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Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in
the framework of the coupled-channel formalism. Collisions between heavy projectiles and Pb + are
considered for various bombarding energies in the region E =500 up to 2000 MeV/u. Useful symmetry
relations for the matrix elements are derived and the influence of gauge transformations onto the
coupled-channel equations is explored.
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I. INTRODUCTION

In recent years a new generation of particle accelerator
has been constructed. Heavy ions can be accelerated to
relativistic energies and for the near future a further in-
crease in performance is expected. Relativistic heavy-ion
collisions provide a tool for the investigation of electrons
in extremely strong electromagnetic fields. The compar-
ison of theoretical and experimental results allows for a
test of quantum electrodynamics under these extreme
conditions.

In this paper atomic physics effects in relativistic
heavy-ion collisions are studied [1]. Predominantly we
consider collisions with finite impact parameter in which
the nuclei do not touch. In Fig. 1 the spectrum of the
Dirac equation is depicted. Above the boundary
E =+mc and below the boundary E = —mc the con-
tinua are located. In the gap in between, some bound
states are indicated. In the hole picture it is assumed that
in the ground state all the states of the negative-energy
continuum are occupied by electrons. Removing such an
electron implies that the remaining hole is interpreted as
a positron.

Some possible excitations are depicted schematically in
Fig. 1: (1) excitation of an electron from one bound state
into another bound state with lower binding energy; (2)
ionization of an originally bound electron; (3) excitation
of an electron from the negative-energy continuum into a

E =+mc~

E = —rnc2

bound state. The remaining hole is interpreted as a posi-
tron. The created electron is captured in the bound state
(pair production with capture). (4) Excitation of an elec-
tron from the negative-energy continuum into the
positive-energy continuum. As in case (3) this is the
creation of an electron-positron pair, but the final state of
the electron is in the continuum (direct pair creation).

One additional process is missing in this figure, namely,
the capture of an electron initially bound to the target by
the impinging projectile. In this paper we will concen-
trate on excitation, ionization, and pair creation with
capture.

Similar calculations are performed by various other au-
thors [2—6]. The main differences consist in the chosen
basis set and in the methods employed to determine the
matrix elements. Former calculations also employed per-
turbation theory in different forms [6—13]. For collision
systems with low-Z projectiles these calculations yield re-
liable results when compared with experimental data.

A series of experiments has been published by Mey-
erhof, Anholt, and co-workers. They investigated ioniza-
tion cross sections [7,14,15], charge states of the projec-
tile after the collision [16], and charge exchange [17].
Unfortunately, the atomic physics experiments in the en-

ergy region around E = 1 GeV/u supply only total cross
sections [18,19]. More selective differential cross sections
with respect to the impact parameter or the ion scatter-
ing angle are still missing.

In Sec. II we present the formalism of the coupled-
channel equations that we used throughout our calcula-
tions. The evaluation of the potential matrix elements
and their symmetries are emphasized. The subsequent
section treats the numerical results, in particular the
comparison of the outcome of perturbation theory, with
results of the coupled-channel calculations for ionization
and pair creation. The question of gauge invariance is
considered in Sec. IV. Finally, Sec. V contains a brief
summary.

FICs. 1. Spectrum of the Dirac equation. Indicated are possi-
ble atomic excitations: (1) excitation, (2) ionization, (3) pair
creation with capture, and (4) direct pair creation.

II. THEORY

In order to calculate electron excitation and ionization
as well as pair creation, we want to solve the time-
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dependent Dirac equation

i tij(r, t)=H(R(t))g(r, t),
at

where R(t ) denotes the time-dependent position of the
projectile. Here we have used the semiclassical approxi-
mation (SCA) [20—22], where the nuclei are assumed to
move on classical trajectories.

Equation (1) is a partial differential equation in four di-
mensions. The direct solution requires considerable nu-
merical effort. In central heavy-ion collisions the cylin-
drical symmetry reduces the problem to two spatial coor-
dinates. For excitation and ionization such a calculation
has been performed by Becker et al. [23], where the
differential operators were replaced by finite differences.
An extension to pair creation is presented by Thiel et al.
[24]. One difficulty in performing this procedure is intro-
duced by the finite grid size and by the finite number of
grid points.

