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Stability analysis for an optical bistable dye system
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A different set of the Maxwell-Bloch equations describing optical bistability in a dye ring cavity has
been derived. A complete linear stability analysis including propagation effects is given. The corre-
sponding numerical simulations show that the bistable regions are functions of both the frequency detun-
ing and the band-structure parameters such as the bandwidth and the distribution of the dipole mo-
ments.

PACS number(s): 42.65.Pc, 42.55.Mv

I. INTRODUCTION

Recently, Fu and Haken proposed a band model of the
dye molecules [1]. By using this model and linear stabili-
ty analysis for the Maxwell-Bloch equations, they showed
that the dye laser has a low threshold instability, which is
in good agreement with the experiments done by Hillman
et al. [2]. The relevant energy-level diagram of the band
model is illustrated in Fig. 1; it consists of an excited
singlet state and a continuous bandlike ground state with
many vibronic sublevels. The relevance of these sublevels
is evidenced by the very wide spectral tunability (several
hundred angstroms) of dye lasers.

In our previous paper [3], denoted as paper I, we inves-
tigated theoretically the optical bistability in a unidirec-
tional cavity in terms of the band model, describing the
steady-state behavior and bistable regime of the coupled
system (molecules plus radiation field) by the derived
Maxwell-Bloch equations. We found that optical bista-
bility can be realized over a wide frequency range.

On the basis of paper I we derive in this paper, taking
into account propagation effects, a different set of

Maxwell-Bloch equations which are very suitable for
describing the dynamical behavior of the optical bistable
system. By using this set of equations and linear stability
analysis, we determine the bistable region for this system.
The corresponding numerical calculations show that the
bistable region depends on not only the frequency detun-
ing but also the band structure. The stability analysis in-
cluding the propagation effects also shows that there is no
self-pulsing instability in the bistable system with typical
dye molecules. These results are helpful to experimental
studies on such bistable systems.

The paper is organized as follows: the Maxwell-Bloch
equations are shown in Sec. II, a linear stability analysis
is given in Sec. III and the numerical analysis is presented
in Sec. IV. Section V gives a brief summary of the results
in this paper.

II. MAXWELL-BLOCH EQUATIONS

In paper I, we obtained the following Maxwell-Bloch
equations describing the interaction between the light
and molecules in a dye ring cavity:

u„= —/3u„+(6, „—4)U„,

f OA
U„= —PU„—(b,„—b )u„+ (w —w„),

n = 3'a~n+ ~ Un ~

2A

w = —yd(1+ w) — QU„,
n

aw
A = —c +2~¹ogv„,

az

FIG. 1. Relevant energy diagram for an ideal dye molecule.
E and y (E„and y„) represent the singlet excited state (sublev-
els of the ground state), fi6 is the sublevel spacing, and y„, f3,

and y, denote the decay rates.

where the meanings of these variables and parameters
have been explained in paper I.

The coherent field Al enters the cavity from the left
and drives the dye molecules, as shown in Fig. 2. For
simplicity, we assume that mirrors 3 and 4 have 100%%uo
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then Eqs. (9) and (1)—(4) become

u„= —pu„'+(b, „—b, )v„',

v„' = —Pv„' —(b,„—b )u„'+Pf„A'(w' —w„' ),
weal

= ft2wn+ 27d~ vn

w' = —y„(1+w') —
—,
' y„A 'gv„',

(14)

(16)

(17)

FICx. 2. Ring cavity with injection. Al and AT are the am-
plitudes of the incident and transmitted beams, respectively. ~, L BA'

Bz

Al——2C+v„'T
(18)

refiectivity, and we call R and T (R + T = 1) the
reAection and transmission coefficients of mirrors 1 and
2. Taking into account the propagation effects, the
boundary conditions for Eq. (5) in the ring cavity are [4]

A(O, t)=1/T A, +RA L, t—

(7)

where L is the length of the molecular sample and
X =2(L + l).

We consider the commonly used limit [5]

nLaL «1, T (&1, =const, (8)

where a is the typical linear absorption coefficient per
unit length [3]. In this limiting case we can obtain the
maximum physical insight and the maximal amount of
analytical results. Using the stationary solution of Eqs.
(1)—(5) in the limit (8), the Maxwell equation (5) and
boundary condition (6) can be reformulated as

2Cxg(A')y=x+
1+—,'x g(A')

(19)

where x = A' ', y = Atlv T, C =aL/2T, and g is the
resonant factor defined by [3]

g(&') =
I+(b, '„—6') + ,'yf„x2—

where we have introduced the notation

(20)

The difference between the new equations (14)—(18)
and the original equations (1)—(5) arises from the fact
that most of the information contained in the boundary
condition (6) has been transferred into the time-evolution
equation for the field equation (18). Equations (14)—(18)
provide a more suitable tool to study the dynamical be-
havior of the bistable system.

