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ReBection and difFraction of atomic de Broglie waves by an evanescent laser wave
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The diffraction theory of a reBection grating for atoms based on a standing light wave is developed
in a particular dressed-state approximation. The basis states take into account internal and external
atomic degrees of freedom simultaneously and correspond to diffraction orders in the asymptotic
region. In this basis the atom is described as an e8'ective multilevel system. In an adiabatic ap-
proximation for the motion perpendicular to the grating, these levels serve as position-dependent
potentials. An incoming de Broglie wave is coupled to higher difFraction orders by nonadiabatic tran-
sitions near avoided crossings of the potentials. Numerical results confirm the qualitative predictions
following from the physical picture of the difFraction process and lead to an improved description of
experiments.

PACS number(s): 32.80.Pj, 42.50.—p

I. INTRODUCTION

The difFraction of atomic de Broglie waves by material
[1] or optical [2, 3] structures has recently received consid-
erable interest within the emerging field of atomic optics
and interferometry. Atomic interferometry holds great
promises to contribute to the realization of gedanken ex-
periments concerning fundamental properties of quantum
systems. Among these are the process of measurement
or the distinction of dynamic, geometric, and topologic
phases in the evolution of quantum systems.

A device of great practical importance for atomic inter-
ferometry but also intrinsic interest is the atomic reflec-
tion grating. Atomic reHection by a running evanescent
laser wave is achieved through the potential barrier in-
duced by the steep intensity gradient of the evanescent
light [4, 5]. Recently, also grating reHection by a standing
evanescent light wave has been investigated theoretically
[6] and experimentally [7]. Theoretically, a light force
reflection grating poses several unusual problems. The
motion perpendicular to the diffraction grating can no
longer be eliminated in a constant motion approximation
which has been applicable in all previous calculations of
atomic diffraction by light, rendering a one-dimensional
problem. By contrast, the slowing down and reversal of
the atomic motion perpendicular to the mirror is essen-
tial for the light force reflection grating and the problem
remains necessarily two dimensional. In this article we
explain and predict the operation of the diKraction grat-
ing in a position-dependent basis of states which takes
into account the coupling of momentum states by the
standing light wave and the variation of this coupling
with the exponentially decaying light intensity. Asymp-
totically, each considered momentum state corresponds
to a diffraction order. Difrerent orders are populated
via the mixing of the momentum states in the interac-
tion region. Our picture allows accurate calculations of
diffraction patterns. It also introduces valuable insight in
interference efFects in the difFraction pattern with varying

energy.
All calculations are done within some standard as-

sumptions: First, our model system is a two-level atom
interacting with a classical electromagnetic Geld in the
rotating-wave approximation. Second, the basic phenom-
ena are studied, neglecting spontaneous emission. This
coherent regime is the important one for a successful op-
eration of the reflection grating.

The structure of the paper is as follows: In Sec. II we
outline the situation of atomic reflection by a running
evanescent wave. For the running wave situation, the
separation of the two-dimensional Schrodinger equation
and a transformation to momentum representation for
the motion parallel to the mirror (Sec. II A) gives back a
simple one-dimensional picture. Using the dressed-state
picture (Sec. II C) we discuss the reflection probabilites of
the mirror for dressed-state de Broglie waves (Sec. II D).
In Sec. III the difFraction grating formed by a stand-
ing evanescent laser wave is investigated. Solutions of
the stationary Schrodinger equation (Sec. III A) are con-
structed starting from dressed states for the coupled mo-
mentum eigenstates (Sec. III B). Characteristic phenom-
ena of the atomic motion in the dressed-state quasipo-
tentials are described in Sec. IIIC, and our numerical
predictions for the operation of the reHection grating are
presented in Sec. IV. Our algorithms to compute nona-
diabatic transitions in the running wave case and to con-
struct the difFracted beam patterns are given in two ap-
pendixes.

II. REFLECTION BY' AN
EVANESCENT RUNNING WAVE

In this section the reflection of a two-level atom by
a strong intensity gradient is considered. It serves to
explain the idea of reflection by adiabatic motion in a
quasipotential. The internal and external state is de-
scribed by a (Schrodinger) spinor wave function, allowing
for one ground state and one excited state.
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A. Stationary Schrodinger equation

With the assumptions given in the Introduction, the
Hamiltonian for the two-dimensional reflection of atoms
by an evanescent light field reads

( 02 82 5H =
~

+
~

+ H —jc 8(x, y, t) (2.1)2m (Ox 2 Oy2 )
where the internal energy and the atom-laser coupling
matrices read

p x, n

H $0 6'g
(2.2)

1
8(x, y, t) = —( Z(x, y) exp (—i~t) + c.c. ) e, . (2.4)

((» Z(x, y, t) 0 )
z, and c~ denote the internal energy of the excited state
and the ground state. Z(x, y, t) denotes the real electric
field of the evanescent running wave of frequency w for 8
polarization and y & 0

FIG. 1. Principle of diffraction: the evanescent stand-
ing wave is prepared by total internal reflection. Incoming
and diffracted plane de Broglie waves are coupled by coher-
ent momentum transfer parallel to the surface as given byp,„=p + nhq. Here p is the x component of the
incoming momentum p, n is the diffraction order, and Q is
the x component of the light wave vector, The perpendicular
momentum p „, is given by Eq. (3.2). n denotes the angle of
grazing incidence of the atomic de Broglie wave, 8 the angle
of total internal reBection of the laser beam.

q = kopn2sin 6 —1, Q = ken sin 6, (2.6)

where kp is the vacuum wave vector of the light. The
simple expressions (2.4) and (2.5) for the electric field are
valid for s polarization (parallel to the surface, perpen-

The position-dependent amplitude is given by

E(x, y) = Foexp( qy) exp(—iQx), y & 0 (2.5)

with q taking into account the exponential decrease along
the y direction (perpendicular to the surface; see Fig. 1)
and Q denoting the x component of the wave number
vector (parallel to the surface). p, —:(e, p, ) denotes the
induced dipole moment of the transition and m the mass
of the atom. The wave-vector components q and Q are
related to the refractive index n of the medium which
carries the evanescent wave and to the angle of incidence
8 of the totally reflected laser wave by

dicular to the plane of total internal reBection). Because
of translational invariance with respect to the z direction
the Hamiltonian acts on the two-dimensional spinor wave
function (g, (x, y, t), Qg(x, y, t))

The transformation into the interaction picture in con-
nection with the rotating-wave approximation eliminates
rapidly varying terms, and the internal energy difference
is replaced by the detuning

1
(E' —s )e g (2.7)

Here and in the following sections the motion parallel
to the surface (along the x axis) is treated in the momen-
tum representation whereas the orthogonal component
(along the y axis) is treated in the position representa-
tion. The stationary Schrodinger equation takes the form

@ &4.(u*+&q, v))
4g(»*, y)

d' (p + &Q)'

2p p exp gy 2m dy 2m

(2.8)

As p appears solely as a parameter in this equation the
x component p~~ of the initial momentum p~ is con-
served. This reflects the well known fact that a running
laser wave couples a closed two-state family in momen-
tum space, and the system behaves as a real two-level
system for given momentum p~. Obviously the quantity

p'
OOX

ooy =
2m

(2 9)

is the conserved energy in a reference frame moving with
the velocity " e . In this frame it equals the kinetic
energy T &

——p &/(2m) of an atom moving along the
y direction in the ground state and in the asymptotic
region. If the atom, initially being in the ground state,

pg~~„= +2mT „, p~'~g —— 2m(T „+M.,s),

(2.10)

where an effective detuning is defined to include the
Doppler shift LD and the recoil shift LR..

&.~ = & —&D —&R

with

(2.11)

I

is reflected from the mirror in the excited state, the ki-
netic energy has to compensate for the changed internal
energy. Thus one obtains different y components of the
atomic momentum in the asymptotic region depending
on the internal state
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p hQ~

m 2m
Defining further the on-resonance Rabi frequency

A(y)—: exp (—qy),

(2.12)

(2.13)

the conversion factors given in Table I. We assume the
incoming de Broglie wave to be an ideal plane wave.

