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Effects of nonuniform rejective boundaries and line competition on radiation trapping
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'We develop a radiation diffusion equation for an infinite slab geometry where the slab may have
different reflectivities on either surface, and for conditions where complete frequency redistribution is
valid. Additionally we consider the effect of two competing trapped transitions. Specifically we consider
the emission from the thallium 7 S&&2 state to either the 6 P3/2 (metastable state) at 535 nm or 6 Pl~2
(ground state) at 378 nm. High densities of the long-lived metastable level can be produced in a number
of ways. The escape factors (which are simply related to the decay rates) and excited-atom spatial
profiles are calculated for a variety of conditions for the first several natural modes of the system. The
spatial modes for this system are asymmetric. The asymmetry can vary dramatically with only small
changes in either of the two lower-state densities. The correct description of the spatial modes is critical
in order to determine the overall excited-atom profile accurately. For the simpler systems (i.e., a single
transition and nonreflective boundaries) usually considered the mode profiles do not change appreciably
as the optical depth is changed (given conditions of high optical depth and a single-line broadening
mechanism). The fundamental mode decay rate is shown for a fixed metastable-state density as a func-
tion of the ground-state density. The dependence of the fundamental mode escape factor for the first res-
onance transition on the optical depth (or ground-state density) is in general more complicated than for
the case of a single trapped transition. For conditions considered here a simple power rule cannot be
used to scale the decay rates as a function of line-center optical depth. Also shown is the fundamental
mode escape factor as a function of buffer gas pressure for fixed ground- and metastable-state densities.
The calculations presented here allow us to model the narrow-bandwidth thallium fluorescence filter.
This filter will be discussed in more detail in a separate paper. A thorough review of atomic resonance
filters was done by Gelbwachs [IEEE J. Quantum Electron. 24, 1266 (1988)]. We have considered a
much broader range of ground- and metastable-state densities than would be practical for efficient filter
operation, This is done to illustrate several aspects of the radiation trapping processes.

PACS number(s): 32.50.+d, 32.90.+a

I. INTRODUCTION

The transport of resonance radiation has been studied
in a number of experimental and theoretical papers
[1—23]. A variety of techniques may be used to describe
the diffusion of resonance radiation in systems of increas-
ing complexity. The earlier treatments of Milne [1] used
an average absorption and emission coefficient for the
gas. This type of solution has been shown to be valid for
only a limited set of conditions at low optical depth [21].
Later developments by Holstein [2,3] showed that a more
complete description was given by his radiation diff'usion
equations for conditions where complete frequency redis-
tribution for the reemitted photon is a valid assumption.
More recently, several papers have been written that
derive Holstein-like radiation diffusion equations that in-
clude the effects of incomplete frequency redistribution
[10,11,14—16].

The various radiation diffusion treatments discussed
above allow solutions to be obtained for a wide variety of
conditions. Holstein derived solutions for conditions of
high optical depth, ideal geometry, complete frequency
redistribution, and a single line-broadening mechanism
[2,3]. Holstein s simple analytic solutions [2,3] are partic-
ularly easy to use, and have been shown to predict decay
rates that are in good agreement with experimentally
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measured decay rates for the appropriate set of condi-
tions. Several more complicated numerical calculations
have been performed in order to examine conditions of
incomplete frequency redistribution and low to moderate
optical depths [10,11,14,15,20]. Additionally, more com-
plicated cell boundary conditions have been considered.
Solutions for conditions where the cell boundaries are
uniformly partially reflective have been examined numer-
ically [5,7,8].

We derive a Holstein-like equation for conditions
where the refiectivity on the cell boundary (we consider
only the infinite slab geometry here) is nonuniform both
spatially and in frequency (wavelength). We also discuss
numerical solutions to a specific case for this geometry
which includes the effects of two trapped transitions.
The specific case we consider is for an infinite slab
geometry with a diff'erent reAectivity on each of the two
walls. The problem can then be reduced to a one-
dimensional problem spatially. The techniques may be
extended to more complicated geometries. However, this
may lead to intractable numerical problems. Additional-
ly, we consider radiation trapping under conditions of
line competition (i.e., more than one trapped transition
depletes the excited state via radiation). Complete fre-
quency redistribution is assumed to be valid. In princi-
ple, partial frequency redistribution can be accounted for
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as described in Refs. [10,11,14—16], but the solutions to
the resulting radiation diffusion equation are expected to
be extremely complicated when coupled with the nonuni-
form reAectivities and multiple trapped transitions. We
note that typically the cells are considered to have 0%
reAectivity at the boundaries. Even a uniform reAectivity
applied to all surfaces of a cell with ideal geometry makes
the radiation diffusion problem quite complicated [5,7,8].
The infinite slab geometry considered here has only the
two surfaces; the other surfaces which must exist in real
cells can be made 100% reAecting so that the laboratory
cell approximates an infinite slab cell.

II. THEORY

A. General development

The present derivation follows much of the treatment
of the radiation diffusion problem developed by Wein-
stein [5]. Weinstein derived a "generalized-Holstein"
equation to describe radiation diffusion under conditions
of uniformly reAective boundaries. Weinstein considered
spherical, cylindrical, and infinite slab geometries. We
consider the infinite slab geometry only. The present dis-
cussion will extend Weinstein s work by deriving a radia-
tion diffusion equation for a cell with two different
reAectivi. ties on either side of an infinite slab geometry
(see Fig. 1). In principle, the reAectivity can vary in a

Fluorescence Filter Cell Geometry

z=-L/2
LENS

535 nm 378 nm
Flux out

535 nm
Flux out

R(z, k) =Refiectivity

R(-L/2, X)
R(-L/2, 535)=0 %
R (-L/2, 378)=1 00%

R(+L/2, k)
R(+L/2, 535)=100 %
R(+L/2, 378)=0%

FIG. 1. The cell shown here applies the thallium fluorescence
filter which emits light at both 535 and 378 nm. Four
reflectivities are required to describe the cell for a general set of
reflectivities. The results shown here are for the special case
where at —L /2 we have R ( —L /2, 535 nm) =0 and
R ( —L/2, 378 nm) = 100%, and on the +L/2 wall we have con-
verse conditions with R (+L/2, 378 nm) =0 and R (+L/2, 535
nm) = 100%%uo. For the single-line case, simply omit either transi-
tion, and the cell is described by only two reflectivities. Like-
wise, for n trapped transitions the cell is described by 2n
reflectivities. The lens and photomultiplier tube (PMT)
represent a simplified detection system.

more complicated manner, but the problem may then be
intractable for all practical purposes. Complete frequen-
cy redistribution is also assumed in this derivation. That
is, the emission profile is assumed to be the same as the
absorption line profile. The additional complication of
line competition between two or more trapped transitions
depleting the same excited state will be discussed later in
this section. Note that the problem must consider 2n
different reAectivities when n trapped transitions are con-
sidered. For the case to be discussed later in this paper,
we consider only two such transitions; thus, Fig. 1 shows
four different reQectivities (the reflectivity is considered
constant over the narrow frequency range about each line
where emission occurs).

