+ ig( n +( n )tI (Ii+

& & q( (A5b)

As for the transformed number operator a a, it has the simpler expression

~ "~ =—' g (2n+1)(l+„+&&+„+I+I+„&&+„I)—g (e'" "+'I++ &&+„ I+e (A6)
n=0 n=0

g(&n + I &n —&m + I—+&m ) =
2&n 2&m

(A7a)

The way Agarwal and Puri arrive at their starting equa-
tion (2.8) is to substitute (A5) and (A6) into (A4) and
throw away all the terms with explicit time dependence.
The logic behind this is that all the frequencies appearing
in them are at least as large as g, and, in the limit K «g,
such terms would have negligible effect driving the more
slowly varying matrix elements of O'. The Aaw with this
argument is that it ignores the fact that the combination
frequencies in the a Wa term can, for large n, be extreme-
ly small, and therefore some of the terms neglected can
be very slowly varying themselves.

Looking at (A5a) and (A5b) one can see that the term
a8'a in (A4) involves the following combination fre-
quencies:

The original condition for the secular approximation,
K«g, allows one in principle to neglect only the terms
having the combination frequencies (A7c), (A7d), and
(A7fl. In addition, if

(AS)

holds, one may neglect also (A7b) and, if num, (A7e).
This follows from the fact that, for n close to m (for in-
stance, m =n+1), (A7e) goes essentially as gian, for
large n [Clear.ly, (A7e) must be kept when n =m, regard-
less of the size of i~; this is indeed done in [9]]. The condi-
tion (A8) amounts to the requirement that the losses
should not deplete the photon number significantly over a
revival time.

To be able to neglect (A7a) for num requires even
more stringent conditions, because for n close to m the
combination frequency can be extremely small. For in-
stance, if m =n+1 one has

g(&n + I v'n +—&m + I —V m ) = —+
2&n 2V m

(A7b)
g(&n +2—2&n +I+&n )=—

4 3/2 (A9)

g(V'n +1—V'n ++m + 1++m )=2g+m

g(&n +1—v'n —&m +1—&m )= 2g&rn—(A7d) K «
3 y2

~

4n

and hence one cannot neglect this term unless
A7c

(A10)

g(&n + I+&n —&m +1—&m ) =2g&n —2g&m

(A7e)

g(V n +1+v'n +V'm +1+V'm ) =2g+m +2gv'n

(A7fl

The forms on the right-hand side are for large m and n

(m and n are summation indices). Some of these frequen-
cies are obviously large, but others can be quite small if
the average number of photons is large, and some, like
(A7a), can be even smaller if n —m.

As an example, when n o
= 10, this condition means

K « 0.008g. More precisely, when n = 10 one has
g ( V 12—2+11+u'10) = —0.007g. This suggests that
Fig. 14 of [9], calculated for the case ir=0. 005g, no= 10,
is probably inaccurate.

It is clear, then, that for all but the smallest values of K

and n, i.e., the values satisfying (A10), one must keep at
least the terms having combination frequencies like (A7a)
in the equation for d8'/dt. This means that the single
sum in the second line of Eq. (2.8) of [9] should be re-
placed by the double sum

?1) t?l = 1

(~n+1+&n )(&m+1+em )[ -'g ~"+'- "—-+'+ -"Ie„+,&&+„ I~(r)lq'

ig() n+) —+n++m+( +I "Iq/, &&@ I $/(r)l@ &&)I( I] . (Al 1)
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As for the third line of Eq. (2.8) of [9], it is all right to
leave it as a single sum as long as the condition (A8)
holds; otherwise it too has to be replaced by a double
sum, whose terms have combination frequencies of the
form (A7e). These terms are, however, very small in the
limit of la~re n, because they are multiplied by
(&n + 1 &n —), so in this limit this correction can prob-
ably be ignored.

The replacement indicated by (Al 1) does not change
the equation of motion for any matrix elements of 8'be-
tween states having the same index n, but it changes the
equations for (%'„+~ W~'Il+ ) and (%'„~W~% ) for num,
so that their time evolution can no longer be as simple as
that shown in Eqs. (2.9) of [9]. As shown in [9], to calcu-
late the population inversion only the matrix elements
with n =m are needed, which means that the formulas
for the population inversion derived in [9] should be val-
id, provided only that (A8) holds. The terms with num,
however, are necessary to calculate the dipole moment
and the field amplitude expectation values, and they will
only be correctly given by the formulas in [9] if the very
restrictive condition (A10) holds. In particular, for the
parameters used in Fig. 1 of the present paper, ~=0.01g,
and n 0

=25 implies 1/4n o
=0.002, which clearly

violates (All), and as a result the predictions based on
the equations in [9] are, as Fig. 3 shows, completely
wrong.