C. Schrodinger equation in the adiabatic basis:
quasipotentials

d2
E@(u) = (

—
~ .+k.~(u))o(u), (2.14)

where (with momentum arguments suppressed)

c'(y) =
I

=
&&,(y)r

(2.15)

is the state vector for given p and

(„) ~

. -"
(y)~ (2.16)

is the y-dependent internal energy of the coupled system
of atom and running evanescent laser wave.

we arrive at a more compact notation of the Schrodinger
equation

Wi 2(y) = ——[b„rr + OR(y)], (2.18)

where

AR(y) = A.'~+ n'(y) . (2.19)

The basis of eigenstates (er (y), e2(y)) of H~„&(y) may be
written as

A convenient way to obtain the solutions of the
Schrodinger equation consists in diagonalizing the y-
dependent internal part (2.16) and to transform to the lo-
cal eigenvector basis, also called the adiabatic or dressed
basis [2, 8]. The adiabatic energy levels are given by the
eigenvalues Wi 2(y) of (2.16) (see Fig. 2)

B. Dimensionless versus physical parameters

Before discussing numerical examples in the following
sections, we establish suitable units for physical parame-
ters. It is most convenient to express all energies in units
of

el(y) =
lEv(y) )I

where

e2(y) =
I

&-~(y) l
(2.20)

hq 2

(2.17)

(the recoil shift for the imaginary wave-vector component
q of the evanescent wave), which yields the Schrodinger
equation dimensionless. Two different sets of parameters
determine equivalent dynamics of the system if corre-
sponding energy parameters have the same value in units
of M.~. Concerning the unit A~, difFerent atomic masses
m and m' may be compensated for by q and q' with

q may be varied by adjusting the angle of
internal reflection 8 [Eq. (2.6)].

Physical parameters that correspond to the dimension-
less parameters (used in the discussions below and in the
figure captions) depend on the given experimental situa-
tion. We consider an evanescent wave which is prepared
by a light wave with vacuum wavelength A = 640 nm
under an angle of internal reflection of 8 = 45' and a
refractive index of the medium of n = 1.56. The atomic
mass m is that of Ne. Prom these data one obtains

(~z(y) —&.ir ')

»R(y)

(2.21)

For E,ir ) 0 the adiabatic state er approaches the excited
state in the limit of vanishing Rabi frequency, and ez
approaches the ground state; for A, ir ( 0 it is vice versa.
Per definition, it is always the energy level Wq which
forms the potential barrier. The internal state spinor of
a pointlike atom will adiabatically follow the quasienergy
levels Wr 2, if the internal precession frequency AR(y) is
large compared to the reciprocal rise time of the electric-
field amplitude T,;„=0 (~)( & ). As T,,„is of the
order of the Doppler shift q(Q) for the y component of
the velocity, such an assumption seems reasonable since
large values of AR are necessary for reflection anyway.
For appreciable detuning b, , usually chosen for atomic
reflection, the Rabi frequency A~(y) is much larger than
T,,„along the tohole y axis. If, however, the detuning
is too small to yield AR much larger than T,,„in the

TABLE I. Relations between dimensionless parameters and physical parameters as explained in Sec. IIB: for a laser
wavelength A = 640 nm, an angle of internal reflection of 8 = 45, a refractive index of the medium n = 1.56, and the atomic
mass m of Ne, the energy unit hb~ [Eq. (2.17)) corresponds to the following cycle frequencies and atomic velocities.

Experimental parameter

Rabi frequency
Detuning
Perpendicular kinetic energy
Longitudinal Doppler shift

Letter

A, Ag

Too p

Conversion to frequency unit Aq

19 0 x 10 Aq = 2m' x 1 0HZ

9600 ' = (1m/s)
327~ = 1m/s

Q

First reference

Eq. (2.13)
Eq. (2.7)

Eq. (2.9)
Eq. (2.12)
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1 1
o.2(y) = 2 cos — p2(y') dy' ——

p2(y)
(2.24)

contrast, an incoming excited-state wave is described by
the incoming part of o;i in the attractive potential Wi.
Such a de Broglie wave will always reach the surface and
atoms will be adsorbed or incoherently scattered by the
surface.

The light field has to be strong enough to provide a
turning point of the potential W2(y) [Eq. (2.18)]. The
reHection of the incoming wave o.2 is described in the
WKB approximation [11]. In the classical allowed region
y) a near the turning point a we obtain a standing wave

FIG. 2. Quasipotentials W) and W2 Eq. (2.18) for the di-
mensionless parameters A(0) = 7 x 10 A~, A,e = 2 x 10 Aq.

Here hAq = " is used as the energy unit, for phys-
ical parameters, see Table I. For T „= 1.2 x 10 hAq

(p „/m = 1.6 m/s) a classical turning point a exists. For
positive detuning, ground-state atoms, incoming in W2, are
reflected at the classical turning point a whereas excited state
atoms, incoming in Wq, reach the surface.

1 1
~2(y) = exp — p(y') dy'

p(y)

with

(2.25)

where p2(y) = +2m[T „—W2(y)] is the quasiclassical
momentum. In the classical forbidden region 0 ( y ( a
the exponential decaying solution reads

p(y) = —2m[T y
—Wg(y)] . (2.26)

asymptotic region, nonadiabatic effects arise. They are
explicitly treated in Sec. II D and Appendix A.

The solution of the total Schrodinger equation may
now be found by expansion in the adiabatic basis

C'(y) = ~~(y)e~(y) + ~2(y)e2(y). (2.22)

In the adiabatic approximation the resulting derivatives
of the basis vectors are neglected similar to the Born-
Oppenheimer approximation. Equation (2.14) then de-
couples into two scalar equations for the coeFicients a„,
n=1 2

An adiabatic stationary solution of the Schrodinger
equation for an incoming ground-state wave is thus de-
termined to be a pure reHected o.2 wave.

Obviously there exist three possible loss mechanisms
which reduce this reflectivity: (a) tunneling of the de
Broglie wave across the potential barrier, (b) nonadi-
abatic transitions from the incoming wave a2 into the
nonreflecting potential Wq, and (c) mixing of both states
due to spontaneous emission.

(a) The loss of ground-state atoms due to tunneling of
the amplitude of the repelled state through the potential
barrier W2 is estimated by the probability current of the
WKB solution at y = 0. Using Eq. (2.26) and

(2.23)
p(y') dy' (2.27)

Each of the equations (2.23) describes the center-of-
mass wave function u„(y) of an atom being in a position-
dependent superposition state eq(y) or e2(y) given by
(2.20). As both solutions belong to the same energy,
any linear combination ci o;iei + c2 o;2e2 of them forms
another solution (c&, cz complex numbers). Physical so-
lutions are singled out by imposing boundary conditions
at y = 0 and oo, as done in Sec. II D.

D. Refiection of dressed state de Broglie waves

The application of the evanescent running wave as a
mirror in atomic cavities requires an highly efBcient re-
flection of the ground-state wave [9, 10]. This is achieved
by choosing the detuning positive. An incoming wave
in the atomic ground state is described by an incoming
part of o,2 in the repulsive potential W2 and zero ampli-
tude in the attractive potential Wi. If the energy T
is suKciently small compared to the maximum value of
W2(y = 0) it will be completely reflected (Fig. 2). By

LT = [exp (—r)[ = exp (—2r) . (2.28)

(b) A second loss mechanism is given in this representa-
tion by nonadiabatic transitions from the repelling state
to the attractive state. These nonadiabatic transitions
are strong for small detuning due to the near degener-
acy of Wi and W~ in the asymptotic region which indi-
cates a strong mixing of the adiabatic eigenvectors. This
mixing results from the derivatives of the eigenvectors
(2.20) which are neglected in the adiabatic approxima-
tion (2.23). Here we treat them as an additional pertur-
bation HNA of the total Harniltonian

H = HA+ HNA (2.29)

which causes nonadiabatic transitions. HA is given by
the right-hand side of (2.23). JINA is given by

we obtain the loss due to tunneling as probability per
reHection
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Here 0 denotes the angle by which the position-
dependent basis of eigenvectors is rotated against the
asymptotic basis [from (2.20) and (2.21)] tan(O) = v/u.

If an incoming wave is reflected by the repulsive po-
tential R2, the perturbation HNA provides a position-
dependent source for waves in the potential Wq. This
source is predominantly locahzed at a particular range in
the positive y direction and disappears in those regions
where either the wave function nz vanishes (negligible in

y = 0) or the first and second derivative of 0 vanishes

(y ~ oo). Thus the total nonadiabatic loss LNA is given
by the flux of the wave function in Wi both incoming
onto the surface as well as outgoing in the instable ex-

cited state. An explicit expression for the nonadiabatic
loss INA is derived in Appendix A on the basis of the
distorted-wave approximation.

(c) The above results are to be compared with the
loss LGF calculated from Eqs. (2.26) and (2.27) for the
potential barrier WGF of the gradient force, taken from
[4], instead of Wz..