We derive the kernel [G (r, r')] for a Holstein-like radi-
ation diffusion equation in the following form:

Bn(r, t) = —Azn(r, t)+A/ G(r, r')n(r, t)d r'I 3

fjt

+ dn(r, t)
dt

Here,

G(r, r') =Go(r, r')+G/t(r, r'),
Go(r, r') is the standard Holstein kernel to be given below
[2,3], and G/t (r, r') is the contribution due to the
rejective boundaries to be derived here. Since the stan-
dard Holstein kernel is discussed in many references
[2,3,5] we focus on the G/t(r, r') term. G(r, r')d r' is the
probability that a photon emitted in the volume element
about r' is absorbed at r. A & represents the spontaneous
emission rate for the transition being considered, n (r, t) is
the excited-atom density, and [dn (r, t)/dt], . is a source
term. The source term refers to the creation of "the ex-
cited state" by any process (for the case we consider this
is the 7S state in thallium). We consider cases where the
source term is constant in time. Equation (1) is given for
a single trapped transition, and the extension to several
trapped transitions will be made later in this paper. Since
we consider the effects of several trapped transitions, we
note that the only state to be considered "the excited
state" is that described by n (r, t). Since emission may be
to any number of lower states, all but one of which (the
ground state) are in fact also excited states, we will try to
maintain a clear distinction. The notation used by Wein-
stein is followed here as much as possible. We note that
transit-time effects are negligible here due to the small
size of the vapor cells considered. The actual results to
be presented here are for a slab geometry explicitly. For
this problem, Eq. (1) can be expressed in terms of one
spatial variable, usually z, rather than r. That is, for the
slab geometry with the boundary conditions to be used
here, Eq. (1) can be integrated over both x' and y'. How-
ever, we present the theory in terms of G(r, r') for com-
pleteness. When written in terms of z only, G(r, r') is
usually replaced by K (z, z'). lC (z, z') simply incorporates
the integrals over the x' and y' coordinates in Eq. (1).

For conditions of complete frequency redistribution,
the following Boltzmann photon equation can be derived
[5,9,16]:
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co.grad, [f(r, co, v)]+ A (v)f (r, co, v) =
47TKc 3 g

function f(r, r0, v) is then given in terms of the flux func-
tion F(rI„v) and the reflectivity by

R (rb )F(rb v)
f(rb, re, v)= m. nb (0 .

where f (r, co, v)d rd rodv is the number of resonance
photons in the volume element about r in the frequency
interval about v traveling in the direction co. We note
that the time dependence of f (r, ro, v) simply follows the
exited-form distribution n (r, t) and will not be explicitly
written throughout this paper. The absorption coefficient
at frequency v is k(v), and a is the line normalization
[that is, f k(v)dv=a].

Weinstein wrote out the following equation of con-
tinuity which is valid for the conditions discussed in this
paper:

dn(r, t) = —A &n ( r, t ) + A & ck ( v )f ( r, co, v )d v d co
2

fjt

R(r'b )F(r'b, v)f (r, co, v)= exp[ —k(v) ~r
—r'„~ ]

lr —r'b
I

+ n r —~p, t
4~Kc 0

Xexp[ —k(v)p]dp, (6)

where r& is the boundary point in the direction co from
the point r such that

Weinstein then wrote out the intensity function as the
solution to the photon Boltzmann equation [Eq. (2)] for
the boundary conditions of [Eq. (5)]:

dn (r, t)
dt

(3)
(r —rb )

CO— (7)

(4)

For the Aux direction into the cell from the surface at rb
a similar expression can be written, but with co.nb (0.
For this integral, the intensity function f (r, co, v) can be
pulled out of the integral, since for a diffuse reflector the
reAected intensity is uniform throughout the solid angle.
Since the reAectivity, which is known, gives the ratio of
reAected to incident flux at the boundary, the intensity

We refer the reader to Weinstein's Eqs. (1)—(6) for a dis-
cussion of Eqs. (2) and (3) shown above. The solution we
week is the function n (r, t). In order to solve Eqs. (2) and
(3), we must find a relation between the function
f (r, co, v) (which is related to the intensity [16]) and the
excited-atom profile. The absorption profile,
coefficients, and geometry are assumed to be known.

Weinstein wrote out the following boundary conditions
for an enclosure as viewed from the inside with a diffuse
reflectivity R (rb). The enclosure must be nonreentrant.
The diffuse reAectivity assumption simplifies the bound-
ary conditions significantly and is also a good approxima-
tion to specular reAectivity for conditions of high or low
optical depths. For conditions of high optical depth, the
photon is scattered again after reflection very near the
surface; thus the wall appears as a diffuse reAector to
most of the cell. For conditions of low optical depth, the
angular distribution of reAected light is nearly uniform
since the probability of absorption is low regardless of
direction. The difference in the results for these two
types of boundary conditions in the moderate optical
depth regime is expected to be small since the transition
from high to low optical depth regions occurs over a nar-
row range of optical depth [21].

The reAection is assumed to take place without redis-
tribution of the frequency. Then if nb is an outward nor-
mal unit vector at a boundary point rb, the photon Aux

cF(rb, v) at the surface is determined by (the flux is the
number of photons per unit area with frequency v, per
second, incident upon the surface at the point rb)

F(rb v) . co nbf(rb co, v)d a) .
co.nb )0

This solution shown in Eq. (6) contains two terms: The
first accounts for the wall reAectivities and the second is
the standard Holstein term accounting for the diffusion
throughout the volume of vapor. Note that the nature of
R (rb ) is still completely general. [The wavelength
dependence has been left out of R (rb ) at this point since
we only need to consider a single transition for this part
of the derivation. The reAectivity is assumed to be con-
stant over the narrow frequency range of a single transi-
tion. The generalization to several trapped transitions
will be discussed later. For that case we consider a
different reflectivity for each transition R (rb, A, ). ] Equa-
tion (6) describes the photon distribution (for a given fre-
quency photon traveling in a given direction) at a point r
in terms of the Aux incident on the boundary at the relat-
ed boundary point (the boundary point at which a
reflected photon originated) and the excited-atom distri-
bution along the line from the boundary point rI, to r.
The intensity function f (r, ro, v) depends on two un-
known functions F(rI„v) and n (r, t). In order to solve
the problem using a Holstein-like equation, the flux in-
cident on the boundary must be written in terms of the
excited-atom distribution n (r, t ). Equation (6) can be
transformed so that the left-hand side is written in terms
of the flux as follows. Following Weinstein's approach
[5], we set r=r„ in Eqs. (6) and (7), then multiply by
co-nb, and integrate over all solid angles with ~.nb &0.
The solid angle can be represented as an element of sur-
face area at the boundary:

nb is outward normal at the boundary point rb. The re-
sulting integral equation for F (rb, v) is then

F(rb, v) =F0(r„,v)+ f I(rb, r,' )R (r', )F(r,', v)dSI', . (9)

where I(rI„rb ) and Fo(rb, v) are defined as follows:
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lni, (ri, r—
l, ) lni, (ri, r—

i, )lI (r~, rt ) = exp[ —k(v) r„—ri, l ],air„—r„'l'

Aik(v) b
—r'b

Fo(ri„v) = f r0 n&d ro f n(r& —cop, t)exp[ —k(v)p]dp .
47TKC 0

(10)

r'=p dp d

Then we have

(13)

Fo(ri„v) = Aqk(v) fp(r&, r'„)n (r', t)d r',
KC

(14)

where p(rb, r) is given by

ln„(ri, —r)l
p(r&, r)= exp[ —k(v)lr& —rl] . (15)

4vrlr~ —rl3

Equation (15) represents the probability per unit bound-
ary area that a photon of frequency v emitted at r reaches
the boundary point rb directly without reAection.