Here we will apply a different method that has already
been employed for nonrelativistic collisions. The wave
function is expanded into a complete basis set

g, (r, t) = g, a«(t)p k(r) exp( —iEkt) . (2)
k

The subscript i of the wave function indicates different
possible initial conditions:

a«(t~ —~)=5k, .

Vsually, the total Hamiltonian is split into two contribu-
tions H =Ho+ V. Choosing the eigenstates of the unper-
turbed Hamiltonian Ho as basis states, i.e.,

IIOOk =Ekdk

the basis wave functions are orthonormal

reliable tool. In first-order perturbation theory the am-
plitude after the collision (t ~ oo ) reads

af (t~ )= i—J dt(Pf ~ V~/;) exp[i(Ef E, )—t].

Since the potential depends linearly on the projectile
charge Z, the perturbative probabilities and cross sec-
tions depend quadratically on the projectile charge.

For our calculations it is very important that unitarity
remains conserved during the time evolution. This is not
fulfilled in perturbation theory. Thus it may happen that
perturbation theory results in excitation probabilities
greater than unity, which is physically meaningless.

A Hermitian potential matrix, i.e., Vf; = Vf, guaran-
tees the conservation of probability in the framework of
coupled-channel calculations. Even the orthonormality
of the wave functions remains conserved during the time
evolution.

A. Projectile potential

In order to solve the coupled-channel equations (7) we
need the matrix elements (pf ~ V~pk ). First we want to
determine the projectile potential. In relativistic heavy-
ion collisions a straight line is a good approximation for
the trajectory of the projectile [25,26]. Likewise, we may
assume that the target remains fixed at the origin of the
coordinate system.

The coordinate system is chosen so that the projectile
moves parallel to the z axis and the x-z plane is the
scattering plane (see Fig. 2). The projectile potential as
seen by an observer in the target system is determined by
a Lorentz transformation. In the inertial system of the
projectile the projectile potential is simply a Coulomb po-
tential

&0f 0k~ ~fk .

For very fast collisions we will employ the atomic basis.
The unperturbed Hamiltonian consists only of the kinetic
energy and of the target potential

A'=0,

where

Zpc

7

(9)

Ho=a p+p+ VT . (6)
r'=[(x —b) +y +y (z v~t) ]'~—

The projectile potential is thought of as the perturbing
potential V. Ho is independent of time and so are the
basis states. Consequently, only the matrix elements of
the projectile potential V result in transitions between
the states and we obtain for the coupled-channel equa-
tions

af, = i gak, —(t)(pf ~ V~pk ) exp[i(Ef Ek)t] . (7)—
k

denotes the distance from the projectile as seen in the
projectile system. Primed quantities are measured in the
projectile system. The transformation of the potentials
(9) into the target frame yields the Lienard-Wiechert-
potentials [27]

~P vP

The basis contains only target-centered states, which do
not allow for the description of charge exchange. To take
also these channels into account requires a basis set ex-
tended by projectile-centered states. But target- and
projectile-centered states are not orthonormal to each
other and therefore a modified form of the coupled chan-
nels has to be utilized [4]. In this paper we will not inves-
tigate charge-exchange processes.

For weak potentials V perturbation theory might be a

"ZT

FIG. 2. Coordinate system used in our calculations. The
projectile moves within the x-z plane along a straight line with
distance b parallel to the z axis.
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Zp8Zp8
A =+& A = A =0 c4 = Pup r'

1

[(x b—) +y +y (z —
vent) ]'

1

lr' —R'(t )

ZT8=a p+13— +y
Z~e (upa~ —1)

For completeness we write the total Hamiltonian

H =a.p+P+ VT+ P~

(12) r'= lr'l =r(sin 8+y cos 8)' =rh(8), (14)

is expanded into a multipole series. The electron and nu-
clear coordinates are r'=(x, y, yz) and R'=(b, O, yvpt),
respectively. The components of r' in spherical polar
coordinates read

For the target we assumed the potential of a fully ionized
pointlike nucleus with the charge ZT. Equivalently we
can employ a screened target potential.