It is straightforward to calculate the stationary solu-
tion from Eqs. (14)—(18). In fact, in the limit (8), the
steady-state fields are uniform in space, so that one must
set not only 3 '=u„' =v,' =w„' =w'=0, but also
BA '/Bz =0. In such a way, we obtain

aW L aZ
at +'Z az

L+ 2~Ntv gv„, —
v'T

y=
p

'
y,

(21)

and

A(O, t')=A(L, t') .

(9)

(1O)

Equation (19) is the same as Eq. (25) of paper I. Thus,
from Eqs. (14)—(18), we can also obtain the equation
describing the bistable behavior in this system just as in
paper I.

In these equations, the time variable t' is defined by

L —L zt'=t+
c L

and the cavity linewidth ~ is given by

cT
(12)

III. LINEAR STABILITY ANALYSIS

We consider the situation for y ((1 just as in paper I,
where w,

' are much smaller than u„', v,', w', and 3' in
Eqs. (14)—(18) and can be ignored. By dropping all the
primes of the normalized quantities u„' etc. and by setting
r =pt ', Eqs. (14)—(18) become

Equation (9) shows the reduction by a factor of L/X for
the propagation velocity and the coupling constant. This
factor arises from the geometry of the cavity [5].

It is suitable to express the time-evolution equations in
terms of the normalized quantities

1/2 1/2

u„= —u „+( b.„' —b, ')v„,
v„=—v„—(6„' —5')u„+f„Aw,
w = —

yd (1+w) —
—,
'
yd Agv„,

(22)

(23)

(24)

0, v„=v„' 0, w=w', A +q = —Ir' A — ——2C+v„az
=

~T (25)

x(r„p)'"
w„=w„, where the quantities q, ~', and yd are, respectively,

defined by
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e I. , K, Xd
Kpx' p' p

(26)
(1+iQ/yd —gA)F(iQ)

k = —1—
1+Ag 1+iQ/yd+AF(iQ)

(37)

Letting all the derivatives in Eqs. (22) —(25) be zero, we
obtain the stationary solution of Eqs. (22) —(25) to be

yu(0)— xg (o)

1+—,'x g 1+—,'x g
(27)

and the equations for u„' ' and x = 3 ' ', where

I+(b, '„—b, ')
(28)

To study the stability of the steady state we consider
small perturbations 6u„6v„, 5w, and 5A for the station-
ary solution and make the ansatz

Ax„= —x„+(b, '„—4')y„,
Ay„= —y„—(b, '„—b, ')x„+f„(A ' 'd +w' 'e ), (31)

A,d = —
yd d + —,

' 3 ' 'gy„+ —,
' cpu„' '

(5u„,6 u„, 5 w6A)=(x„,y„,d, e)exp Ar —i z-~

~

q

Taking the deviated quantities, which are equal to the
stationary solution (27) plus the ansatz (29) in Eqs.
(22) —(25), we obtain in the linear regime

Let us now study the stability of the steady states using
Eq. (37).

First, we set the transmitted intensity A=O. It is easy
to prove from Eq. (37) that Rek, i & 0, and therefore the ei-
genvalue (36) has a negative real part regardless of the
value of Q, namely, the steady state is stable when the
transmitted intensity approaches zero. With increasing
transmitted intensity A, the stationary solution loses its
stability if I, , arrives at a critical point at which [1]

Rek) =0,
8 Rek, i

a
=0. (38)

where ReF, ImF, and ~F are, respectively, the real part,
imaginary part, and absolute value of F(Q). We can
show that Eq. (38) is equivalent to

Since there are only two variables Q and A, Eq. (38)
determines the threshold uniquely. Using the auxiliary
function

2

H(Q, A)—:(1+Ag+2C ReF) I+,z
'Vd

+ ( 1+Ag —2Cg)A ~

F
~

+2A( 1+Ag —Cg )ReF

+2A(1+Ag —Cg) ImF +2CA~F~, (39)

(A, —iQ)e = —)r' e —2C+y„ (33) H(Q, A)=0, =0,aB
(40)

I,—iQ
K

(1+k/yd —gA)F(A, )
(34)

1+Ag 1+A, /yd +AF(A. )

Here A= —,'x is the transmitted intensity and F(A, ) is the
band-structure function defined by

From Eqs. (30)—(33) and the stationary solution (27),
after some calculations, we derive the characteristic equa-
tion

2C(1 —gA)g
(1+Ag)

Letting A, , & 0, we obtain the instability condition

(41)

which is a more convenient form in calculation.
We consider the resonant mode for which the cavity

frequency co, is nearest to the incident frequency co, or
equivalently, Q =(0) [5]. In this case, Eq. (37) becomes

( I+A, )f„
F(A, )= (1+A, ) + ( b, '„—b ')

A (b, ') & A & AM(A'),

w~ere

(42)

A, =iQ +A, )i~',

we find from Eq. (34) that

(36)

which depends on the bandwidth, the distribution of the
dipole moments f„, and the detuning b, ' of the field car-
rier frequency co from the central transition frequency coo.

