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Coherence with incoherent light: A new type of quantum beats for a single atom
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Even with incoherent driving, coherence effects may show up in the spontaneous emissions of an
atom. We derive a general master equation and predict that for both the three-level V and A systems
the intensity correlation function g~ l(r) may exhibit pronounced oscillations with frequency 6w if
the level separation Mcu is small. We obtain a marked difference in the beat amplitude for a single
A system as compared to a beam or gas, If bu is much smaller than the natural linewidth we find
dark and light periods in the spontaneous emission.

PACS number(s): 32.90.+a, 32.80.Bx, 42.50.Md

I. INTRODUCTION

If a three-level systems with two upper levels and a
common ground state, a so-called V system, with small
separation hb~ of the upper levels, is initially excited by
a sharp laser pulse or by a passage through a foil, one
observes an exponential decay with oscillations superim-
posed. These are the familiar quantum beats [1], and
they are due to a coherence of the upper levels. For
a A system, which has transitions from one upper to
two lower levels, they do not occur [2]. For laser-driven
systems a similar coherence is responsible for dark res-
onances [3], and it may even lead to macroscopic dark
periods [4] without a metastable state, in contrast to the
dark periods of the Dehmelt system [5]. For incoherent
driving, on the other hand, one often assumes that atomic
coherence plays no role [6]. It was shown in Ref. [7] in
the case of large level separations for a A system or lad-
der system that finite laser bandwidths tend to destroy
population trapping and dark resonances, unless the two
lasers are cross correlated.

In this paper we study systems continuously driven by
incoherent light and their spontaneous photon emission.
It is predicted that for both the V and A system the inten-
sity correlation function g( )(r) will exhibit pronounced
oscillations with frequency bu if the level separation Aber

between the two upper and lower levels, respectively, is
assumed small, but still larger than the natural linewidth.
These oscillations are new quantum beats which arise, as
the familiar ones for V systems, from coherence of neigh-
boring atomic states, a coherence not destroyed despite
the incoherent pumping. The beats should be observable
for a single system in a trap. For the A system there
is a marked difFerence in the beat amplitude for a beam

and a single system: the amplitude is much larger for the
latter. For bw much smaller than the natural linewidth
we predict dark periods for a single V or A system if the
dipole transition moments are parallel. We propose to
investigate the beats of frequency b~ for their possible
use in a frequency standard.

II. DESCRIPTION OF ENSEMBLE VERSUS
SINGLE SYSTEM

Ensemble master equation. We first consider quite gen-
erally an ensemble of 1V-level atoms interacting with the
quantized radiation field E and with an external field E,
which is linearly polarized, broadband, stochastic, sta-
tionary, and of zero mean. We write E, = E,(t)Eo and
denote its spectral energy density by W(u) [8 . The stan-
dard Hamiltonian in dipole form is given by [9]

H = Hz+Hz+ eD (E, +E),
where HA ——Q, 5 io,

~
i)(i

~

is the Hamiltonian for the
atom, HR that for the radiation field, and where D

D,s ~ i)(j ~, with eD,s = e(i
~

X
~ j) the electric

dipole moment for the i-j transition. Different atoms
will see different realizations of E, . Therefore the density
matrix, pq &, for atoms plus radiation Gelds includes an
average (), over the external field, so that pi, q

——(p,', ),
where p„', refers to a particular realization of E, .

The reduced atomic density operator is p(t)
tr~ p, i(t) where trR is the partial trace over the states
of the radiation Geld. To obtain a differential equa-
tion for p we go to the interaction picture with re-
spect to the atomic Hamiltonian and calculate Apl
pI(t + At) — pI(t) in perturbation theory. In second
order E, contributes

t+At
e dt'

t'
dt" [D(t') E,(t'), [D(t") E,(t"), p'(t)] ]

e

and E a similar term in which (), and pel(t) are replaced by tr~ and pI, respectively. We denote by r, the correlation
time of E and assume r, « At. Then E,(t') and E,(t") are, in good approximation, independent of pI(t) . Hence

the averaging can be performed for pI(t) separately, giving pI. Insertion of D(t) gives