For the calculation of the matrix elements the quantity
I

z' y cosOcosO'= —,=r' h(8)
The function h(8) is defined by Eq. (14). Now the mul-
tipole expansion reads

1

lr' —R'I , P, ( cos8)
I=O ~)

, + & g Y&* (R~') Yl (rm'), r' ~ R '4nr'h '(.8)

oo R 1

, gl(r 8) X Yim(R') Ylm(r'»
1=0 +2l+1 m= —I

where R' and r', respectively, denote the directions of the
vectors R' and r'. The function gI is defined by

u (r) y",(0)
(r)=-

r iu(r) y" (0) (18)

r'h '(8)
if r'=rh(8) (R'

gi(r, 8)= '

if r'=rh(8) )R' .
(17)

with real radial functions u(r ) and v(r ). The continua
are discretized by the use of relativistic wave packets [28]

Ek+ b, E/2
Qi, (r ) = f P(r, E )dE, (19)

k

B. Matrix elements

In this subsection the matrix elements (Pf l Vlf; ) will
be evaluated. Due to the spherical symmetric target po-
tential the atomic basis functions can be represented in
the form

where P(r, E) is the exact continuum eigenstate of Ho for
the energy E. Since many continuum wave functions
P(r, E) with different wavelengths interfere, the wave
packets gk (r ) fall off faster as a function of r.

First we want to consider the electric matrix elements.
After inserting the multipole expansion (16), except for
the factor (

—yZ e ), the matrix elements read

(
4m

pf l, „'(t;= f dr r f dQ (ufo'—, iufy —) g gL(r, 8) g YL*M(R')YL~(r')—
21 +1 ~ r

t

(20)

with gL defined by (17). Choosing the x-z plane as the
scattering plane the azimuthal angle of R' is zero and the
complex conjugation of the corresponding spherical har-
monic may be omitted.

Originally the multipoles were defined on the surface of
the unit sphere in the projectile frame. Since the basis
wave functions are defined in the target system, we

transformed the multipoles into the same system. This
leads to a Lorentz contraction of the unit sphere and thus
the multipoles are now defined on the surface of an oblate
ellipsoid in the target frame. Consequently, the transi-
tion from the inner region of the multipole expansion to
the outer region takes place on this ellipsoid surface.
This situation is depicted in Fig. 3.
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w~ „L~(v,O) = g (lf —,
' Jf ~pf m&m &pf )

QX IS

X(l, , —,', j, p; —m, m, p;)

X Y,
"„(O,q )Y, „(O,y)

&& Yi.M(0', y )gL, (v 0) . (25)

FIG. 3. Depicted are dial'erent regions of the multipole ex-
pansion. The boundary between both regions is located on the
marked ellipsoid. On this boundary the explicit form of the
multipole expansion changes. The inner region inside the
sphere with radius R'/y is indicated as well as the outer region
outside the sphere with radius R'. In these two cases the
classification is independent of the polar angle, while in the re-
gion between these radii it depends on the angle 0.

The boundary between both regions is at r =R'/h(0)
and thus varies between the values r =R'/y and r =R'.
Therefore inside the sphere with radius R'/y we are-
independent of the angle —in the inner region, while out-
side the sphere with radius R ' we are always in the outer
region. Only between these radii does the classification
depend on the polar angle.

Due to the distinction in the definition of the function
gL the radial and the angular integration do not separate
in the intermediate region. This is difterent from the
nonrelativistic case. Thus in this region a two-
dimensional integral has to be computed. gL (r, O) factor-
izes in the regions r (R '/y as well as r )R ' and thus the
integrations separate here.

We rewrite the matrix element

(2l)

The integration over cp yields the usual addition rule for
the magnetic quantum numbers, which is well known
from the nonrelativistic description. Therefore, in Eq.
(21) the sum over M may be omitted when M =pf —p, is
substituted. Also, the parity fulfills the same selection
rule as in the nonrelativistic case. The parity of
YLM(0', cp) equals the parity of YLM(0, @), since
0'(n 0)=m——0'(0). In addition, h(0) has even parity:
h (~—0) =h (0). It follows that the integrals over the an-
gle vanish if lf+l, +L =0 (mod 2). Otherwise it is
sufficient to integrate from 0 to ~/2 and to double the in-
tegral afterwards.