B. Infinite s1ab geometry with diferent
surface reAectivities

The derivation up to this point is very general. In prin-
ciple, complicated cell geometries, absorption profiles, or

I

The surface integral in Eq. (9) is over the entire cell
boundary. (Note that in an ideal infinite slab geometry
the cell has only two surfaces bounding the vapor. The
other surfaces which must exist in a real cell do not enter
into the radiation diffusion problem. If these surfaces are
made 100% reflecting at all relevant wavelengths, then
the real cell is a good approximation to an infinite slab
cell. ) Equation (9) represents the flux of photons incident
on the boundary at rb with frequency v. The first term in
Eq. (9) represents the Aux that would be present for that
cell with nonreflective boundaries (this represents the Aux
for the case considered by Holstein). The second term in
Eq. (9) accounts for the contribution due to rejections. It
is now convenient to transform Eq. (11) into a volume in-
tegral with the substitution

r' = rb —
COP (12)

and writing the volume element as

reAectivity can be handled. Now we apply conditions
specific to an infinite slab geometry with different
reAectivities on either side. On either boundary surface
of an infinite slab, the rellectivity is constant (see Fig. 1);
R+ at +L/2 and R at —L/2, where L is the full slab
thickness. (The + and — subscripts will refer
throughout this paper to the evaluation of functions at
z =+L/2, respectively, or to integrations over the planes
located at these positions. ) This represents a situation
which is still not too complicated. We note that for con-
ditions where there are two or more well-isolated trapped
transition frequencies, the reAectivity may vary with fre-
quency as well as position. This effect can be incorporat-
ed into the solution to the trapping problem quite easily.

Due to the introduction of nonuniform reAectivity on
the boundary of the vapor cell (i.e., there is a different
reAectivity on either of the two surfaces), the treatment of
the trapping problem no longer parallels that of Wein-
stein. We also note here that Weinstein made the general
assumption that the Aux is uniform upon the surface of
the enclosure [5]. This is only true if the source term [see
Eq. (3)] has the same symmetry as the enclosure. This
may not in general be true. Because of this assumption,
the validity of Weinstein s solution when applied to sys-
tems with uniform reAectivity which involve complicated
source term (or pump) geometries needs to be examined.
For example, Weinstein's assumption is not valid for
Auorescence filters since the source term is clearly not
symmetric. Weinstein considered the case where the
source term only depends on internal processes, and thus
has the symmetry of the cell. Weinstein's treatment is
valid (for cells with uniform reAectivity) in the late time
following a pulsed excitation regardless of the pump
geometry, since in the late time the symmetric fundamen-
tal mode describes the spatial profile of excited atoms.

The Qux [Eq. (9)] is written with the integration over
either boundary surface explicitly separated:

F(r„,v)=F0(ri„v)+ f 1(rq, rt + )R+F(r&+,v)dS&+ f I(ri„r& )R F(r&,v)dSi',
+L/2 surface —L/2 surface

(16)

The two integrals are over the boundary surfaces at
z =+L/2 and L/2, respectively (see F—ig. 1). Due to
the symmetry of the cell, the Aux at either surface de-
pends only on the z component of rb. Thus the Aux at ei-
ther wall is a constant along that surface and can be
pulled out of the integral in Eq. (16). We will denote the
Aux on either surface as F+ at +L/2, respectively (like-
wise for Fo). The flux on either surface can then be writ-
ten explicitly as

F0+ +R ILF0+F-=: 21 —ILR+ R+

where IL is given by

IL= I rb+, rb+ de
=2L k(v) E3(k(v)L ),

where E3(k(v)L ) is the third-order exponential function
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given by

E„(x)=f dt (19)

for n =3.
The Fp term in Eqs. (16}and (17) represents the flux for

the simple Holstein case where the reflectivity is Ofo on
both sides of the cell. Even in a cell with this symmetry,
the flux incident on the two surfaces is not necessarily
equal. This depends on both the spatial profile of the
source term and overall distribution of excited atoms
n (z, t) in Eq. (1).

Since the functions Fo+ and Fo depend on the un-
known excited-atom density function n (r, t ), we have ac-
complished the goal of relating the two unknown func-
tions involved in this problem. That is, the intensity
function f (r, to, v) in Eq. (6) can be written in terms of
the unknown excited-atom density.

The flux expressions can be reduced for the case con-
sidered here by integrating over the plane parallel to the
slab. Designating z as the direction across the slab (see

where a+ is given by

(20)

a+ =(z'+L/2) (21)

Using Eqs. (6), (17), and (20), we are able to write the in-
tensity function in terms of the excited-atom profile
n (z, t) The .result can then be substituted into the con-
tinuity equation [Eq. (3)]. Starting with the continuity
equation, we substitute Eq. (6) into Eq. (3) and then con-
vert the integral over solid angle to a surface integral:

Fig. 1), the x' and y' integrations involved in the flux ex-
pressions can be carried out. Due to the symmetry of the
problem, the excited-atom profile depends only on the z
component (we assume the source term is constant in x'
and y'). Performing the integrations in Eq. (14) over x'
and y', the flux expressions are given by

k(v) Az f n(z', t)+a+ Ez(k(v)+a, )dz',
2CK

Bn(r, t) c ~nb'(r rb }~=—f k(v)dv fR(rb)F(rb, v)exp[ —k(v)~r rb~] —
3 dSb

r —rb

+A& fGp(r, r')n(r')d r'+
dt

—Azn(r, t) .

'T, = A & f dz'n (z')KR(z, z'), (23a)

KR(z, z') = f d v ( T+ + T ), (23b)
k(v)

a(1 —R+R IL )

where T+ and T are given by

T+ =R++a+E~(k(v)+a+ )

X [Qa'+ E2(k(v)+a'~ )

+R IL QapE2(k(v)+a' )I (23c)

Since only the first term on the right-hand side in Eq. (22)
is new to the radiation diffusion problem, we consider
only that term [to be labeled term 1 ( V'&)]. To put term 1

in the same form as the second term (the Holstein term),
one needs only to substitute the full expression for the
flux F given in Eqs. (17)—(21). For the slab geometry we
present results with the x' and y' coordinates explicitly
integrated, as discussed above.