In conclusion, the condition quoted in [9], that is,
~ «g, is not enough to justify the approximations made
there, which require the much stronger condition (A10)
to hold. If the losses do not significantly deplete the pho-
ton number over a revival time, that is, if the less restric-
tive condition (A8) holds, then the formulas derived in [9]
for the population inversion are accurate, but in order to
handle the atomic dipole moment and the field amplitude
expectation values the master equation (2.8) of [9] must
be modified, by replacing the single sum on the second
line by the double sum (Al 1) above. Finally, if (A8) does
not hold further terms need to be added to Eq. (2.8) of [9]
if it is to predict accurately even the population inver-
sion, regardless of whether x «g or not. This is illustrat-
ed by the failure of this equation to predict the results
shown in Fig. 5.

It is interesting to note that Agarwal and Puri prove in
their paper the equivalence of their result for the popula-
tion inversion [Eq. (3.3) of [9]] to the earlier result of
Barnett and Knight [8]. Barnett and Knight do mention
explicitly the restriction (A10) on the validity of their ap-
proximate result, and refer to it as the "underdamped
case." As shown here, their result for the population in-
version in fact holds under the less restrictive condition
(A8); it is not easy to tell whether Barnett and Knight
were already aware of this (see footnote 11 of [8]).

Finally, it should be noted that most of the figures in
[9] were calculated for such small values of Ic and no that
the restriction (A10) almost certainly holds for most of
them; hence they may all be essentially correct, except,
probably, for Fig. 14, as remarked above.

APPENDIX 8: THE NUMERICAL CALCULATION
The master equation (4) has the nice property (recently

exploited by Tran Quang, Knight, and Buzek; see [7] for

details) that, at any degree k of off-diagonality, it leads to
a closed system of 4N equations, where N is the largest
photon number considered. For instance, the equation of
motion for Paa)n, n+k i vo ves on y (Ptb )n+1, n +k+1
(p,b)„„+k+&, and (pb, )„+,„+k, the losses couple to
similar terms with different values of n but the same
value of k.

Introducing the vectors A, B,C,D, of components

k
An (paa )n, n+k

k
Bn (Pbb ) nn+k

k
Cn (pab )nn+, k+1

k
Dn (Pba )n, n+k —1

(8 la)

(8 lb)

(8 lc)

(81(1)

(82a)

B„"=ig(&n +kD„" &n C„,)—

+Ic[2V(n +1)(n +1+k)B„+,—(2n +k)B„"],

C„=ig ( +n +k + 1 A „"—V'n + 1Bk+
&

)

(82b)

+v[2&(n +1)(n +2+k)C„"+,—(2n +k+ l)C„"],
(82c)

D„=ig(&n +kB„" &n A„",)—
+K[2&(n + 1)( n+k)D„"+

&

—(2n +k —1)D„"],

(82cl)

where it is understood that if a subscript is negative, the
corresponding variable is zero, and likewise, for the pur-
pose of the numerical calculation, if a subscript exceeds
N.

To calculate the expectation value of the population in-
version ( cr 3 ), one needs the matrix elements (p„)„„and
(Pbb )„„,i.e., the system (82) needs to be integrated with
k =0. To calculate the expectation value of the field am-
plitude ( a ) one needs (p„)„„+&

and (pbb )„„+„whereas
for the atomic dipole moment ( o. ), one needs (Pb, )„„(or
its complex conjugate); all these can be obtained from
(82) with k =1. Expectation values of other quantities
may be obtained from (82) with other values of k; for in-
stance, to calculate the squeezing k =2 would be re-
quired.

It seems, therefore, that to calculate all of the quanti-
ties considered in this paper, namely, ( o ), ( a ), and
( o 3 ), one needs to integrate two sets ( k =0 and 1) of 4N
complex, first-order differential equations. This is
equivalent to 16N real equations, where N can be large.
The system may be reduced considerably by noting that
when k =0 one has

with n =0, . . . , N, one can easily see that Eq. (4) leads to
the system

A„=ig(&n +k +1C„" &n +1D—„"+,)

+v[2+(n + 1)(n + 1+k) A„"+
&

—(2n +k) A„"],
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(C 0)e —DO (B3)

This makes it possible to rewrite the system (B2), when
k =0, in a form involving only the real quantities A „,B„,
C„+D„+„and i ( C„D„—+, ), with real coefficients.
Then one has only a total of 12N real equations. When
k =1 (B2) may also be simplified somewhat by noting
that the system of 4N real equations for ReA„', ReB„',
ImC„', and ImD„' decouples from the system of 4N real
equations for ImA„', ImB„', ReC„', and ReD„'. In fact, if
the phase of the initial coherent state field is chosen to be

zero (so that it coefficients in the ~n ) basis are real) the
latter system is not needed whenever the initial state for
the atom is such that Re(o ) =0, since in that case
Im A„' = ImB„' =ReC„' =ReD„' =0 for all times.

To truncate the system, N was chosen to be five stan-
dard deviations above the initial mean number of photons
no. Typically this leads to errors of the order of a few
times 10 . For no=25, this means N=50. The total
number of real, first-order, differential equations is then
3 X4X 50=600. The numerical integration takes only a
few minutes using a fourth-order Runge-Kutta [28] on a
NeXT computer.
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