~a/(w) = » &+2 ~ ~ ). (2.31)

Here A denotes the rate of spontaneous emission. In the
dressed-state model spontaneous emission averages the
forces due to the repulsive and the attractive dressed-
state potential, with the weights of the dressed-state pop-
ulations. According to the difference between these pop-
ulations the gradient force WGF vanishes as saturation
increases. Thos in general the neglection of spontaneous
emission severely modifies the prediction for the reflec-
tivity. However, in the limit of large detuning the results
for reBection by the gradient force potential and the adi-
abatic potential converge.

A comparison of the results for fixed Rabi frequency
and varying detuning is given in Fig. 3. The deviation
between the curves calculated for Wz and WGF is due
to spontaneous transitions between the dressed states.
Since the transition rate depends on the excited-state
population, it decreases with decreasing saturation.

To minimize loss due to both nonadiabatic and spon-
taneous transitions the detuning might be increased as
long as the repulsive potential barrier remains sufFiciently

high. The total loss of tunneling and nonadiabatic tran-
sitions L7 + LNA can be driven safely below 10 0 for
slow atoms with a y component of velocity (perpendic-
ular to the surface) t)& + 1 m/s using conventional laser

technology to produce the evanescent wave. Thus the
laser-induced mirror is suitable to serve in atomic res-
onators.

—160

—20
0 2 4. 6 8 10x10

effective detuning D,«(units of 6,)

FIG. 3. Loss probability per reflection calculated for vary-
ing detuning and fixed Rabi frequency (logarithmic vertical
axis): (a) Lr is the tunneling loss calculated for the adiabatic
potential barrier Wq for A(0) = 7 x 10 b, ~ and two values of
the kinetic energy: T „=0.6 x 10 hD~ (p „/m = 1.1 m/s)
and T „=1.2 x 10 hb, ~ (p „/m = 1.6 m/s). L,NA is the
upper bound for nonadiabatic loss (see Appendix A), valid
for both values of the kinetic energy. (b) Tunneling loss LGF
for the potential of the gradient force Wop [Eq. (2.31)] for
parameters as in (a) and A = 18005,~.

III DIP FRACTION

We now turn to the description of the atomic reflec-
tion grating which is created when the laser wave is
retroflected into itself (see Fig. 1). The physical behav-
ior of the system is governed by the combined action
of diffraction and reQection. Whereas diffraction phe-
nomena occur for the parallel component p of the mo-
mentum, the perpendicular component p& introduces a
smooth variation of the coupling strength from zero in
the asymptotic region y —+ oo to a certain maximum
value at the surface.

In the case of the standing wave the idea of a poten-
tial barrier has to be generalized to allow for the different
diffracted beams. However, the adiabatic potentials have
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a much more complicated structure compared to Fig. 2
due to the possibility of infinite coherent momentum ex-
change with the standing laser field in the x direction.
The coupling of the momentum channels results in a
new feature of the quasipotentials, namely avoided cross-
ings. These may cause nonadiabatic transitions transfer-
ing population to different diffraction orders. Their eval-
uation requires the solution for the perpendicular atomic
motion in the y direction, which is done fully wave me-
chanically.

A. Stationary Schrodinger equation

The reHection grating is formed by adding an addi-
tional counterpropagating running wave (with amplitude

) to the incoming evanescent wave (with amplitude
F+). Thus we replace Eq. (2.5) by

E(x, y) = exp (—qy) ( Z+ exp (iQz) + 8 exp (—iQz) } .

(3.1)

In the following, we consider an atom incoming in the
ground state and in a momentum eigenstate with initial
momentum p . The spatial periodicity of the standing
wave gives rise to a net momentum transfer in the x direc-
tion nhQ onto the atom, with n being an integer number
which is even for atoms leaving in the ground state and
odd for atoms leaving in the excited state. The x com-
ponent of the atomic momentum in the nth diffraction
order being p + nhQ, the asymptotic y component
of the momentum is calculated from conservation of mo-
Illentum and energy according to

p „„=+ 2m(T „+s'„hA —nM, ~ —n2hA~),

(3.2)

using ED and A~ from (2.12) and r„= 2(1 —(—1)"},
which gives 0 for even (ground-state) diffraction orders
and 1 for odd (excited-state) orders. Note that the y
component of the asymptotic momentum depends on the
internal atomic state by the term z„hA as well as on the
x component of the momentum. The negative sign in
Eq. (3.2) corresponds to the transmitted orders which are
adsorbed. An infinite family of coherently coupled basis
states for the internal and external degrees of freedom is
conveniently defined using the notation

the position-dependent Rabi frequencies. Hq(y) is a
position-dependent effective Hamiltonian. Allowance for
the discrete momentum exchange with the standing laser
wave has turned the two-level atom into an effective
multi-level system. Correspondingly, Eq. (3.5) resembles
a multichannel Schrodinger equation for an inelastic col-
lision problem.

Prom energy and momentum conservation one obtains
the range of allowed numbers n corresponding to real
values of p

l2«R+&~] & 4&a
I

"+~ & I+&'.fT „
h ) (3.7)

For vanishing coupling (A+ ——0 = 0) the matrix (3.6)
gives therefore a finite number of open channels.

The effective Hamiltonian (3.6) has been treated in
various approximations previously and its eigenvectors
have been determined by solving recurrence relations
[12]. We remark that one can distinguish two types of
6 g 0 resonances between momentum channels: the first
one, termed Bragg resonance, occurs between asymptotic
states of quantum number n and —n and involves an ex-
change of an even number of photon momenta; the sec-
ond one is inelastic and velocity tuned; neglecting the
quadratic term n2LR its resonance condition for vanish-
ing Stark shift reads

4 —nA~ ——0, n odd (3 8)

T w+ 2 Z„, l & (y) = ) .(~~(y))...0 (y),
n'

(3.5)

where for fixed y the matrix Hq(y) is given by

(fj,(y))„„,=b„„h( s„S—+ nA& + n'6R)
hA+ (y)+ ((1 sn)~n, n'+1 + En~n, n' —1}
hQ (y)+, ((1-s-)~-,-- + -~-,-+ }

(3.6)

with b„„denoting Kronecker's delta function and

B~(y):— exp( —qy)
p,F~

and

)
ep + nhQy), n odd
g, p + nhQ, y), n even

4 (y)
—= (C'ln, y). (3.4)

and they are called Doppleron resonances [13, 14]. Here
we are interested in the limit of strong coupling, compa-
rable to the energy-level spacing GAD, such that a per-
turbative treatment of the resonances [14] is no longer
sufhcient.

B. Adiabatic quasipotentials and avoided crossings
The momentum-space representation for the x motion is
reduced to the number n whereas the y motion remains
to be treated in position space; the family momentum
p is not changed by the coherent interaction. Using
Eq. (3.4) and T & from (2.9) the Schrodinger equation
for P (y) reads

The basic feature of our treatment is to use the eigen-
values W„(y) of the Hamiltonian Hq(y) (3.6) as position-
dependent quasipotentials for a multilevel atom [Fig.
4(a)]. To compute these quasipotentials numerically, we
use a suitably truncated effective Hamiltonian Hq [15].
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In the asymptotic region the energy values coincide with
the diagonal elements of Hq. The energy values form a
level sequence which is equidistant with the level spacing
A~ up to the small shifts n M ~, even W2~(y) and odd
W2l~q (y) alternating with each other. Varying the detun-
ing 4 shifts the sequence of the odd levels up or down
with respect to the even levels which are independent
of L. When approaching the surface y = 0 the light-
induced coupling increases to its maximum value. As a
consequence, all energy levels are y-dependently shifted,
ground states [W2~(y)] are repelled from excited states
[W2~+q(y)] and vice versa. For the purpose of reHection,
this shift has to be larger than the component of the
kinetic energy perpendicular to the surface T~y The

adiabatic approximation consists in replacing Eq. (3.5)
by a number of single-channel Schrodinger equations for
the scalar wave functions a„(y):

5' d'
d, ~-(y) = [T-.—W-(y)] ~-(y)

2777 dp
(3.9)

As shown in Fig. 4(a) the adiabatic potentials W„(y)
exhibit a characteristic structure of avoided level cross-
ings. They play an important role in coupling different
diffraction orders.

In the asymptotic region the sign of the slope of the
quasipotentials [dW„(y)/dy] depends on its index n be-
ing even or odd and on the value of the detuning, e.g. ,
for positive sign of the effective detuning (approximately
given by 6 —A~) even potentials (e.g. , the zeroth or-
der) are reflective. Passing an avoided crossing on the
adiabatic curves, however, reverses the sign of the slope
so that the adiabatic potentials are in general no longer
strictly repulsive or attractive as in the case of the run-
ning wave.