Term 1 of Eq. (22) can be reduced by first separating
the two surface integrals at +L/2. The surface integrals
are performed as in Eq. (18) above. These integrations in-
troduce several exponential integrals into the equation.
Also note that the reflectivity and flux are spatial con-
stants on either surface (see Fig. 1). The following result
is obtained after substituting from Eqs. (17), (18), and
(20):

T =R Qa E2(k(v)+a )

X [Qa' E2(k(v)+a' )

+R+I„L+a+E2(k(v)+a+ )I . (23d)

Equation (23b) represents the part of the kernel to the ra-
diation diffusion problem which is due to the reflective
boundaries KR(z, z'), as mentioned after Eq. (1). The cor-
responding Kp(z, z') term is given below for complete-
ness:

Xp(z, z')= f dv E( (k)+va )p,
k (v)

2K
(24)

ap=(z —z') (24a)

Equations (23) and (24) combined give
IC (z z ) =Kp +Iong . Thus we have a complete description
of the radiation diffusion equation for an infinite slab
geometry with diffusely reflecting sides with different
reflectivities, for conditions of complete frequency redis-
tribution.

In principle, more complicated boundary reflectivity
functions can be dealt with. However, the derivation of
the appropriate flux functions for a general set of condi-
tions presents a challenging numerical problem. One
method of numerical solution to the case we have con-
sidered will be discussed below.
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C. Line competition eBects

Thallium(205) Energy Levels

1/2 Hz
F=1

F=O

6 PW2
0.53 GHz

F=2

We now briefly consider the additional complication of
line competition, where two or more trapped transitions
deplete the excited state. The calculations to be present-
ed below apply to conditions where the atomic vapor has
trapped transitions and is enclosed in a cell appropriate
to the discussion given above (see Fig. 1). We discuss the
thallium vapor system for the present set of calculations.
This system is being examined as a narrow-bandwidth
fluorescence filter. The relevant energy levels are shown
in Fig. 2. In our thallium atomic resonance fluorescence
filter the metastable 6 P3/p state is populated by a cw
laser at 1.283 pm. In order for the filter to have high
conversion eKciency, we must require that the 6 P3/p
density be maintained at a significant fraction of the total
atom density. Our calculations are not restricted to this
condition and cover a broad range of densities for both
the ground and metastable states. For conditions which
are practical to filter operation, where the 6 P»z-7 S, /z
transition at 378 nm is optically thick, the transition at
535 nm is also optically thick, and thus trapped. For the
purpose of the present discussion it is assumed that such
conditions are achievable in the vapor. Additionally, the
metastable-state density is assumed to be uniform
throughout the cell. This is a realistic assumption in our
case sine the 1.283-pm transition is very weak. The laser
at 1.283 pm is uniform in intensity as it passes through
the vapor. We note that a nonuniform metastable-state
(or ground-state) density can be dealt with in principle.
The optical depth for a photon going from r to r' must be
calculated explicitly. This will require much more com-
puter time. For a uniform density profile the optical
depth is proportional to the path length regardless of

dn (z, t)
dt

(25)

For each term, K(z, z') differs only in the range of the
frequency integral in Eqs. (23) and (24), and the frequency
dependence in the reflectivity. The above equation has
been written for the one-dimensional case we consider
here, but is also a valid extension for three dimensions:
simply replace z with r and K with G. It is clear that Eq.
(25) can be generalized to account for any number of
transitions from the excited state.

An error can occur if one assumes that the trapped
lifetime of the excitation for either transition can be han-
dled independently. For example, given a cell which ap-
proximates an infinite slab geometry with nonreflective
surfaces, one might be tempted to use the simple closed-
form Holstein expressions [2,3]. Even in this case (with
nonreAecting walls), the Holstein solutions may not be
valid. Each of the two transitions leads to a different
description for the excited-state profile (due to different
line shapes, densities of the lower states, and dominant
line-broadening mechanisms). There is, however, only a
single excited state. The overall or coupled excited-state
profile must incorporate the effect of emission and ab-
sorption on all of the transitions. Failure to properly
consider the effect of all transitions on the excited-state
profile can lead to large errors in predicting the decay
rate of the excitation, or the ratio of emission of any two
transitions. Proper consideration of this effect is even
more important when using a cell with reflective boun-
daries which are different for each of the transitions (such
as for the case we consider; see Fig. 1). For this case the
excited-state profiles can change dramatically given only
a small change in the absorbing state densities.

D. Numerical solution

where in the cell a photon is emitted or absorbed.
The incorporation of two isolated trapped transitions

can be handled with only minor modifications to the radi-
ation diffusion equation. The following expression is val-
id for the present case:

Bn (z, t)
A37sn (z t) A535n (z t)

Bt

+ 4378 f dz It37s(z z )n (z t)

+ 3535 f dz'K535(z, z')n(z', t)

W378 nm s ~1283 nm The radiation diffusion equation as shown in Eq. (25)
along with the kernel derived here in Eqs. (23) and (24)
can be solved by first using the following mode expan-
sion:

2
6 P1/2 23.31 GHz

F=O

FIG. 2. The thallium-205-isotope energy levels including
hyperfine structure due to coupling to the nuclear spin. The
transitions at 535 and 378 nm are electric dipole allowed. The
transition at 1.283 mm is electric dipole forbidden but is mag-
netic dipole allowed.

n (z, t) = g C n (z)exp( 13 t) . — (26)

A, n (z, )= QIC(z, , z,')n (z,')b,zj,
J

(27)

Substituting this into Eq. (25) and rewriting the integral
as a summation leads to the following eigenvalue equa-
tion:
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with and

A 37s 37s , j 535 535
K(z, ,z') =

378 535
(27a)

R ( L—/2, 378 nm) = 100%,

and on the +L /2 wall we have converse conditions with

The kernel has been replaced by the appropriate multiple
transition kernel which corresponds to Eq. (25). The spa-
tial modes n (zj'), correspond to the eigenvector for the
mode a, and A, to the eigenvalue of Eq. (27). The escape
factor is typically more convenient to describe the decay
of excitation than the eigenvalue. Throughout the
remainder of the paper we will refer primarily to the es-
cape factor when discussing the decay of a given mode.
The escape factor is simply related to the eigenvalues or
decay rates:

a

378 535
(28)

The integral in Eq. (25) over z' has been expressed as a
sum. The escape factor g is related to the eigenvalues

and used in the same manner as introduced by Hol-
stein [2,3]. The decay rate for the mode a is P; g is the
escape factor which ranges from 1 (for optically thin con-
ditions where there is no trapping) to -0 (for conditions
of high optical depth). For the fundamental mode,
(g, )

' roughly represents the average number of absorp-
tions occurring before a photon escapes from the cell.
The eigenvectors represent the distribution of excited-
state atoms across the cell for the given mode.