The stability of the stationary solution (27) is deter-
mined by the value Rek, , the real part of A, . The station-
ary solution is stable if Rek(0, and it is unstable if
Rek) 0. From Eqs. (34) and (35) we can see that, gen-
erally, the instability of the optical bistable system relates
not only to the band structure such as f„and the band-
width but also to the transmitted intensity A. Since the
instability is actually independent of the cavity linewidth

[1], we need only consider the limiting case ir'~0.
From Eq. (33) we can see that A, = —iQ as ir'=0. Letting

1 4
Cg(b') Cg(b, ')

1 4
Cg(6') Cg(b')

1/2

1/2

The above relation (42) must be combined with the fol-
lowing condition for the existence of steady states [3]:

Cg(h') )4 . (43)

It is easy to verify that the unstable region (A, AM ) cor-
responds to the part of the curve x(y) with negative
slope, namely, dy/dx &0 within (x,xM ) as shown in
Fig. 3, where
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since X3(ys ) is identical to xM, we obtain, from (48),

2ys
Xi

Similarly,

2yL
X3

2ys
AX1 =Xm

XMg(~')

2yL
AX 3 XM e

x g(b, ')

(49)

(50)

Thus we find the range of the bistable transmitted fields

x1 and x3 to be

FIG. 3. Stationary-solution x(y) diagram, where y and x are,
respectively, proportional to the incident and transmitted fields.

(x&(y~), x ) and (x~,x3(yL)) are the bistable regions, whereas
(x,x~ ) is the unstable region.

x =(2A )'i =V2C 1— 1
m m Cg(h, ')

Cg(b ')

1/2 1/2

(44)

x =(2A )'~ =&2C 1— 1
m m

Cg (b.')

4
Cg(b, ')

1/2 1/2

(45)

2Cx g(b, ')
yL =x +

1+—'x g(b. ')
(47)

The hysteresis cycle of transmitted versus incident fields
occurs in the region (ys, yl ). That is, there are three sets
of stationary solutions x, &x2 &x3 within (ys, yl ) in
which x2 is unstable, whereas both x, and x3 are stable,
corresponding to a bistable situation.

According to the relation between roots and
coefficients of a cubic equation, we find from Eq. (19) the
following relation:

2yXiX2X3— (48)

Since xi(ys), xM, and x3(ys ) all corresPond to ys and

Let ys and yL be the incident fields corresponding to, re-
spectively, the transmitted fields x~ and x, as in Fig. 3.
Note that the larger yL corresponds to x, and the small-
er ys corresponds to xM. From Eq. (19) we obtain

2CXMg(b, ')
ys =XM+ 1+—,'XMg(b, ')

From Eqs. (49), (50), and (44) —(47) we can see that the
bistable regions AX1 and AX 3 strongly depend on the res-
onant factor g(b, '). From Eq. (28) we can see that g(b, ')
depends not only on the frequency detuning 6' but also
on the band parameters, i.e., the dipole moments f„and
the bandwidth g. Thus the bistable regions b,x, and hx,
also depend not only on 6' but also on the band parame-
ters. Particularly, if the frequency detuning 6' =0,
g (0)= 1, the bistable regions are the same as those of the
resonant two-level system. These characteristics of the
bistable dye system will be clearly shown by numerical
examples in the next section.

Incidentally, as shown in Ref. [5], no positive slope in-
stability arises for

y~~ &&yi (i.e., the dephasing rate is
much larger than the depopulation rate) in a two-level
system. Similarly, from Eq. (40) we can verify that no
positive slope instability exists for yd «P in the band
model. We infer from this point that there is no self-
pulsing instability in an optical bistable dye system since
yd «P is always valid for typical dye molecules [6].

IV. NUMERICAL ANALYSiS

const
1+a /I

(51)

where const is to be determined by the normalization
condition g (0)= 1. Equation (28) then becomes

constg(o)= do
0[1+(cr—b')—](1+cr /I )

(52)

In this equation, g(cr ) has three parameters, the frequen-
cy detuning b. ', the band-width g, and the Lorentzian
width I . Thus b,xi and hx2 are determined by b, ', g, and
I when C is given. We now study the dependence of
hx&(bx3) on b, ', g', and I using the numerical calcula-
tions.