It is worthwhile to note that even in the regions
r (R '/y and r )R ', where the integrals separate, the
standard triangle rule is violated in the relativistic case.
In the nonrelativistic case only those L values contribute
that fulfill

~ jf —j, ~

& L ~
~ jf +j, ~. On the other hand, for

relativistic velocities all values L =0. . . ~ contribute

Now we turn the discussion to the analogous expres-
sions for the magnetic matrix elements

CX3 oo +L

R'~ ' 2L +I
X YLM(R')Q~~ LM(R')

(26)

gf LM(R ) = dr(uf Vi&» « IM Uf ui%' ««LM )
0 f' i f' i

(27)

Note that in contrast to the electric matrix elements, the
matrix n3 couples upper and lower components of the
spinors. This leads to the sign combinations of the ~ sub-
scripts of lV . These quantities are defined by the angu-
lar integral

with

L~(R )=j dr%(r)% L~(r) (22)

LM(r)= jd&gL, (r 0)X.,' YcM(r')~3X.
,

'

8A W]c ~, LM (28)

Here the abbreviation

%(r) =uf(v)u, (r)+uf(r)u, (r )

and the angular integral

(23)
with the corresponding angular function

w, , rM(r, O)= +2m(lf 2 Jflpf m m pf)

~.',.&M(v)= jd&gi(v 0)X".,' Yi~(r')X'.
,

'

= jdO w» «rM(r, O) (24)

have been introduced. In (24) we defined the angular
function w LM, which is given byf i

X(l, , —,', j;~p; —m, m, p;)
X Y(*„(O,p)Y) „(0,@)

X Y (L0M', (p')g (r,iO) .

The factor 2m results from the relation

(29)
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,&3y =2m 5 (30) These expressions may be inserted into the expansions
(21) and (26) and we obtain

In addition, due to the Kronecker 5 the sum over m'
could be easily performed.

We deduce from Eqs. (21) and (26) that the electric ma-
trix element is real, while the magnetic matrix element is
purely imaginary: and

' —R' f f r' —R' (35)

Vf; = Re( Vf;)+i Im( Vf') Vf +V'f, (31)
i t RI f f t Rg i (36)

Finally, we want to discuss some symmetry relations of
the matrix elements. The explicit use of these symmetry
relations considerably lowers the computational effort
and the storage requirements for the matrix elements.

First we study the behavior of 0f' L~ when exchanging

With (31) we conclude for the total matrix element

Vf= Re(Vf)+i Im(Vf)= Re(Vf, )
—i Im(Vf ) Vf, .

(37)

„(R')=fdr%(r) f dQ wt (32)

Using the symmetry relations of the Clebsch-Gordan
coe%cients and of the spherical harmonics contained in
(25), we derive

(33)

~f+' A
fL(; —

( ) f Ly —
W;

' (34)

The analogous result for the magnetic matrix elements
reads

Since V is a Hermitian operator, this result is quite
reasonable.

One additional symmetry is provided by simultaneous-
ly changing the sign of the magnetic quantum numbers:

(Pi~Pf Pi~ Pf) . (38)

Only the angular functions w, ~ L~ and w~ ~ LM con-f f i'
tain the magnetic quantum numbers via the Clebsch-
Gordan coe%cients. The angular functions correspond-
ing to the changed quantum numbers according to (38) in
the following are marked by a tilde. For the transformed
angular functions we find

If +(1/2)+Jf
1 . I. +(1/2)+J.

w, , L „+„—g( —1) (lfy 2)Jf pf rrl)rrl )pf)( —1) ' '(l;, —,J(~p; m) pl, p;)

X( —1) f Y("„(&,p)((—1) ' Y(„(&,q)( —1) ' f YL„„(&',p)gL(r, &) . (39)

Combining all signs and using (sgns&+sgns, )/2+ (

Kf K L, (lf +P, . (45)

—a —1 (l( &0)I='
((~) 0)