III. RESULTS AND DISCUSSION

R ( L /2, 535nm) =0—

The calculations to be presented here represent the ini-
tial steps toward developing a model for a narrow-
bandwidth thallium Auorescence atomic resonance filter.
In order to understand the properties of this filter as a
function of buffer gas pressure and ground-state and
metastable-state densities; the radiation trapping problem
must be well understood. In this section we present some
of the calculated decay rates and the excited- (7S) state
atom profiles for this system. Further details, such as the
efficiency of the filter, will be presented in another paper
devoted to narrow band atomic resonance filters in thalli-
um. We note here that in general the efficiency is not
simply related to the decay rates. To determine the
efficiency, one must include the contribution of enough
modes [as given in Eq. (26)] to build up the excited-state
pump profile (or source term as described above). Then
the contribution of each mode must be integrated to give
the resulting Aux of 378-nm light incident on the surface
where the light is collected.

The calculations are done for thallium vapor contained
in a cell which approximates an infinite slab geometry
(the surfaces parallel to z are considered to be 100%
reflecting at all relevant frequencies). The sidewalls (per-
pendicular to z) where escape occurs are described by
four different reflectivities: for each surface and each
transition (Fig. 1). For the present calculations the—L /2 wall of the slab has

R (+L /2, 378 nm) =0

and

R ( +L /2, 535 nm ) = 100%%uo

We consider a range of optical depths relevant to the
filter operation. In addition, we consider much higher
and lower optical depths than are practical for high-
efficiency filter operation in order to examine the effects
of radiation trapping in this system.

A Voigt function is used to model the line shape at a
temperature of 700 K. The hyperfine structure due to the
coupling with nuclear spin is taken into account [24,25].
One must take care to give the appropriate weighting to
the transitions between the hyperfine components.
Theoretical selection rules and intensity rules were used
from Ref. [26]. The calculations are done for only the
more abundant 205 isotope. The inclusion of both iso-
topes would require a more complicated treatment due to
the effects of incomplete frequency redistribution
[10,11,14—16]. Note that Doppler broadening tends to
obscure the separation in components which arise from
the splitting in the metastable level. This splitting is on
the order of 1 GHz, as is the Doppler width.

We have considered the effect of buffer gas (argon) in
the calculations to ensure that complete frequency redis-
tribution is always a valid assumption (for a single com-
ponent line shape). References [ll] and [12] discuss in
detail the conditions for which complete frequency redis-
tribution is a valid assumption. Additionally, some
amount of buffer gas is necessary to reduce wall quench-
ing of the metastable 6P3/p state. The buffer gas in-
creases the time it takes for thallium atoms to reach the
wall. This leads to a long metastable-state lifetime and
thus reduces the power needed at 1.283 pm to maintain
the required metastable densities for high-transmission
filter operation. The foreign gas broadening rates are
taken from Refs. [27] and [28] and scaled to the appropri-
ate temperature (700 K is used here). The foreign gas
broadening rate coefficients are

k, '(535 nm)=5. 83X10 cm s

k, '(378 nm)=7. 01X10 cm s

The self-broadening rate for the 378-nm line is taken
from Ref. [29]:

k, '(378 nm) = 1.076 X 10 cm s

Since the broadening occurs in the upper level, the self-
broadening rate is assumed to be the same for both the
378- and 535-nm transitions. The full widths of the lines
are given by adding the self-broadening contribution to
the collisional and natural widths. Note that for the con-
ditions considered here, the self-broadening contribution
will usually be small. The absorption profiles are shown
in Fig. 3 for both lines given conditions of 5-Torr argon
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25—
378 nm

15—

and a density of 2.0X10' cm for each of the two ab-
sorbing levels (the optical depth for the full slab thickness
is the function plotted, with a full slab thickness of
L =10 cm).

The eigenvalue problem in Eqs. (27) and (28) has been
solved on a Cray X-MP/216 computer. The excited-state
density is evaluated at 150 positions throughout the slab.
This leads to a 150X150 matrix. First, the 22500 E-
matrix elements are calculated using Eq. (23)—(28). The
integrations in x' and y' have already been carried out.
The matrix is obviously symmetric (i.e., the probability
for a photon emitted at z and being absorbed in the strip
around z' is equal to the probability of emission at z' with
absorption in the strip around z). The eigenvalues A, and
eigenvectors n are then found using IMSL matrix rou-
tines. In principle, a set of these calculations can be done
on a reasonably fast personal computer in a couple of
days given appropriate matrix-solving routines (this is a
rough estimate). However, the 64-bit numbers used by
the Cray yield higher accuracy which may be necessary
in large matrix calculations.

The eigenvalues (X ) are related to the decay rates (P )

and escape factors (g ) as shown in Eq. (28). We label
the fundamental mode as the first mode; this is the
slowest decaying mode. Thus in the late time following a
pulsed excitation, the fundamental mode describes the
excited-atom profile and decay rate. The higher modes
decay successively faster. The matrix routines can pro-
duce all 150 modes and corresponding decay rates. How-
ever, the higher modes here cannot be expected to be well
defined or have accurate decay rates since they oscillate
rapidly and are only sampled at 150 points. The first 30
or so modes are defined well enough to be reasonably ac-
curate. The convergence of the escape factor correspond-
ing to these modes was examined as the number of matrix
elements was increased and is better than 2% for the
highest modes to be used and about 0.1% for the funda-
mental mode.

We show results for the escape factor of the fundamen-
tal mode in Fig. 4 as a function of the 378-nm line-center
optical depth (the optical depth is for a single pass
through the full slab thickness and is only considered as a
plotting parameter). The optical depth on the transition
from the metastable level at 535 nm is held constant. The
calculations are done for 5 Torr of argon buffer gas, and
the metastable-state (6 Ps&2 ) density fixed at 2 X 10"
cm, which corresponds to a Doppler line-center optical
depth of 10.115 cm ' (this is koL, where L =10 cm and
ko has the usual meaning as given in Ref. [30]). Note
that this corresponds to an actual maximum optical
depth of 6.117 cm, since the maximum absorption is
reduced by the hyperfine structure as well as pressure
broadening. The length of the slab is 10 cm. Calcula-
tions are presented for ground-state densities which range
from 3.0X 10 to 2.0X 10' cm . The conditions where
the metastable-state density is greater than the ground-
state density are not realistic for our proposed pump
scheme, but still illustrate some interesting trapping re-
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FIG. 3. (a) Thallium 378-nm line shape. The optical depth
for a single pass across a cell 10 crn in length is shown as a func-
tion of frequency. The ground-state density is 2.0X 10' cm
and argon pressure is 5 Torr. (b) Thallium 535-nm line shape;
same density and argon pressure as for the 378-nm line.
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FIG. 4. Fundamental mode escape factor [related to decay
rates by Eq. (28)] for a fixed metastable-state density at
2.0X10" cm as a function of 378-nm line-center optical
depth. The buffer gas is fixed at 5 Torr of argon for both lines.
The arrow at the left marks the escape factor corresponding to
the 378-nm branching ratio [i.e., A373/( A535+ A375 )].
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suits. We note that it may be possible top achieve these
inversion conditions using other pump schemes [31—33].