2186 1993 The American Physical Society



47 COHERENCE WITH INCOHERENT LIGHT: A NEW TYPE OF. . . 2187

—e h ) (D q Ep) (Det Ep) [ ~
i)(j ~) [~ k)(l ) pI]]

i,j,k, l

t+At
i (u,j+ut, I )t dt" e-' «'-' l(E.(t'- t")E,(0))„ (2)

I', gt = D, Dgt
~

wy(
~

e /67rcphc (3)

due to spontaneous emissions [12]. With I'

Q, » I',~~& ~
i)(k

~

one then obtains from Eqs. (1) to
(3) for the atomic density operator in the Schrodinger
picture

a„' —ir p-p a„' —ir *

—) . W '~i [ I i&(j I, [I k& « I, p] ]
i,j,k, l

+ ): (~,'+~.„)ij)( ipik)«i,

where a difference quotient has been replaced by a dif-
ferential quotient [13]. The I' terms in Eq. (4) arise
from the quantized radiation field, the W terms from the
incoherent classical driving Geld. For large level separa-
tions the off-diagonal terms will give rapidly oscillating
contributions, as seen in the interaction picture, and can
therefore be neglected, leading to effective rate equations.
For smaller level separation this is in general not so.

Single atom. The photon statistics for a single system
can be determined by the technique of repeated gedanken
measurements [14—16]. This method gives the no-photon
probability [18, 19] Pp(t; pp), where pp is an initial state,
and the reset matrix [16] to which the atom has to be re-
set after a photon detection. An analysis similar to that
in Ref. [14] then shows that the no-photon probability
can be written as Pp(t) = trp~P&(t) where the density
matrix p& l/trplP& describes a single atom between spon-
taneous emission and pP satisfies Eq. (4) without the last

where uij —= ui —uj. Setting w = t' —t" the range
for the inner integral becomes 0 & v. & t' —t. Since the
correlation function of E, is assumed to vanish rapidly
for r ) r, and since At )) r, one may extend the r in-
tegral to oo. Then the real part of this integral becomes
lrW(u«)/2sp [8]. The imaginary part can be shown to
be negligible if W' is sufBciently broad and slowly varying
around the transition frequencies. The remaining t inte-
gral is practically At exp(i(w, ~ + cuA,.t)t) if (~,~ + co~~)At
is small compared to 1 [10]. We use the abbreviation
W, ly~

= (D & Ep)(DA~ Ep) W(ul)~)7re /2eph Ba.ck in
the Schrodinger picture Eq. (1) then becomes

—) W' A:t[I i&&j I [I k&(~ I p]]
i,j,k, t

By the same argument the first-order contribution van-
ishes. The contribution from the radiation field is the
same as in the optical Bloch equations without lasers
[11]. It leads to damping terms involving quantities of
the form

sum. With the notation W:—p, l, W~~~g ~
i)(k

~

and

jj,lr —=Hz~ —i(I'+ W) one can write

III. APPLICATIONS: QUANTUM BEATS AND
DARK PERIODS

V system. Here one has D2l, Dsl g 0, while D32
= 0 due to parity conservation. One can choose both
as real. Then Eq. (4) becomes, with the abbreviations
~ij = ~iiyj) ~ij = I iiij) and ~ = ~3

p22 2 W22pll 2(W22 + I 22) p22
—(W23 + I 23) (P23 + p32)

p = 2 W33pll —2(W + I )p
(W32 + I 32) (p23 + P32) (6)

P23 (W23 + W32)pll (W32 + I 32)P22
—(W23 + I'23) p33

(i 6~ —W22 —W33 ——I'22 —I'33)p23 .

Furthermore, pi i —— 1 —pi i —p22 and p3&
—— p23

[20]. Recall that 2I', , is an Einstein coefficient and
2R', i a pumping rate. With the column vector p
(pll p22 p33) p23) p32)', where t denotes transpose, Eq.
(6) can be written in the form dp/dt = M p where the
5x 5 matrix M is read off Eq. (6).