=
~a~

—
—,'+ —,)sgn(~,

results in

(sgnxf +sgnz, . )/2+ 1

Ws. w L, —p +(s. ( 1).f t ' f w~ ~.L,p —p.f i ' f i

(40)

(41)

(42)

Finally we consider the operation of time reversal:
t~ —t. Using this symmetry it is possible to calculate
and to store only the matrix elements for the incoming
projectile trajectory. Only the spherical harmonic
YLM(R')= YL~(Oil ) in Eqs. (21) and (26) are influenced
by time reversal. Applying time reversal the spherical
harmonic transforms according to YLgt(lr —

Oll )
=( —1) YLM(R'). For all contributing L the value of
( —1) is the same due to L =lf —l; (mod 2). With
M =pf —p;, we finally get

and hence, Re[Vf;( t)]=( —1—)/ ' f ' Re[Vf, (t)] . .(46)

(sgns& + sgns. )/2+ 1

K/K ~ L, /l/+p. (43)

For the magnetic matrix elements the analogous expres-
sion reads

—A (sgnt~f + sgn~, . )/2w„.L „+„——
(
—1)f i ' f i

w~ ~.L p —p. .f i ' f i
(44)

From Eq. (27) we know that 0 contains the functions
w with negative K,. or ~f. This minus sign may be
pulled out and leads to an additional minus sign:

Again the calculation is analogous for the magnetic ma-
trix element. Because of L =lf —l, +1 (mod 2) an addi-
tional minus sign arises:

Im[Vf, (
—t)]=(—1) ' f ' Im[Vf, (t)] . (47)

Vf, (
—t)=( —1) ' 'Vf*;(t) . (48)

The results for the electric and magnetic matrix elements
may be combined to
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C. Adiabatic initial conditions

0

1
2—

-6

~ ~

(a)

The coupled-channel equations (7) have to be solved
with the initial conditions (3). For the numerical solution
we employ the method of Shampine and Gordon {30],
which is a modified Adams-Moulton predictor-corrector
method of variable order with variable step size.

For test purposes we solved the coupled-channel equa-
tions for the system Pb-Pb with the bombarding energy
E =500 MeV/u and impact parameter b =100 fm. The
basis consists of the 10 deepest bound states, i.e., the K
and I shell, and 60 continuum states. As an initial condi-
tion we consider a single electron in the 1s state with
p= ——'. The result of this calculation is represented in2

Fig. 4(a). Just after the beginning of the integration the
main contribution to the continuum channels stems from
the state with E=1.1, ~= —2, p= —

—,'. Later on the
probability for the electron to be in the initial state de-
creases while the probability for the electron to be excited
or to be ionized increases. The excitations are maximal
around the distance of closest approach at I, =0. The oc-
cupation probabilities during the collision are not observ-
able experimentally. Only the occupations for t~ ~ are
observable, e.g. , by measuring the energy distribution of
the 6 electrons.

Considering Fig. 4(a) strong oscillations of the occupa-
tion probabilities for t (0 are noticed. These are due to

—exp [ i (Ef—E; ) Tc ]
—

] . (50)

The time-dependent phase factor leads to a circular
motion in the complex plane, which is broadened by the
slowly increasing matrix element. The additional term in
the curly brackets guarantees the initial condition
a (t = —To) =0. But just this term is responsible for thefi
shift of the origin of the complex plane from the mid-
point of the spiral curve to the starting point. Calculat-
ing the squared absolute value of the complex amplitude,
the value decreases after every revolution because the
starting point is nearly reached. The frequency of these
oscillations equals the energy difference co=Ef —E;.

This is clearly seen for the depicted continuum states
in Fig. 4(a). Taking into account the energy of the is
state, E; =0.8 mc, we get T=2~/co=21 and T=9, re-
spectively for the cycle time of the oscillations. This is in
fair agreement with the results as displayed in Fig. 4(a).

Instead of suddenly turning on the potential at

the fact that the numerical integration starts at the finite
time —To& —~, when the projectile is far away. In Fig.
5 we depict the complex probability amplitude during a
short period after —To for the dominant continuum
states with E=1.1 and ~= —2, p= —

—,'. The amplitude
follows a spiral curve starting at the origin.