The dependence of the fundamental mode escape fac-
tor on optical depth is very different than for simpler sys-
tems where there is only a single radiating transition. In
Fig. 4 we see that the escape factor is bounded at both
low and high optical depths. For low optical depth, the
optically thin line at 378 nm is emitted without any trap-
ping. Here, the escape factor approaches a value for the
corresponding decay rate which is slightly faster than the
natural decay rate for the 378-nm transition. The escape
factor due only to emission on an untrapped 378-nm line
is 0.47, or simply the branching ratio. The fastest escape
factor exceeds this in Fig. 4 since there is also some emis-
sion on the 535-nm line. Much of the emission occurring
at 535 nm is reabsorbed and then has a high probability
of being reemitted at 378 nm, where escape occurs. For
high optical depths on the 378-nm line, the escape factor
is decreased by the trapping on the 378-nm line, but is
limited by escape occurring on the 535-nm line which
now has the lower optical depth. The escape factor is
bounded by the emission from whichever line has a lower
optical depth. The behavior of the escape factor at inter-
mediate optical depths is complicated and will depend on
the specific system as well as the specific optical depth for
each line.

The type of dependence of the fundamental mode es-
cape factor shown in Fig. 4 is expected for a system
which has two radiating transitions (the faster decay
mechanism dominates the trapping processes and may
also dominate the mode structure). The higher modes
also may play an important role in the decay process.
For example, in order to determine the efficiency of the
thallium Auorescence filter at converting 535-nm light to
378 nm, one must sum up the contributions of many
modes. The amplitude of each mode is determined by the
spatial profile of the source term (or excitation pump
profile). The contribution of each mode to the overall es-
cape of photons will depend on the overlap of the spatial
distribution of that particular mode with the excitation
profile. More on this subject will be discussed in a second
paper on the thallium fluorescence filter.

It is important to consider the effect of frequency redis-
tribution in this type of trapping problem. In the
Holstein-like equation used here, we make the assump-
tion of complete frequency redistribution [2,3]. That is, a
photon absorbed at frequency v may be emitted at the
frequency v' with probability proportional to k(v'). In
other words, the absorption profile is the same as the
emission profile. While there have been several experi-
mental and theoretical studies on the eff'ects of partial fre-
quency redistribution in radiative transfer problems, it
remains a complicated aspect to incorporate into the
problem [10,11,14—16]. Partial frequency redistribution
tends to decrease the escape factor or trapped radiative
rate (i.e., it can lead to more trapping than for complete
frequency redistribution). Such effects tend to occur over
only a limited range of optical depths, which depends on
the specific element, line structure, and cell geometry.
For purposes of the present discussion, we note that com-
plete frequency redistribution (for redistribution within a

single hyperfine component) becomes a valid approxima-
tion as soon as only a small amount of buff'er gas is in-
cluded in the cell (about 1 Torr of argon here) [10,11].
(Note that for a single component line, complete frequen-
cy redistribution may be valid even with no buffer gas as
long as the Doppler-broadening mechanism dominates
the trapping for each of the lines considered here. The
frequency shift involved in the Doppler eff'ect causes an
effective frequency redistribution. However, when a
significant fraction of photons escape from the Lorentzi-
an wings of the line, complete frequency redistribution
occurs only when the collisional contribution to the
Lorentzian linewidth is significantly greater than the nat-
ural linewidth. ) The inclusion of partial frequency redis-
tribution into the theory developed here would represent
a serious complication. We note that this is why we treat
only a single isotope of thallium. The two isotopes form
a single overal1 absorption profile; however, one isotope
cannot emit a photon with high probability at the line
center for the other isotope since the emission profiles of
the two isotopes are distinct. In other words, there is no
mechanism to convert the 203 isotope to the 205 isotope
or the converse (although the excitation can be collision-
ally transferred by near-resonant collisions, but this
transfer rate may be slow). The effect of partial frequen-
cy redistribution on systems with two or more trapped
transitions will be left for future investigation. We note
that the inclusion of buff'er gas in our system will be
necessary for a fluorescence filter in any case, since this
reduces wall quenching of the thallium metastable state.

For the single thallium (205) isotope considered here,
the hyperfine structure leads to several components on ei-
ther of the two lines (see Fig. 3). These components com-
plicate the issue of frequency redistribution. There can
be, however, an effective frequency redistribution be-
tween these components due to collisional excitation
transfer (or collisional mixing). Even for conditions
where the absorption profiles of the components appear
to be well isolated, the collisional mixing may be com-
plete. Additionally, the effects of line overlap and
Doppler shifting can cause an effective mixing between
the hyperfine components. For the present set of calcula-
tions we assume that there is complete mixing between
the various hyperfine levels. The validity of this assump-
tion is discussed below.

There are several mechanisms which can lead to mix-
ing of the hyperfine levels. The mechanisms discussed
above can cause mixing of the hyperfine levels either
through Doppler shifting, or enhanced line overlap due
to collisional broadening. While these mechanisms can
be significant under some conditions, they do not guaran-
tee complete mixing. We must also consider the eff'ect of
collisional excitation transfer between the hyperfine lev-
els.

We are primarily concerned with excitation transfer
collisions involving inert buffer gas. Since the mixing of
the ground-state (Pi&2) hyperfine levels involves a spin
fiip, the rates may be quite slow. The excited state (S,&2)
may also be slowly mixed. The metastable-state (P3&2)
mixing can be much faster since no spin flip is required
(i.e., the collision interaction with the orbital angular
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momentum is sufficient in this case to cause rapid mixing
between the hyperfine F levels).

A lower limit of the cross section of 10 ' cm for mix-
ing between the hyperfine levels of the ground state due
to collisions with argon has been reported in Ref. [34].
However, Ref. [35] reports a cross section which is about
an order of magnitude less than this. The source of this
discrepancy is unknown. Using the lower limit from Ref.
[34] corresponds to a mixing rate of approximately 10
s ' for 500 Torr of argon. This must be compared with
the trapped radiative rates of about 10 s '. This corre-
sponds to results shown for higher pressures in Fig. 6; for
lower pressure the mixing rate is smaller but the trapped
radiative rate also decreases (although not as rapidly).
Thus with the lower limit set in Ref. [34] for the cross
section, complete mixing in the ground state is a good ap-
proximation for sufficient buffer gas pressures. In addi-
tion to this mixing mechanism, there may be collisional
mixing due to collisions with other ground-state thallium
atoms. We estimate that this process represents only a
minor contribution to the collisional mixing rate even at
the highest thallium densities considered here [36].