On the other hand, diabatic curves [16] [refer to Fig.
4(b)] are either strictly repulsive or strictly attractive.
We use the repulsive diabatic curves to determine the
maximum number of nonvanishing diffraction orders. Re-
flected waves are expected in those asymptotic open
channels that correspond to diabatic curves which are
suKciently shifted upwards to provide a turning point
[Fig. 4(b)]. Increasing the energy T~& [Eq. (2.9)] by in-
creasing the angle of grazing incidence a. (Fig. 1) has two
consequences. First, diffraction orders which are asymp-
totically forbidden, will become allowed. Second, dia-
batic potentials will lose reflectivity as the asymptotic ki-
netic energy exceeds the maximum light-induced shift of
the diabatic curves. Thus the maximum asymptotic mo-
mentum p „ofnonvanishing diffraction orders is defined
by the condition that (p „")2/(2m) equals the maximum
light shift. Consequently, the angles with the surface are
confine to a limited interval

0

—1

l12
high
velocity
reg irne

[0, arctan (p „"/p )] . (3.10)

This limitation will show up in the numerical results in
Sec. IV.

—2
0

position y (units of q )
C. Di8'raction process

in the multilevel approximation

FIG. 4. Quasipotentials obtained as position-dependent
eigenvalues of Hz(y) [Eq. (3.6)]: (a) Quasipotentials for the
dimensionless parameters 0+(0) = 7 x 10 A~, 0 (0)
3 x 10 Aq, A = 1.3 x 10 Aq, AD = 6520Aq, A& = 5.6Aq, and
T~& ——1.5x 10 hAq. These parameters are chosen to optimize
the even diffraction orders. They are further used in Figs. 7—9
and discussed in Sec. IV. Here Aq:—zq, for physical param-
eters see Table I. The positions y, m = 1, . . . , 3, and yM
are defined in the discussion of Appendix B. (b) Quasipoten-
tials for parameters as in (a) but for dominating running wave
A+(0) = 9 x 10 D~, fl (0) = 1 x 10 Aq. The energy separa-
tion in each avoided crossing is too small to be visible on this
scale. Therefore the shown adiabatic (noncrossing) potentials
almost coincide with the diabatic (crossing) potentials.

In the following we discuss several features of the prop-
agation of de Broglie waves in the quasipotentials leading
to reflection of the incoming wave and to population of
higher diffraction orders.

Refiection barriers and transmission gaps

Atoms will be reflected if at least part of the de Broglie
wave encounters a classical turning point along its path
to the surface. Unfortunately, in the adiabatic represen-
tation, for a given energy, there is at most one single
adiabatic potential curve which provides classical turn-
ing points [Fig. 4(a)]. However, nonadiabatic transitions
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(a) low velocity regime (b) high velocity regime

gm

nl

W„,.
r

I 1

gm

position y (arb. units)

FIG. 5. (a) Quasipotentials W, and W» of the low ve-
locity regime: The three different values of T „ lead to (i)
barrier reflection, (ii) adiabatic overbarrier motion, and (iii)
coupling to quasibound states. (b) Quasipotentials W„,. and
W„,.+, of the high-velocity regime: Note the much higher ki-
netic energy as compared to (a).

enable an incoming atom to follow (preferably) repulsive
diabatic curves by changing from one adiabatic curve to
the next.

To establish the notation for the following discussion
we first distinguish certain classes of adiabatic potentials
[refer to Fig. 4(a)].

First, there is a pair of potential curves closest to a line
of constant energy E = T „.One of these two potentials
provides classical turning points and essentially deter-
mines the reflection. They are numbered W„I )W„» and
referred to as the lovj vetocit-y regime (Sec. III C3). The
kinetic energy of an atom in these potentials is too small
to allow a semiclassical (e.g. , WKB) treatment. Addi-
tionally, although W„, is at least partially forbidden, it
affects the motion in W„». A full numerical calculation
of the atomic dynamics in W„l and W„» is discussed in
Appendix 8 2.

Second, there are potentials which lie entirely below
W„» and are in any case entirely allowed. They are
numbered W„, ) W„, ) W„, ) and referred to as
high-velocity regime (Sec. III C2). These potentials can
be considered to vary smoothly on the scale of the lo-
cal de Broglie wavelength. Therefore a WKB treatment
is justified. Semiclassical motion in these potentials is
discussed in Appendix B 1.

Here and below, the indices n = ny, nay, and n, de-
note the coherent momentum transfer (p + nh, q) of the
asymptotic state n, whereas the indices I,rr, i denote the
ordering of the states with respect to energy.

Finally, there are potentials which lie above W„, and
are in any case entirely forbidden (not shown in Fig.
4). Therefore they do not affect the motion in the low-
velocity regime and in the high-velocity regime and are
discussed in the following.

Of course it may happen that the line of constant en-
ergy E = T~y is entirely between W„, and W„» for some
certain values of T~„[Fig. 5(a)]: i.e. , an atom with this
energy does not encounter any classical turning point.
These energy gaps will show up in the energy dependence
of the diffraction patterns (Sec. IV).

One of the advantages of the adiabatic representation
of the problem is that physically motivated boundary

conditions for the de Broglie wave propagation in each
single channel can be defined. This is possible inasmuch
as the eigenstates of the effective Hamiltonian H~ can
be considered as decoupled (adiabatic approximation).
Single-channel wave functions are thus definitely ener-
getically allowed or forbidden in y = 0. We demand
entirely incoming waves in y = 0 if the potential is al-
lowed in y = 0. This corresponds to the assumption
that the surface provides a perfect drain for incoming de
Broglie waves (e.g. , as a consequence of adsorption but
no coherent reflection). On the other hand, energetically
forbidden potentials in y = 0 lead to exponentially de-
creasing wave amplitudes because of tunneling.

We turn now to the different formal treatment of the
wave function in the lower potentials W„, and in W„„
W~I I ~

2. High-velocity regime

In the lower potentials the kinetic energy T „—W„,. (y)
(and the velocity) is sufFicently large to permit a semiclas-
sical treatment: the WKB approximation for the propa-
gation of the wave functions between the avoided cross-
ings and the computation of the transition amplitudes in
the crossings by Landau-Zener-Stiickelberg matrices.

Between the avoided crossings we assume the station-
ary wave functions to follow adiabatically the potential
curves. The two general solutions of the single-channel
Schrodinger equation (3.9) for waves propagating in the
(&y) directions read

n„.(y) = exp
1

p .(y)
(3.11)

where p, (y) = /2m[T &
—W„, (y)] is the quasiclassical

momentum.
On the other hand, in the region close to narrow

avoided crossings the change of the eigenvectors of Hq
with respect to y is very important for the evolution of
the wave function. In our approximate treatment we al-
low for nonadiabatic behavior in the allowed potentials
only near the avoided crossings. As is well known from
the theory of atomic collisions, such transitions at each
single crossing can be described in a two-state approxima-
tion and the Landau-Zener-Stuckelberg treatment leads
to (2 x 2) unitary transition matrices [17] for constant
atomic velocity. For the wave mechanical construction
of the diffraction amplitudes we have adapted an ansatz
from collision theory [18] to obtain the forward propa-
gation of the wave functions o,„, and o,„. .. i = 1, 2, . . .
across an avoided crossing between the potentials W„,
and W„,+, , including the varying momentum [see Fig.
5(b)]. The ansatz neglects reflection due to the crossing
and therefore assumes a level spacing which is much less
than the kinetic energy in the crossing [19]. The explicit
expression of the transition matrices is given in Appendix
B l.
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8. Lotu-velocity regime

The atomic dynamics in the potentials W„, and W„»,
in particular near classical turning points, is complicated
by the fact that the slow atoms may be nonadiabatically
coupled to the asymptotically forbidden potential W„,.

The physical processes that govern transmission and
reHection of the wave o.„« in the adiabatic potential W„»
are [see Fig. 5(a)] (i) barrier reflection, if the top of the
W„„barrier is classically forbidden; (ii) adiabatic motion
and overbarrier reflection in W„», if T & slightly exceeds
the maxima of the potential W„„; (iii) coupling to qua-
sibound states in the wells of W„, resulting in reflection
resonances for the outgoing amplitudes n„„,if the wells
of W„, are classically allowed. They are discussed in more
detail in Sec. IV.

To proceed to the total description of the diffraction
process the incoming de Broglie wave has to be mapped
onto the diffracted waves. This mapping has to take into
account the splitting of the incoming wave into several
partial waves at avoided crossings. The simultaneous mo-
tion of all the partial waves has to be traced through the
potentials of the high- and low-velocity regime. Different
reflected partial waves interfere in the outgoing diffrac-
tion orders.