For this early time the projectile is far away and the in-
teraction is very weak. Thus we can apply perturbation
theory, i.e., we set ak;=5k;. Now the coupled-channel
equations simply read

af; = —i (Pf i Vig; ) exp{ i(Ef E, )t—] .

Initially, the matrix element changes very slowly in time
and we may consider it to be constant. Hence Eq. (49)
can be integrated and for fWi we get

—Mf;
af; (t ) = I exp[i(Ef E; )t ]-

f i

=10 ~—

10-6

-200

10 6—

-100 0 100

t (nat. units)

(b)
I

200

2.0

CQ

o.o

o -2.0

FIG. 4. Solution of the coupled-channel equations for the
system Pb-Pb at a bombarding energy E=500 MeV/u and im-
pact parameter b =100 fm. The squared absolute values of the
amplitudes oaf „iare shown as a function of the collision time
t. t is given by multiples of the unit 1.29X10 ' sec. Note the
strong excitation around the distance of closest approach at
t =0. Full lines: 1s state and sum over all continuum states, re-
spectively; dashed line: continuum state with E=1.1, K= —2,
p= —

2,
' dotted line: continuum state with E=1.5, K= 2,

p= ——'. (a) Initial condition af; =Sf;. (b) Using adiabatic ini-

tial conditions the oscillations almost disappear.

-I.O

s I ~ I ~ I s I a I s

-4.0 -2.0 0.0 2.0 4.0
103 Re(af1, )

FIG. 5. Complex probability amplitude for the continuum
state with E = 1.1 and K= —2, p= —

—,
' for the same system as in

Fig. 4. The spiraling curve results from the complex phase fac-
tor in the coupled-channel equations.
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a&, (t =TO)= exp[i(Ey E )Tp]
f i

1

i(E~ E; )— (51)

Afterwards the total probability has to be normalized to
unity.

In Fig. 4(b) the outcome of a coupled-channel calcula-
tion using the adiabatic initial conditions is displayed. It
is the same calculation as in Fig. 4(a), but using the initial
conditions (51). Apparently the oscillations almost disap-
peared. Nevertheless, the probabilities for t —+ ~ remain
almost unchanged by these initial conditions. Of course,
the shift of the starting point of the integration toward
earlier times results in a similar disappearance of these
oscillations. By the use of adiabatic initial conditions we
avoid the calculation of the corresponding matrix ele-
ments.

III. NUMERICAL RESULTS

The methods as described in the preceding section will
be applied to physical problems of current interest. We
calculate ionization and pair-creation probabilities in rel-
ativistic heavy-ion collisions. In particular we compare
the results of coupled-channel calculations with the out-
come of perturbation theory.

In order to calculate ionization probabilities and cross
sections we have to solve the coupled-channel equations
using a basis that contains bound states as well as contin-
uum states. At a first glance it seems that the inhuence of
the states of the negative-energy continuum is negligible.
But it turns out that there can be clear differences be-
tween calculations that neglect the negative-energy states
and calculations using a basis enlarged by the negative-
energy continuum.

We start our investigations by considering the ioniza-
tion of a K-shell electron. For this purpose the coupled-
channel equations (7) are solved with the initial condi-
tions

To we now assume that the interaction has in-
creased very slowly, i.e., adiabatically, from zero in such
a way that a single spiral revolution cannot be dis-
tinguished from a true circle. In this case the origin of
the complex plane and the midpoints of the circles coin-
cide and thus the term exp[ i'(E& E;—)To] has to be
omitted. Hence the adiabatic initial conditions read

N
1.0

I I I I I I I

~ ~ ~

~ W

.A
~ A

~ W

ionized in a single collision, this is no longer a probability
normalized to unity.

These considerations are only true if the target is total-
ly ionized except for the K shell. If not, we have to calcu-
late the probability for the coincident observation of the
ionized electron with the hole in the K shell. This corre-
lated probability is given in [32,33].

In Fig. 6 we show a comparison between results from
first-order perturbation theory and coupled-channel cal-
culations. It concerns the collision system Pb '++Z
with projectile charges up to the end of the periodic sys-
tem. As already mentioned, the ionization probability in
perturbation theory scales with Zz. In order to facilitate
the comparison the probabilities were divided by Z .
Therefore the ionization probabilities given by perturba-
tion theory are simply represented by horizontal straight
lines.