The metastable levels (P3&z ) are mixed at a much faster
rate. The rate here is approximately 10 s ' for only 1

Torr of argon, using the cross section from Ref. [35].
Additionally, the small splitting in these hyperfine levels
allows the Doppler shifting to cause an effective mixing
upon reabsorption of photons. The fast mixing in this
level can also play a secondary role in further mixing the
other levels. Near-resonance collisions between excited-
statc (S«z) atoms in state i and metastables (or ground-
state) (P3/z ) in state j can result in excited-state atoms in
state j and ground-state atoms in state i (i and j refer to a
particular hyperfine level). If one considers this cross sec-
tion to be as large as typical resonance broadening cross
sections, then this mechanism can contribute significantly
to the mixing for sufficient metastable-state densities (this
also depends on the trapped radiative rate). That is, the
complete mixing occurring in the metastable state can be
transferred to the excited state.

For lack of any experimental measurements on the
mixing in the excited state (S,zz ), we make the assump-
tion that the cross section is at least as large as that for
the ground state. Thus for high pressures and only
moderate trapping (or low pressures and severe trapping),
the excited-state hyperfine levels will be completely mixed
(as discussed for the P, &z ). For conditions where there is
low buffer gas pressure and very little trapping, the mix-
ing will of course not be complete. However, in these
cases the trapping problem is trivial and the error made
by our assumption cannot be very large. For intermedi-
ate conditions the effects of partial mixing (thus partial
frequency redistribution) are in general too complicated
to incorporate directly into the radiation trapping prob-
lem.

For conditions where collisional line broadening, col-
lisional mixing, and Doppler shifting effects are not
sufficient to give complete frequency redistribution, more
complicated radiation diffusion equations must be
developed for the present system. While partial frequen-
cy redistribution can be quite complicated, the case

where there is no mixing between hyperfine components
may not be as difficult to deal with as long as the mixing
within each isolated component is complete. For thalli-
um, the upper 7S level has a relatively large hyperfine lev-
el splitting of 12.29 GHz. Thus one might be tempted to
treat the hyperfine components as completely isolated.
However, even for line-center optical depths ( -20)
across the cell, a significant fraction of the emission from
the cell can occur in the overlapping region between
these "isolated" components. We note that the frequency
profile of emission from the cell is a self-reversed line
shape and note the same as the local emission profile.
Thus it is predominantly regions of low optical depth, not
line-center regions, that contribute to the escape of pho-
tons. One must take care to consider this overlap region
of the absorption profiles resulting from the hyperfine
structure. For somewhat higher densities or buffer gas
pressures (a factor of 5 or 10) than used to calculate the
line shapes shown in Fig. 3, the optical depth across the
cell is between about 0.2 and 1 for much of the overlap-
ping region between the hyperfine components. For such
conditions these regions will contribute significantly to
the escape of photons from the cell; thus the hyperfine
components cannot be considered isolated in this case
(and even for the lower pressures and densities considered
here, the partial overlap may have a significant effect on
the decay rates). If the splitting in the 7S level were
much larger so that this type of overlap does not occur,
the line components might then be considered as isolated;
however, then one must deal with separate excited-state
populations, decay rates, and mode profiles for each of
the isolated energy levels and corresponding transitions.
In the converse case, where the ground-state splittings
are very large and the levels are unmixed, and the upper
state can be considered as a single mixed state, one may
consider the resulting transitions to be completely isolat-
ed. It is then possible to consider the effect of each isolat-
ed transition on the excited-state density and determine
an overall excited-atom profile. This is exactly what we
have done for the present case with respect to the two 6P
fine-structure levels, which are considered as an isolated
pair of ground-state levels. For the calculations present-
ed here the 7S upper-state hyperfine levels are considered
completely mixed. We do not consider the cases where
the hyperfine components are either partially mixed or
not mixed at all.

However, neither the assumption of complete mixing
nor that of no mixing between the hyperfine levels is valid
for the entire range of conditions considered here. Either
of these assumptions simplifies the calculation of the
trapped decay rates and mode profiles. We make the as-
sumption that complete mixing does occur for the calcu-
lations presented here. This approximation avoids the
necessity of calculating separate decay rates and mode
profiles for hyperfine levels and the corresponding transi-
tions. In particular for thallium, the densities of each of
the hyperfine levels in the excited state would need to be
considered. This can also lead to problems with respect
to specifying the initial excitation of the system. The
complete mixing approximation is certainly valid for ei-
ther severe trapping conditions or when high buffer gas
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FIG. 5. First three mode profiles for densities of 2.0X10"
and 2.0X 10' cm in the metastable and ground states, respec-
tively. The buffer gas is fixed at 5 Torr of argon. The funda-
mental (or first) mode is plotted agains the left axis; the two
higher modes are plotted against the right axis. The escape fac-
tors are 0.111, 0.258, and 0.366 for the first, second, and third
modes, respectively.

pressures are used. Since there are several mechanisms
which contribute to the frequency redistribution (both
within a single line and between the hyperfine com-
ponents), the complete frequency redistribution approxi-
mation is valid for at least some of the conditions con-
sidered here. This approximation also simplifies the
description of the system compared to the no-mixing ap-
proximation. Our approximation is physically significant
since it is likely to be valid (depending on the specific
conditions) for conditions where there is significant trap-
ping.

Since the fundamental mode decay rates discussed
above do not provide a complete picture of the radiation
trapping process in the cell described, we must consider
the effect of the higher modes. In order to determine the
rate of emission per cm" from either line onto either sur-
face, one must consider the total excited-atom profile.
This involves determining the contribution from several
of the slowest decaying modes. We show the first few of
these modes in Fig. 5. The densities are 2.0X10' cm
for the ground state and 2.0X10" for the metastable
state, and 5 Torr of argon is included.

The modes no longer have the symmetry of the cell due
to the rejective boundaries. For the densities used to cal-
culate the modes shown in Fig. 5, the 535-nm line is less
optically thick. The effect on the fundamental mode is
clear: The mode is peaked near the rejective wall for
535-nm light (note that for a system with only one line at
535 nm, the peak of the fundamental mode is actually at
the mirrored wall). Only a moderate amount of light can
exit the +L/2 surface since the 378-nm light (which can
only escape at +L/2) is heavily trapped. At the L/2—
surface, more light can escape from the cell on the 535-
nm transition, since this is only moderately trapped. For
conditions where both lines are optically thick, the shape

of the mode depends on the details of the cell and line
shapes, and appears to be quite complicated. As long as
neither transition is optically thin, the mode structure is
dominated by the transition, which leads to faster escape.

The appearance of the modes shown in Fig. 5 can
change dramatically by changing either the reAectivities
or the densities of the ground or metastable states. For
the cell reAectivities we have considered here and with
the higher optical depth on the 378-nm line, the peak of
the fundamental mode is toward the +L/2 surface. For
converse conditions on the optical depths of the two
lines, the peak will clearly be toward —L/2. This con-
trasts significantly with the typical trapping cases (those
considered by Holstein [2,3]) where the appearance of the
fundamental mode changes very little regardless of
changes in the optical depth [2]. For cases considered by
Holstein, the peak of the fundamental mode is always at
the center of the cell. The differences in the overall
excited-state profile for our case must be considered in
order to determine the efficiency of an atomic resonance
filter. It is clear that two very different conditions for the
optical depth can result in very similar decay rates. The
filter efficiency, excited-atom profile, and emission profiles
would be very different for such cases.