In Appendix B we outline a systematic calculation of
this superposition in the adiabatic basis. The mapping of
the incoming onto the outgoing waves will be composed
from semiclassical propagators for adiabatic motion and
nonadiabatic transitions in the high-velocity regime, as
well as from reflection and transmission amplitudes ex-
tracted from a full quantum-mechanical treatment of the
lotD velocity regim-e.

IV. DISCUSSION OF THE
PREDICTED DIFFRACTION PATTERNS

In this section we discuss diffraction patterns resulting
from the physical picture of Secs. III A—III C which have
been calculated numerically as described in Appendix B.

The performance of the reflection grating depends
mainly on the following parameters: the laser detuning
6, the Doppler detuning AD [Eq. (2.12)], the Rabi fre-
quencies 0+ and 0 of the copropagating and counter-
propagating light waves, and the atomic beam properties.

of the quasipotentials to induce avoided crossings neces-
sary for diffraction. This energy separation scales linearly
with the longitudinal Doppler shift 4~ = Q" [see Eq.
(3.6) and Fig. 4(a)]. Thus the minimum laser intensity
to produce a suKcient light shift depends linearly on the
value of p (and therefore on ~p ~).

As a first example we consider a thermal atomic beam
(600 m/s) under grazing incidence (o. + 6 mrad) and a
laser intensity of the order of a few 100 mW/mmz. This
combination of parameters does not yet meet the condi-
tion mentioned above. Nonadiabatic population transfer
to diffracted orders will be negligible, thus only barrier
reflection in the zeroth order is expected (see Fig. 6).

In contrast to this, the regime of avoided crossings
(i.e. , of considerable mixing of the diffraction orders) is
reached either by increasing the laser intensity or by de-
creasing the total atomic velocity, e.g. , by laser slowing.
Deceleration has the additional advantage of an increased
atomic de Broglie wavelength and, as a consequence,
an enhanced angular separation of the difFracted beams.
Diffraction patterns are calculated as a function of the
angle of grazing incidence a. , for very slow atoms (20
m/s) allowing much larger angles n + 100 mrad [other
parameters given in Fig. 4(a)]. The populations of the
diffraction orders vary very rapidly with o. and exhibit a
great variety of structure (Fig. 7). This will be explained
in the following (refer to Figs. 7 and 8).

For small angles, o,=0—40 mrad, the kinetic energy T~&
proportional to (sin ct, ) is small compared to the first po-
tential barrier of W„„(nii = 0) [Fig. 8(a)] and the atoms
are completely reflected in the zeroth order [Fig. 7(a)). At
an angle of a = 46 mrad the energy T~„slightly exceeds
all barriers of W„„.Thus the motion in the low-velocity
regime is entirely adiabatic and, because the potential
varies slowly on the scale of the de Broglie wavelength,
reflection is negligible [Fig. 7(a)].

In the intermediate range, a=47—58 mrad, nonadia-
batic coupling to quasibound states in the wells of the
partially forbidden potential W„, begins to play an im-
portant role [Fig. 8(b)]. They give rise to two series of re-

0.8

A. Dependence on the angle of grazing incidence

In this section we present the numerically calculated
population of difFraction orders as a function of the angle
of grazing incidence o.. In the regime of grazing incidence
the main effect of varying o; is to vary the perpendicular
momentum p~& ——~p ~

sinn since the parallel momen-
tum poo = [p ~

cosa. almost coincides with the total
momentum ~p

The calculation is performed for two examples: erst
for a thermal atomic beam and second for a decelerated
atomic beam. The total atomic velocity ~ has a strik-
ing effect on the diffraction pattern as will be discussed
in the following. The light-induced shift of the diabatic
curves has to exceed the asymptotic energy separation

0.6

0.4
CL
O 0.2

0.0

n=O
fl= 1

position y iunits of q')

2 4- 6

angle of grazing incidence cx (mt ad)

FIG. 6. Populations of di8'raction orders for a thermal
atomic beam. Specular reflection of the zeroth diBraction or-
der showing up for a thermal atomic beam (total atomic ve-
locity 600 m/s): Optimized parameters are A~(0) = A (0) =
10 x 10 Aq &

A = 23 x 10 Aq, A~ = 20 x 10 Aq. The inset
shows the relevant quasipotentials.
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flection resonances: in the diKraction populations n = 0
and in n = —2, 1; a densely spaced one, displayed in
Fig. 7(b) from n = 53 mrad to 58 mrad; and a widely
spaced one, displayed in Fig. 7(b) from n = 53 mrad
to 66 mrad. The spacing between the resonances de-
pends on the shape of the wells and approximately obeys
a Bohr Sommerfeld quantization condition. The widths
of the resonances depend on the losses due to nonadia-
batic transitions out of the wells and vary slowly with
T~„. Atoms that are not reflected into n = 0 by reflec-
tion resonances of the first well of W„, may pass the first
crossing between W„„and W„, adiabatically and cou-
ple to a second set of quasibound states located at the
second well of W„, . The reflection resonances of this sec-
ond, narrower potential well show both wider width and
spacing.

For increasing angle of incidence, n ) 58, 7 mrad, the
channel n = 3 becomes allowed [Figs. 7(b) and 8(c)]. As a
consequence quasibound states and resonances of n = 0
disappear. Instead of this, the incoming wave simply
splits in the first crossing. One fraction is reflected at
the first classical turning point of W„I while the other
fraction couples to quasibound states in the second well
of W„, . In the first crossing the waves reflected by the
first and second turning point interfere [Fig. 8(c)] giving
rise to Stiickelberg oscillations as a function of T~„ in
the channels nay

——0 and ny ——3. These resonances are
modulated by the resonance structure of the second well
[Figs. 7(a) and 7(b)].

Finally, for angles n ) 85 mrad the set of reflected
diKraction orders has changed [Fig. 8(d)]: Since the an-
gles of the outgoing orders n = —2, 1 exceed the maxi-
mum permitted angle [see Eq. (3.10)] the population of
these diff'raction orders vanishes. At the same time the
orders n = 2, 5, lying at small angles with the surface,
become energetically allowed. The second potential well
of W„, (ni = 5) is connected with n = 0 in the asymp-
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FIG. 7. Populations of diffraction orders for a slow atomic
beam: (a) Overview: data have been calculated for param-
eters as in Fig. 4 (a) and varying angle of grazing incidence
o; corresponding to varying T „.The inset shows the order-
ing of the outgoing beams with respect to their angle with
the surface. Note that they are sorted by the magnitude of
p „,„but not by the order n. The reason for this is that only
the odd orders depend on the detuning [see Eqs. (3.2) and
(3.6)]. Quasipotentials for the angles marked by (i)—(iv) are
shown in Fig. 8. (b) Detailed view from (a): populations of
diffraction orders n = —2, 1,0, 3 in the range a=53—66 mrad.
(c) Detailed view from (a): populations of difFraction orders
n = 0, 3, 2, 5 in the range o.=98—110 mrad.
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FIG. 8. Quasipotentials corresponding to Fig. 7. Magni-
6ed parts of Fig. 4(a), showing relevant quasipotentials. Hor-
izontal lines denote the value of the energy T „. (a)—(d) refer
to the angles of grazing incidence marked by (i)—(iv) in Fig.
7: (a) n = 35 mrad, (b) n = 56 mrad, (c) n = 64 mrad, (d)
n = 105 mrad.
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totic region by a diabatic curve. Therefore a de Broglie
wave incoming in n = 0 has to behave nonadiabatically
at each encountered crossing to populate this second po-
tential well. On the other hand, the flrst well of W„,
cannot be reached directly by the incoming wave. It may
exclusively be populated by outgoing waves starting from
the second well. Therefore the resonance structure due
to quasibound states of the first well of W„, now shows
up in reflecting the outgoing wave in n = 0 back to the
surface. This causes closely spaced zeros in the popula-
tion of the order n = 2 in the neighborhood of o. = 100
mrad [Figs. 7(a) and 7(c)j.

B. Averaging over beam divergence

The rapid variation of the populations with the energy
T~& is due to the variation of the semiclassical WKB
phases of the waves. These phases depend strongly on
all parameters which determine the shape of the poten-
tials and on the asymptotic kinetic energy T~„. In a
real experiment the narrow resonance structures may not
be resolved because of imperfections, e.g. , of the atomic
beam preparation or of the intensity proflle of an evanes-
cent wave produced by a real laser mode. We take into
account a small angular divergence corresponding to an
atomic beam in the transversal recoil limit, thus having a
beam divergence of 2 mrad. The data from Fig. 7 have to
be convoluted with a Gaussian velocity distribution with
the width of 2 mrad. The resulting curves vary more
slowly with the angle of incidence. Averaging over other
parameters of the problem will yield similar, slow vari-
ations of the reflection and transition probabilities (see
Fig. 9).