We now discuss the case of small separation of the
upper levels, b~ =— a3g &( w3i, ~2q and first consider
b~ )) I', R . In the matrix M the dominant term then
is Rib~. M has 0 as an eigenvalue because trp = 1, two
further eigenvalues are real, and the other two are given
to excellent accuracy by

p4 5 —+ 6 lV22 W33 ? 22 I 33

Hence p contains terms which oscillate with frequency
6~.

p(o) i ~ ~p(o) p(o) ~+

+ ). (W'g«+ W«'l) I i)(j I
P"'

I
k)(t I.

i,j,k, t

Since a single atom interacts with a particular realization
of the external field E, there should. , in principle, be no
averaging over E,. However, one can show that for most
of the relevant time-averaged statistical quantities, such
as the photon correlation functions for a single atom, one
may use an ensemble average over the external field, due
to ergodicity. This averaging leads from a pure-state or
wave-function description as in Refs. [14, 15] to a density
matrix.
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These oscillations show up in g(2)(r), the intensity
correlation function, which is essentially the conditional
probability density to fin a spontaneous photon at time
~ provided there was one at t = 0. Prom the general
expression [21] one has

g (7.) = (2r22 P22(r) + 2I' P (~)
+(~2s + ~s2)[p2s( ) + ps&( )])/I (8)

1.2-

0.9-

0.6-

0.3-

12—du —t 0 s-'
9————du —5&&'I 0 s-'

where I is the mean number of photons per second [22].
The initial condition is p(0) = 1)(I since after a photon
detection a V system is in the ground state [16]. By
Eqs. (7) and (8), g( )(r') has an oscillatory component
with frequency bw. The amplitude of these oscillations is
proportional to 6u if D2i Dsi g 0 and proportional
to b~ 2 otherwise, provided E, is not perpendicular to
D21 or D31. Figure 1 shows these oscillations.

The underlying reason for these oscillations is very sim-
ilar to that for the usual quantum beats in the decay
after a sudden excitation. As seen in second-order per-
turbation theory levels 2 and 3 are indirectly coupled via
the transitions 2 ~ 1 —+ 3 and 3 ~ 1 ~ 2, mediated
both by a virtual photon emission and reabsorption if
D2i Dsi g 0 and by E,. This leads to a coherence
between the two upper levels.

We now discuss the case bu && I', W and D21 parallel
to Dsi. For the above P(o) we define P(o) analogously
to p. The equation for p~ & can also be written in ma-
trix form, dp( )/dt = M p( ). In the present case M
can be shown to have an eigenvalue with real part much
closer to 0 than those of the other eigenvalues. This leads
to a slowly decreasing part in the no-photon probability
Pq(t) = trp(o) (t), and this in turn leads to dark periods

0.0
0.0 0.2 0.4 0.6 0.8 'l .0

t (1O 's)
FIG. 1. The intensity correlation function gf l (r) plot-

ted for two different level separations bee, l,~
= 10 s and

TV,~ = 10 s . For b(u = 5 x 10 s there are pronounced
oscillations.

in the fluorescent light from such a single V system il-
luminated by incoherent light. By methods explained in
Ref. [4] we find for their respective mean duration, in
terms of q:—D2i/D3$,

T~ =6~ (Wss+ Iss)(1+ q ) /2 q, (9)
Tl, /T~ = (2 Wss + I'ss)/Wss. (10)

These expressions can be rewritten in a form symmetric
in 2 and 3. For increasing pumping rate, TD and Tl.
increase and Tl, /T~ approaches 2. For decreasing bw the
light and dark periods become longer and longer.

A system. Here D31 and D32 are nonzero and can
be chosen real, while D21 ——0. With the abbreviation
W&~ —: F33~ Vz~ —: F&33j and 6w = w2 —ai, Eq. (4)
becomes

P

P — 2 W22 P22 + 2 W22 + I 22 P33 W12(P21 + P12)
P

p =2 W p +2 8 p —2 R 1+Bg2+I11+I22 p33+ ~12+~21 p21+ p12,
P n

p12 —~12 p11 + ~21 p22 + ~12 + ~21 + I 12 + I 21 p33 + i~ ~11 ~22 p12 ~

In addition, p21 ——p12 and trp = 1. Here 21'„ is the
Einstein coefI1cient for the i-3 transition. We write Eq.
(ll) as in Eq. (6) in the form dp/dt = Mp.