Setting the bistable parameter C =104.0, the band-
width /=10. 0, and the Lorentzian width I =20.0, we

In the following numerical analysis we assume that the
band is continuous and that the distribution of dipole mo-
ments f, as a function of o, is a Lorentzian function of
width I, i.e.,
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obtain the plots of the bistable regions Ax& and Ax3
versus b,

' as shown in Figs. 4(a) and 4(b), respectively. In
these figures, curve 1 corresponds to the band model,
whereas curve 2 is the counterpart in the two-level mod-
el. Clearly, Ax, and Ax3 are slowly varying functions of
6' within the bandwidth. That is, the bistable regions in
the band model are much the same as the situation of
b, '=0 (corresponding to the resonant case in the two-
level model).

With the same C ( = 104.0) as in Fig. 4, Figs. 5(a) and
5(b) represent, respectively, the bistable regions hx, and
Ax 3 as functions of the Lorentzian width I for given
bandwidth g and frequency detuning b, '. Figures 6(a) and
6(b) represent, respectively, the bistable regions b,x, and

kx 3 as functions of g for given I and b, '. In Figs. 5 and
6, curve 1 corresponds to the frequency detuning
6'=5.0, curve 2 to 6'=2.0, and the dashed line to
6' =0.0.

We can clearly see from Figs. 5(a) and 5(b) that the
bistable regions Ax

&
and Ax 3 are strongly dependent on

the band parameter I when I becomes smaller, whereas
b,x, (Ax3) is an insensitive function of I and approaches
the b, '=0 limit (dashed line) when I becomes larger.
These characteristics of the relation between the bistable
regions and I in the band model can be explained as fol-
lows. For small I, the distribution of the dipole mo-
ments will become sharper, so that the main contribution
in the optical bistable action comes from only those few
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FIG. 4. Plot of the bistable region [(a) for hx, , (b) for b,x3]
vs the frequency detuning 5' for C = 104.0. Curve 1 represents
the band model with bandwidth /= 10.0 and Lorentzian width
I =20.0, and curve 2 the two-level model.

FIG. 5. Plot of the bistable region [(a) for Qx&, (b) for Qx3]
vs I for /=10. 0 and C =104.0. Curve 1 corresponds to the fre-
quency detuning 4'=5.0, curve 2 to 6'=2.0, and the dashed
line to 6'=0.0.
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more active, i.e., it is easier for resonant optical transi-
tions to the excited singlet state to occur when the detun-
ing ~b. '~ is less than the bandwidth g ( ~b'~ (g), thus the
bistable regions tend to the situation of b, '=0, as may be
seen from Fig. 5.

The plots of bxI and hx3 in Fig. 6 are similar in be-
havior to the corresponding plots in Fig. 5. We may in-
terpret them as follows: For a given detuning
b, ( =f3', ') =coo —co, or equivalently, a given field frequen-
cy ~=coo—6, the contribution to the optical bistable ac-
tion mainly comes from the sublevels n with transition
frequencies co„near co. For example, for ~b. '~=g and
b, '&0 (b, '(0), the contribution comes mainly from the
upper (lower) edge of the band, whereas the lower (upper)
half band is in an off-resonant condition and hence its
contribution is negligible. In these situations, the bistable
regions hx, and b,x3 are strongly dependent on g. On
the contrary, when g becomes larger, the number of ac-
tive sublevels increases, the dependence is more insensi-
tive, and finally, when g» ~b, ', the bistable regions bx

1

and Ax3 tend to the situation of 4'=0, as shown in Fig.
6.

0
(D

90.00

U
N

60.00

30.00
5.00 10.00

Bandwidth
1 5.00 20.00

sublevels near the center of the band, and the number of
the nearly resonant sublevels strongly depends on r. On
the contrary, when I becomes larger, the distribution of
the dipole moments will become Aatter and almost all
sublevels in the band structure will become relatively

FIG. 6. Plot of the bistable region [(a) for Ax, , (b) for hx3]
vs g for I =20.0 and C = 104.0. Curve 1 corresponds to the fre-

quency detuning 6' =5.0, curve 2 to 5' =2.0, and the dashed
line to 6'=0.0.

V. SUMMARY

In this paper we have derived different Maxwell-Bloch
equations describing the optical bistability of a dye ring
cavity by taking into account the propagation effects.
These equations provide a most suitable tool to study the
dynamical behavior for this system. By using the linear
stability analysis and numerical calculations, we have
shown that the bistable regions Ax I and Ax 3 in the band
model are slowly varying functions of the frequency de-
tuning 6 and that the bistable regions Ax and AxI x3
strongly depend on the bandwidth g (or the Lorentzian
width I of the dipole-moment distribution) when g (or I )

is small, whereas hx] and Ax3 are insensitive functions
of g (or I ) when g (or I ) is large. We have thus obtained
more quantitative relations for optical bistable behavior
of a dye ring cavity. Moreover, we infer that self-pulsing
instabilities would not be observed in bistable systems
with typical dye molecules. These results are helpful for
experimental studies of dye-laser systems.
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