C. Variation of the running wave proportion
(0+/0 ): Prom diffractio to reflectio

does this transition appear in the adiabatic model? For
a pure standing wave (0+ ——0 ) and the particular pa-
rameters given in Fig. 4(a) only weak nonadiabatic tran-
sitions occur between adiabatic states. Nearly all of the
incoming wave reaches the surface in the n = 0 adiabatic
potential. Consequently the reflectivity is negligible.

If we now consider a continuous transition from 0+ ——

0 to 0+ ))0, we remark that the energy splittings of
all avoided crossings approach zero. In the limit 0 = 0
the effective Hamiltonian Hq(y) (3.6) decouples com-
pletely into a set of uncoupled two-level Hamiltonians.
Thus their quasipotentials do cross, because they belong
to uncoupled states. In this case, the overall behavior in
the quasipotential pattern becomes purely diabatic. The
incoming wave is completely reflected by a repulsive di-
abatic curve, while the eKciency of populating different
diffraction orders drops to zero.

Optimum distribution of the incoming population
among various diffraction orders occurs in an interme-
diate regime between the diabatic regime and the adi-
abatic regime. Thus maximum re/ectivity and opti
mum population of higher orders cannot be obtained for
the same experimental parameters. Figure 10 confirms
this qualitative discussion and shows that the value of
(0+/0 ) = 2.33 chosen for the example discussed above
is optimum for even diffraction orders, at the expense of
total reflectivity (see Sec. IV E).

For the parameters chosen in Fig. 10 it is not impor-
tant whether the copropagating or the counterpropaga-
tion laser wave is dominant. Dominant copropagating
wave 0+ couples n = 0 to 1 whereas dominant counter-
propagating wave 0 couples n = 0 to —1. However, in
both cases the limiting situation is a two-level reflection
system with positive effective detuning (approximately
given by 6 —DD).

Changing from the standing-wave case (0+ ——0 ) to
the running-wave case (A+ )) 0 ) smoothly turns the
system from a diffraction into a reHection device. How
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FIG. 9. Populations of difI'raction orders, calculated as-
suming imperfect collimation of the incident atomic beam:
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stant. Intensities of the diffraction orders are averaged over a
symmetric interval around T „[corresponding to a angular
uncertainty o'(a) = 2 mradj as in Fig. 9, thus removing rapid
oscillation. The optimum for the even diffraction orders shows
up for A+/0 = 2.33. This is the running wave proportion
chosen in Figs. 4(a) and 7—9.
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D. Variation of the laser detuning

Uarying the detuning 4 has two effects: First, it shifts
the odd levels in the asymptotic region and changes the
sequence of the odd versus the even diffraction orders.
Second, with increasing detuning 6 the energy sepa-
ration in avoided crossings approaches zero. Thus one
reaches the diabatic regime and specular reflection pre-
dominates, similar to the behavior discussed in the pre-
ceding paragraph. As a second effect of increasing detun-
ing the slope as well as the maximum value of the light
shift decreases. In the limit 6 —+ oo the diabatic curve
is not sufBciently shifted by the interaction to exceed the
energy E = T~y and is no longer repulsive. In our ex-
ample (Fig. 11) the diabatic regime is reached before the
reflecting barrier decreases too much.

Figure 11 shows that the value of the detuning 6 =
1.3 x 10 Lq chosen for the example given above is opti-
mized for even diffraction orders. As both the running
wave proportion (0+/0 ) and the detuning 6 affect the
nonadiabatic transition probabilities in nearly the same
way, there is a strong interdependence of (0+/0 ) and

E. Optimizing even difFraction orders

The suitability of the atomic diffraction grating as a
beam splitter for atomic interferometry depends on the
possibility of populating even diffraction orders signifi-
cantly. Remember that even orders refer to ground-state
atoms in the asymptotic region, whereas excited-state
atoms may decay after leaving the grating. Therefore
we optimize the populations of even orders by finding
a suitable combination of the running-wave proportion
(A~/0 ) and the detuning 4 (see Figs. 10 and 11).

In our example (0+/0 ) and 4 are chosen in order
to make transition probabilities of the relevant avoided
crossings approximately equal to the value 1/2. This is
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FIG. 11. Populations of diKraction orders for varying laser
detuning: angle of grazing incidence n = 105 mrad (corre-
sponding to T „=2.1 x 10 hE~), other parameters are the
same as in Fig. 4(a). The laser detuning varies. Populations
of the diffraction orders are averaged over an interval around
T~„[c rroe p soindntgo a angular uncertainty Ir(o) = 2 mradj
as in Fig. 9 thus removing rapid oscillation. The optimum
for the even diB'raction orders shows up for A = 1.3 x 10 Aq.
This is the laser detuning chosen in Figs. 4 and 7—9.

appropriate because the avoided crossings themselves can
be visualized as de Broglie wave beam splitters. This cir-
cumstance causes the principle limitation in optimizing
the populations of the even diffraction orders n = +2:
As one can see from Fig. 4(a), the transfer of population
from the incident order n = 0 to +2 requires at least
four avoided crossings. While one of these avoided cross-
ings has to be passed diabaticclly by the incoming wave,
it has to be followed adiabatically by an outgoing wave.
Thus the best compromise is a transition probability for
this crossing of 1/2. Since the transition probabilities are
very similar at all crossings, also the neighboring cross-
ings will have transition probabilities close to 1/2. A
wave that passes four avoided crossings will then have at
maximum the population (z) =

&&, provided there is
complete reflection due to a resonance of a quasibound
state. Averaging over o; adds a factor of approximate 2.
Thus the averaged population of even diffraction orders
cannot be expected to be much larger than 3%. How-
ever, optimized populations of about 6% (see Fig. 9) can
be achieved by carefully balancing the slightly different
effect of the detuning and the running-wave proportion
on the nonadiabatic transitions. Note that the optimum
for diffraction into even orders is different from the op-
timum for diffraction into odd orders (mainly n=3) and
far off the conditions giving a total reflectivity of 100%
(mainly n=0) (Figs. 10 and 11).

V. CONCLUSION

We have studied the light-induced atomic reflection
grating using an adiabatic approximation for the mo-
tion perpendicular to the grating. The transition from
the incoming de Broglie wave to the diffracted waves is
viewed as an inelastic redistribution of energy from in-
ternal motion and parallel motion into the perpendicu-
lar motion. This redistribution takes place via splitting
and recombination of dressed-state de Broglie waves at
avoided crossing of quasipotentials.

Our model of the diffraction process allows a numer-
ical construction of the diffraction pattern yielding im-
portant conclusions about the operation of atomic beam
splitters. Most strikingly, because of the interplay of adi-
abatic motion and nonadiabatic transitions, the function
of atomic beam reflection and redistribution of popula-
tion among higher diffraction orders cannot be optimized
simultaneously. It turns out, however, that a significant
running-wave contribution to the standing wave improves
the performance of the reflection grating considerably.
As the light shift has to exceed the longitudinal Doppler
shift to produce an avoided level crossing, slow atoms
are required to achieve optimum diffraction. Character-
istic features of the avoided crossings can be tuned by
varying experimental parameters like laser detuning and
running-wave Rabi frequencies. These features directly
influence the diffraction patterns.

The outgoing diffraction orders, distinguished by their
different center-of-mass motion, are correlated with dif-
ferent internal states. Because of the wide angular sepa-
ration of the outgoing waves, the evanescent wave mirror
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or grating provides interesting applications for quantum
measurement problems [20].

Our theoretical method is similarly well suited to
perform a nonperturbative analysis of the well-known
Kapitza-Dirac diKraction of an atomic beam traversing
a perpendicular standing light field. As it is a wave me-
chanical model the coupling to the vacuum field, which
would, however, reduce the diffraction and reflection per-
formance, is not allowed for. Using recently proposed
algorithms to simulate spontaneous emission with wave
functions [21], an extension of our description seems pos-
sible.