For bu )) W, I' the matrix M has two complex eigen-
values p4 s = +ibm —(Wii + W22)/2. The correlation
function [21) is now g( )(w) = p33(j)/pss(oo) and may
therefore exhibit oscillations with frequency bw. This in
itself is interesting since, if excited by a short laser pulse,
single A systems do not show quantum beats in their de-
cay [2]. Even more interesting is the sensitive dependence
of the oscillation amplitude on the initial condition p(0).
Starting from one of the two ground states the amplitude
decreases, rather rapidly, as I/bw while starting from a
coherent superposition of the two ground states the am-
plitude decreases only as 1/hw. Thus starting from a
thermal mixture of the two ground states, as appropriate
for a gas witout cooperative effects or a beam, the oscilla-

Thermal Ensemble
le System

0.9-

0.6- System

0.0 I I

0.0 2.0 4.0 6.0 8.0 1 0.0

t ('0 s)
FIG. 2. The intensity correlation gt (r) for different ini-

tial states, the thermal mixture appropriate for a gas without
cooperative effects or a beam (dotted curve) and the reset
matrix for a single atom (solid curve), with I",

~
= 10 s

W~~
——10 s, Rr = 5 x 10 s . In both cases g (r) oscil-

lates, but with much larger amplitude for the single system.
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tions are very small and vanish rapidly for increasing bu.
On the other hand, a single A system in a trap starts
out, after each photon emission, from the reset matrix
[16] Q, F,s ] i) (j ~

/(1 22 + F33) cf. in this context also
Ref. [17].

Thus for a single A system the appropriate initial state
is this reset matrix, and hence the correlation function
of a single A system will show much more pronounced
oscillations than that of a gas or beam. This is illustrated
in Figs. 2 and 3.

For the case bw (( I', W and parallel transition dipole
moments D3i, D32, the A system also exhibits dark and
light periods when illuminated by incoherent light. Again
by the methods of Ref. [4] we find for their respective
mean durations, in terms of q = Ds2/Dsi,

T~ =b~ Wss(1+q ) (12)

Tl./T~ = (2 Wss + Fss)/(Wss+ I' ) . (»)
A comparison with Eq. (9) shows that the dark and light
periods are shorter for the A system.

t (~ n s)

FIC. 3. The same situation as in Fig. 2, but with larger
level separation, bu = 5 x 10 s . While the oscillations
disappear in a thermal ensemble, they persist for a single
system.

IV. CONCLUSIONS

We have considered an 1V-level system illuminated by
incoherent light and emitting spontaneous photons. A
master equation was derived which becomes effectively
the usual set of rate equations if the level separations are
large, e.g. , ~, —su~ in the optical range. However, if two
levels have only a small separation h, bw, then off-diagonal
terms in the master equation may lead to coherence of
atomic states. Specifically, we have studied the V and
A systems for small boJ and have shown the existence of
a new type of quantum beats with period ba in their
intensity correlation function. These may in principle
be observed for a single system in a trap. We obtain
a marked difference in the beat amplitude for a gas or
atomic beam of A systems, assumed to be in a thermal
mixture at the beginning of the irradiation, and a sin-
gle A system. For the latter the oscillations are much
more pronounced. We propose to investigate these os-
cillations for possible use in a frequency standard. If bw
is much smaller than the natural linewidths of the tran-
sitions then both a single V and A system may exhibit
dark and light periods if the transition dipole moments
are parallel. All these effects arise from atomic coherence
surviving the incoherent illumination.

An experimental verification of the predicted effects
should be possible with a single ion in a Paul trap along
the lines of the recent experiment of Toschek and co-
workers [23]. They measured the correlation function
g2(~) for a single ion irradiated by narrow-band lasers.
To adapt this to the present case one would only have
to use broad-band illumination. With a similar setup
it should also be possible to verify the predicted dark
periods.
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