Since we must use some buffer gas in our system to
prevent quenching of the metastable state by the walls,
and to ensure complete mixing between the hyperfine lev-
els, we have examined the effect of varying the buffer gas
pressure on the fundamental mode decay rates (for argon
pressure below 1 Torr, the complete frequency redistribu-
tion assumption we make may not be valid for some thal-
lium densities). The fundamental mode escape factors
(g& ) are plotted in Fig. 6 as a function of argon pressure
for fixed densities of 2.0X10' cm in the metastable
and ground states. For nonreflective cells, with simple
line structure, the escape factor has a square-root depen-
dence on the buffer gas pressure for conditions where col-
lisional line broadening dominates the trapping. For the
present case we see similar qualitative behavior. In either
case, as pressure is added to the system, the lines broaden
and at high enough pressures become optically thin. In
this pressure range the escape factor tends toward 1, and
there is no trapping. For low pressures, the regions of
the line shapes which dominate the radiation trapping
(the unity optical depth region of the lines) are in the
Doppler core of the line. Thus changing the pressure has
only a negligible effect on the escape factor. For condi-
tions of high optical depth, the region between these lim-
its may cover several orders of magnitude in the escape
factor. For the present case the lines are just becoming
optically thin for the highest pressure shown (the escape
factor is already —0.5). The complicated line structure
also has some effect on the pressure dependence due to
overlap between the hyperfine components (see Fig. 3).
The peak optical depth is reduced due to the hyperfine
structure. The hyperfine component line overlap can
make the pressure dependence very complicated. This is
the cause of the slight unevenness seen in Fig. 6. For the
conditions used in Fig. 6 we see that the high and low op-
tical depth limits differ by slightly more than an order of
magnitude. Even in this case the dependence of the es-
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cape factor on pressure in the central region from P =10
to 100 Torr approaches the expected square-root pressure
dependence (closer to P ). The small deviations are due
to the details of the system. We note that the high-
density conditions used for Fig. 6 are probably not ap-
propriate to efficient filter operation. Results for lower
densities would not display the pressure dependence over
a broad range of escape factor, since even at low pres-
sures there would be very little trapping.

IV. CONCLUSIONS

We have derived a radiation diffusion equation for a
cell which approximates an infinite slab with different
reAectivities on either surface. We have also included the
effects of line competition (multiple trapped transitions).
The diffusion equation has been rewritten as an eigenval-
ue matrix equation which can be solved numerically on a
computer. We have examined the thallium vapor system
where both the 6 P&/2 3/2 levels are populated. The
effect of the two optically thick transitions at 535 and 378
nm on the upper 7 S, /z state has been considered. The
cell considered here is described in Fig. 1. This system is
being studied as an ultranarrow-bandwidth atomic reso-
nance filter with a wide field of view.

The general derivation given above can incorporate
any four reAectivities into the thallium system. It is im-
portant to consider the effect of reAectivities which are
less than 100% at the surface where light of either transi-
tion frequency is allowed to escape. For example, consid-
er the case where the two nonzero reflectivities are now
80% (instead of 100%) and there is a factor-of-10
difference in the optical depth of the two transitions. For
this case the additional 20%%uo loss from the optically
thinner of the two lines may have a more significant effect
than the total emission from the optically thicker line.
Similar arguments can be made for a change in
reAectivity at the 0% reAecting surfaces. The light

FIG. 6. Fundamental mode escape factor for densities of
2.0X10' cm in both the ground and metastable states as a
function of argon pressure.

reAected back into the cell at one frequency may be more
significant than the escape occurring on the second tran-
sition. Such minor changes in the reAective boundary
conditions would thus be expected to lead to significant
changes in both the decay rates and the mode profiles. In
order to model accurately the thallium narrow-
bandwidth atomic Auorescence filter, these effects may
need to be considered in detail. These calculations are
outside the scope of this paper.

The fundamental mode decay rate shown in Fig. 4 is
clearly limited in both low and high optical depth re-
gions. This behavior is specific to trapping problems
which consider two (or more) trapped transitions. The
fundamental mode decay rate alone, however, is not
sufficient to describe the emission as a function of time
and frequency from either side or the cell (this is just the
fiux exiting the surfaces at either frequency). Several of
the slowest decay rates as well as the corresponding mode
profiles must be used in order to describe both the
excited-state density as a function of time across the cell
and the emission as a function of frequency, time, and
cell surface. While we have determined these modes (see
Fig. 5) and decay rates, we have not discussed how to
determine the amplitudes of these modes or how to in-
tegrate over the modes to determine the photon Auxes,
(i.e., the emission at 535 and 378 nm at either surface).
Thus we have completed only the first step in describing
fully the thallium Auorescence filter. Further material al-
lowing for determination of the quantum efticiency at
converting 535-nm photons to 378-nm photons will be
discussed in a separate paper devoted to thallium filters.

There has been very little work done on radiation
diffusion which discusses the effects of multiple trapped
transitions. Two other groups are also examining
different filter concepts in thallium vapor systems and
thus must deal with the radiation trapping problem
[31—33,37]. Each of the suggested thallium filters uses a
different technique to populate the metastable state. The
radiation diffusion problem for the thallium Auorescence
filter system described here in Fig. 1 has also been exam-
ined in detail in Ref. [32]. The nature of their solution to
the problem of the three-level thallium system in the cell
of Fig. 1 differs significantly from our own. In their work
[31,32] the coupled modes (for the three-level system we
consider) are described as an expansion of the normal
two-level Holstein modes [2,3] (i.e., the kernel to the radi-
ation diffusion equation is the same as that used by Hol-
stein). The modes for an infinite slab found using the nor-
mal two-level Holstein kernel can be simply related to
those for a cell of half the width, with one side being
100% refiective. There is no way to incorporate partially
reAective surfaces without deriving an appropriate kernel
to the radiation diffusion equation, as we have done here.
The solution of Ref. [32] may, for some conditions, be
computationally less complicated than our own. We be-
lieve our work represents the most general treatment of
the radiation diffusion problem for this type of system.
The theory presented allows one to incorporate several
transitions to lower states as well as the effect of partially
reAective surfaces. We have also discussed how to handle
the effects of frequency redistribution within a single
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component of a transition, and the e6'ects of collisional
mixing between hyperfine components. The spatial
modes presented here in Fig. 5 are unique in that these
modes no longer reflect the symmetry of the cell in a sim-
ple manner. This is a result of the inclusion of difFerent
reAective boundaries on either of the two slab surfaces
and dealing with emission at more than a single frequen-
cy range.
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