Our ansatz, using quasipotentials, is suitable to be ex-
tended by taking into account additional potentials of
surface interactions. Monitoring the reflection probabil-
ity of the atoms while varying the height of the light force
barrier might yield valuable information on the surface
potentials.
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APPENDIX A: NONADIABATIC TRANSITIONS
FOR THE ATOMIC REFLECTION

In this appendix we compute the wave function

(1ll(y), g2(y))' of the Hamilton operator H = HA + HNA
(2.29) for the reflection problem (Sec. IIC), now con-
taining the derivatives of the eigenvectors (2.20). Eval-
uation of HNA (2.30) shows that for strong reflection
HNA provides only a small perturbation. Thus the per-
turbed wave function (ql(y), q2(y))' is nearly identical to
the unperturbed eigenfunction of the adiabatic Hamilto-
nian H~. This unperturbed wave function is obtained as
the solution of (2.23) for a reflected ground-state wave
in the repulsive potential W2, thus reading (O, n2(y))'.
The solution (rll, g2) can be computed from this, using a
distorted-wave approximation.

We start from the integral equation which is
equivalent to the perturbed Schrodinger equation
T-~(nl(y) n2(y))' = (HA+ HNA)(~1(y) n2(y))'
obtained using Wronski's theorem and two linear inde-
pendent unperturbed solutions (n+l, n2+)' and (nl, n2)'
[22]

1
nl(y) = o+ —.

2i nl(y&)nl(y&)

n2(y) = n2(y)
1+-
2i

x((HNA)11'gl + (HNA)12'g2) dy 1

yl

(Al)

n2(y&)n2(y&)

n„(y)n+(y') = exp
p (y)p (y')

u

u-(r7) ~u
)

(A4)

The integral equation (A2) includes the bound-
ary condition of a pure incoming ground-state wave

(O, nz (y)) and additional outgoing waves. Because of
(r)1(y), 1l2(y)) being nearly equal to the unperturbed so-
lution (O, n2(y)), the distorted-wave approximation is

performed by substituting (rll(y), g2(y)) by (O, n2(y))
on the right-hand side of (A2). To this degree of the
approximation the wave function in the repulsive poten-
tial W2 remains unperturbed while the efFect of HNA is
to create a nonvanishing wave function in the attractive
potential Wi. Because of R'i meeting the condition for
applying the WKB approximation [Eq. (A4)] can be used
to give an explicit expression for gi. As we are interested
merely in the transition probability we supress the diag-
onal element (HNA)11. Thus

([HNA)21'gl + (HNA)22'92}' dy )

yl

(A2)
where y& ——min(y, y') and y&

——max(y, y'). The prod-
ucts n (y&)n+(y&) (n = 1, 2) are Green's functions.
They are define by the asymptotic behavior of the two
unperturbed solutions n+ (n = 1, 2)

a„(u) . -' ex' +~u„u), (A3)
pn

where p„= /2m[T „—W„(y)]. Thus in the WKB re-
gion the Green's functions of the integral equation reduce
to (n = 1, 2)

nl(y) =
~ ( )

+oo 1

V'P2(y')

u

p2(y) dy ((HNA)12(y')n2(y')) dy' (A5)

is the wave function in Wi. In y = 0 the wave func-
tion o,2 vanishes because of tunneling into the barrier
W2 whereas for y ~ oo the perturbation matrix element
HNA vanishes as the angle 0 of the eigenvector basis
approaches the constant value zero. According to the
boundary conditions of outgoing waves incorporated in
the Green's function, gi is an entirely incoming wave at
y = 0 and an entirely outgoing wave for y ~ oo. The

LtNA = (Ipl(o) ll 111(o)I' + llm Ipl (y) ll1ll (y) I') (A6)

The numerical evaluation of (A5) and (A6) is greatly

I

total outgoing current of gi can be evaluated as the sum
of the currents at y = 0 and for y + oo. Thus the to-
tal nonadiabatic loss LNA is given by the probability per
reflection
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simplified by the analytic expressions for the wave func-
tion n2 as well as for the exponential factors fp dy. WKB
expressions are used for the wave function n2 every-
where except a small region around the classical turning
point, where Airy functions are used. By the substitu-
tion z = exp (—y) the exponential factors fpdy get the
form

pi, ~dy = A(0)
2

~ Qd2+ z' —,dz

z

where g—:
&~0~

'" and d =—&~&~. The upper sign
2T~ y+ jeff

refers to the index 1 the lower to 2. Another substitution
r = v d + z leads to a standard integral formula [23]
which yields

JJ2

p1,2 dg =— n(0) & (gg + r —gg ~ d) l „f(gg + r —gg 6 d) ~4 g+r+ g~d ln g+d ln
4 (v'g + r + V'g + ")) 4 (v'g + r + v'g + d) 2,(„,)

(A7)

The integrand of (A5) turns out to be a rapid oscillating
function. For decreasing values of the nonadiabatic loss
LNp, + 10 the numerical evaluation of (A6) is increas-
ingly afFected by contributions of roundofF noise, trunca-
tion errors and dominantly by errors resulting from the
piecewise definition of the wave function. However, the
result for LN~ given in Fig. 3 represents a suitable upper
bound for the nonadiabatic loss.

APPENDIX B: COMPUTATION
OF THE OUTGOING DIFFRACTED WAVES

In this appendix the total wave function is constructed
to obtain the populations of the outgoing diKraction or-
ders. The physical predictions obtained from this con-
struction, which is presented in more detail in the follow-
ing, are discussed in Sec. IV.

The propagation of the atomic de Broglie wave is as-
sumed to be piecewise adiabatic, perturbed by nonadia-
batic transitions at the avoided crossings. Sections B1
and B2 are devoted to deriving the propagators Eqs.
(B3), (B4), and (B7) for both adiabatic and nonadia-
batic motion. We then want to unite all these elements
to construct transmission and reflection matrices T+,
R+ as well as transition matrices 8+ for the simulta-
neous propagation of the wave function in the potentials
W„. We divide the y axis from the asymptotic region
to the surface into intervals defined by suitably chosen
points yi, . . . , y~, . . . , yM [see Fig. 4(a)]. The point yM
is chosen in the asymptotic region, whereas the points
y~, . . . , yM p are the locations of those special avoided
crossings that connect the high-velocity regime with the
low-velocity regime. Our method requires the knowledge
of the total wave function

~+, (y) = c'(y y') ~+, (y') (B2)

where the upper index + refers to propagation in the
+y direction and y & y'. Semiclassically this propagator
reads

c,(y, y) = ' expp .(y')
s y/

u-. (u) du) (»)

f'+1 —p' ~pe+'& &
;,,+ (y c) =

l ~ ~.. .1,)l (B5)

where p = e i (+l and y = Re(cp). In Ref. [18] it is
shown that the complex quantity p can be obtained by
path integration in the complex plane,

The c, (y, y') obey the relation c, (y, y')c;(y', y) = 1. The
above propagators apply for intervals between avoided
crossings.

At avoided crossings we allow for nonadiabatic tran-
sitions. For the two possible directions of propagation
we introduce unitary matrices for the nonadiabatic tran-
sitions at an avoided crossing in y«(here y«denotes
the position of the minimum energy separation between
two potential curves)

( ~„+,(y«+b) l ( ~„;(y«~.) i
(yAc+, ))I

= s...~i(y«) l(~+ (y«~, ))l

(B4)

The upper signs refer to waves propagating in the +y
direction, the lower signs to waves going in the —y di-
rection. Here and in the following y + t. is used as an
abbreviation for the one-sided limit lim, a (y+ e) with
6 & 0. The transition matrix 8, ,+&

is given by

&+(y) = (~.+, (y), ~+„(y) ~.+, (y), ~.+, (y) " )' (Bl)

only at one end point per interval. The total mapping
of the incoming de Broglie wave to the outgoing waves is
given in Appendix 8 3.

AC
[p .+.(y) p. (y)] dy- (B6)

1. Semiclassical propagators
for the high-velocity regime

Following Eqs. (3.9) and (3.11) the relative amplitude
c...+i(y, y') for the propagation of a wave in W„,. from y'
to y is given by

where the path leads from the avoided crossing on the real
axis y~c to the intersection point Y, of the potentials W„,.
and W~,.+, [24]. Since the transition amplitudes are given
by the classical action integrated to and from the complex
transition point, the relation s, ,+i(y«) = [s,+,+i(y«)]
holds. We have verified numerically that the two-state
approximation is actually justified for all relevant narrow
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crossings, i.e. , those that cause transition probabilities
larger than a few percent.

2. Quantum-mechanical reflection
and transmission amplitudes
for the low-velocity regime

The above techniques cannot be applied for atoms
moving slowly in the two highest potentials because the
de Broglie wavelength will no longer be small compared
to the range of the avoided crossing and nonadiabatic
coupling will be important throughout the interval and
notably at the avoided crossing. For this situation we
therefore proceed to a numerical calculation of the trans-
mission and reflection coeKcients.

Generally the wave amplitudes in y depend linearly
on the amplitudes in y ~ and y +~. The wave ampli-
tudes o.„, in the uppermost potential are negligible in the
points y, because these points are energetically forbid-
den for atoms in the state n~. Thus we introduce for each
open interval (y, y +q) [see Fig. 5(a)] transmission and
reflection amplitudes t+(y, ym+q) and r+(y, ym+q) re-
lating only amplitudes in the potential npp with each
other, for both propagation directions along the y axis
[25] [for clearness the argument (y, y +q) of the t+ and
r+ is suppressed]

(r+t- ~+„(y ) l
q~.+„(y-+~)q q

t+ r- ~;„(y-+~)q

Though Eq. (B7) seems to involve the motion in the po-
tential W„» only, actually the reflection and transmission
amplitudes are strongly affected by the nonadiabatic cou-
pling to the asymptotically forbidden potential W„, par-
ticularly if resonances of quasibound states in W„, are
excited. To obtain these amplitudes we perform a nu-
merica1. integration of the Schrodinger equation for both
o.„, and o,„», conveniently carried out in a local diabatic
representation

dy2 (~ (II))

—&, +& (y) &(y) ~, (y)
&(y) —& + Db(y), (y)

(BS)

Here D b denote diabatic potential curves and C a cor-
responding coupling; their form has been fitted from the
adiabatic quasipotentials W„,„.As the amplitudes o.„,
and a» have to be expanded in forward and backward
propagating waves, Eq. (BS) yields a four-dimensional
first-order differential equation. The boundary condi-
tions have to take into account the behavior of o,„, and
a„„at the end points of the open interval (y, y +z):
while the amplitudes o, » consist of traveling waves, the
amplitudes o.„, are exponentially decaying in energeti-
cally forbidden regions. Prom the result of the integra-
tion we read off reflection and transmission amplitudes

for Eq. (B7).
Slightly more complicated is the situation in the in-

terval (yM q, yM) close to the asymptotic region: here
the potential W„, may be asympotically accessible. As
a consequence, instead of four elements as in Eq. (B7),
nine elements have to be determined, connecting n+, (yM)
and n„+„(yM) with o.„+„(yM q). These nine amplitudes
are again computed numerically from Eq. (BS). Ef on
the other hand W» as well as W„, are asymptotically
inaccessible, there is only one nonvanishing coeKcient
r+(yM q, yM) which can be obtained by a WKB treat-
ment for barrier reflection of n~+„(yM q).

3. Interference of reflected de Broglie waves

(ym + E) = T (ym) ym+y)A (ym+1 —&)

+R+(y, y +g)A+(y + ~),

where the reflection and transmission matrices will be
defined in the following as block diagonal matrices.

ReHection in the open interval (y, y +&) solely oc-
curs in the low-velocity regime. Therefore the reflec-
tion matrix B+ contains only the reflection amplitude
r+(y, ym+q) taken from (B7)

(00
Or+

& (y y +~)= (B10)

The transition matrix T+ for penetration through the

From the semiclassical scalar propagators c, (y, y') [Eq.
(B3)], the (2x2) transition matrices s, ,+& [Eq. (B4)], and
the transmission and reflection amplitudes t+, r+ [Eq.
(B7)] we will construct matrices T+, R+, S+ that allow
us to trace the simultaneous propagation of the atomic
de Broglie wave A+ [Eq. (Bl)] through the multichan-
nel potential. Each classical turning point, at best one
per interval (y, y +&), generates a reflected de Broglie
wave which interferes with all other reflected contribu-
tions. This interference bears some similarity to the prop-
agation of a light ray through a mirror formed by a pile
of dielectric layers. In our calculation we keep track of all
the amplitudes and propagate them back to the asymp-
totic region passing several avoided crossings and thus
populating other diffraction orders.

The total diffraction pattern is computed as follows.
First consider an open interval (y, y +~) and two in-
coming vectors A+(y + e) and A (y +q —e) [see Eq.
(Bl)] defined at the respective interval boundaries. The
resulting outgoing vectors A (y + e) and A+(y +q —e)
are related linearly to the incoming ones. As in scattering
theory we write [26]

&+(ym+1 &) = &+(ym ym+1)&+(ym + ~)

+& (ym, ym+i)& (ym+1 &)y
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open interval (ym, ym+i) is obtained in the following
block diagonal form

0 0

0 C+

A~"j+(y 6 e) = S+(y )A~"~+(y ~ t) . (B14)

It is given as a block matrix of 2 x 2 transition matrices
(B5) belonging to the interval boundary ym

& (ym, ym+i) = (B11)
S+(y ) =

2,3
(B15)

ci+1(ymr yAC) 9

) C+1(JAG, P +1))
(B12)

byThe reverse propagator o. is
~,„+r(y- y-+r)~,'„+r(y +i y-) = (td).

For the reason mentioned in [25] it is numerically un-
tractable to proceed by constructing a total translation
matrix that couples the vector at the surface A+(0)
to the outgoing (incoming) vector A+(yM). To facili-
tate the calculation, we therefore use a recursive calcula-
tion scheme which is motivated by the aforementioned
analogy with the multiple reBection of a light ray in
a pile of semireflective mirrors. A multichannel wave

ij+(y + t) penetrating through the open interval
(y, y +i) evolves into A" +(y +i —e). At the same
time it creates a new, reflected wave A~"~ (ym+ t) which
in turn propagates back through the interval (ym i, ym).
These two (penetrating and reflected) waves create fur-
ther scattered waves and so on, ad infinitum. We there-
fore substitute Eq. (B9) by a nonlocal recurrence rela-
tion, connecting the difFerent generations A~"t of reflected
waves in the multilayer potential system

(ym &) = T (ym —1& ym)A" +(ym —i + ~)

+& (ym»ym)A" '
(ym —t),

given

(B13)
A~"~-(ym+~) =T (ym, ym+i)A" (ym+i —&)

+a+(y, y „)A~" "+(y + )-
When connecting two open intervals (ym r, ym) and

(y, y +i) we additionally have to include a transition
matrix S+(ym) by

t+ stands for the transmission amplitude t+(ym, ym+i)
from Eq. (B7) in the low-velocity regime. The cr,+,+r
represent (2 x 2) matrices which act as propagators for
the interval (ym, ym+i) in the high-velocity regime. They
take account of adiabatic motion and nonadiabatie tran-
sitions at avoided crossings, which, by our definition of
the intervals (y, y +i), are located near the middle of
the interval (Fig. 4). Therefore the high-velocity propa-
gator s, ,+i(y, y +i) for the waves n„,. and n„,.+, which
are coupled by an avoided crossing in yAc is a product
of a WKB propagator (B3), a transition matrix at yp, c
(B5), and another WKB propagator

~...+r (ym, ym+i)+

Ci ym yAC

C'(y ) =) (A" (y ) + A"+'+(y ) ).
L=O

(B17)

Since y = 0 as well as the asymptotic region, y & yM
provide a drain for the total population in the interaction
zone, the multiply reflected contributions to the reflected
waves become rapidly insignificant after a few iteration
cycles and the total outgoing wave-function sum (B17)
converges geometrically to its final value.

To calculate the relative populations of the diffraction
orders we note that an experiment would measure the
particle current (probability current). This is given by
the probability current density j = z" (4VC ' —C"VC )
integrated over the surface of the detector. As the current
diverges for plane waves, we give the population p„of the
diffractio orders as the current of the outgoing orders
normalized to the incoming current

J~ Jo~t,~ ' dil

J~ gin drl (B18)

A suitable detector surface A, containing the whole in-
coming and outgoing flux (cf. Fig. 1), is the (x, z) plane
y = yM in the asymptotic region far from the mirror
surface. Evaluation of (B18) for this surface leads to

Using Eqs. (B9) and (B14) the wave-function vector
A+ can now be obtained by iteratively computing its
values in the points 0, y1 + e, . . . , yM 1 6 e, yM. The
iteration starts with an incoming zeroth-order wave in
y=yM

A~'j (yM) = ~i (yM) = bo, (B16)

This incoming wave corresponds to the incident atomic
beam impinging on the prism which is per definition a
pure zeroth diffraction order.

To obtain physically meaningful solutions we have
to take into account reasonable boundary conditions in
y = 0 and yM. As we assume that atoms reaching the
surface in the potentials W,. ( TV„„do not contribute
to coherent diffraction, no reflected waves are generated
in y = 0. In y = yM allowance is made for outgoing
waves in all open channels.

The total wave function in the asymptotic region is
given by summing over all amplitudes generated at iter-
ation steps [2l] (incoming) and [2l+ 1] (outgoing) in the
point yM
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