Apparently the results of the coupled-channel equa-
tions approach continuously the perturbative result for
Z ~0. For larger nuclear charges the ionization proba-
bility increases first over the perturbative probability and
reaches a maximum at Z =50. For even larger Z the
probability decreases again.

The proportionality of the perturbative probability
with Z for sufficiently large Z leads to a violation of un-
itarity, i.e., to probabilities larger than unity. However,
unitarity is conserved in coupled-channel calculations.
Thus for large projectile charges the probability has to
decrease under the perturbative probability. Unity, like-
wise divided by Z, is plotted in the figure as a full line.
Probabilities that do not violate unitarity thus have to
remain under this line.

Two calculations with different basis sets are depicted
in Fig. 6. The first basis set contains the 22 deepest
bound states as well as the states of the positive-energy
continuum with energies between 1.1 mc and 3.5 mc
and angular momentum quantum numbers ~ between —2
and +2. The second basis set in addition contains the
analogous states of the negative-energy continuum.

a„„(t~—~ )=5 (52) 0.5—

or with the adiabatic initial conditions.
The ionization probability is just the probability for the

electron to be after the co11ision in one of the continuum
channels of positive energy, thus [31—33]

(53)

0.0
0

I s I s I i I

20 40 60 80 100

Usually the K shell is occupied by two electrons. Thus,
the mean number of electrons ionized per collision from
the K shell can be calculated by simply multiplying the
probability (53) by 2. Since up to two electrons may be

FIG. 6. Kshell ionization rate vs Z for the systems
Pb '++Z~ at the bombarding energy E =1200 MeV/u and im-

pact parameter b=20 fm. The probability is divided by Z~,
which is the scaling behavior of perturbation theory.
Without negative-energy continuum; o: negative-energy contin-
uum included; full line: unitarity limit.
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Though the excitation of the additional states can be
neglected for t~~, they clearly affect the ionization
probability. For the considered collision system the ion-
ization rate is reduced by up to 30% when the negative-
energy states are included.

This effect is caused by the fact that at the distance of
closest approach of the projectile, strong transitions into
both continua occur. In particular, the excitation of
states of the negative-energy continuum is just one order
of magnitude lower than that of states of the positive-
energy continuum. The difference between both continua
arises during the outgoing part of the projectile s trajecto-
ry. The occupation of the ionization channels does not
change considerably after the distance of closest ap-
proach, while the occupation probability of the channels
of the negative-energy continuum decreases by nearly
two orders of magnitude. Obviously the excitation of the
ionization channels is disturbed by the negative-energy
channels just at that collision time when the strongest ex-
citations occur. For more details cf. Fig. 12(c).

In Fig. 7 the Z -dependent K-shell ionization probabil-
ity is depicted for two different bombarding energies
E=500 and E=1200 MeV/u. For higher energies the
ionization rate decreases. This is in agreement with cal-
culations by Amundsen and Aashamar I10], who ascer-
tained that for small impact parameters the ionization
rate decreases for bombarding energies in the range
around 1 GeV/u, while for higher energies the rate be-
comes constant with corrections of the order (iny ) /y .

We also brieAy discuss L-shell ionization. Here we re-
strict ourselves to the LI subshell, which consists merely
of the 2s states. The performed calculations are com-
pletely analogous to those for the K-shell ionization. We
only have to choose the 2s state as the initial state. The
corresponding result is also presented in Fig. 7. In con-
trast to nonrelativistic collisions these calculated data
demonstrate that the L-shell ionization rate is by a factor
of 3 lower than the K-shell ionization rate.

Now we want to study the dependence of the ioniza-
tion rate with respect to the impact parameter. Figure 8

I I I I I

99lf"

10'= ~ ~
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0

I I I i I

500 1000 1500 2000 2500

b(f )

FIG. 8. Dependence of the ionization rate on the impact pa-
rameter for the collision system Pb-Pb at (from top to bottom)
E =2000, E =1200, and E =500 MeV/u. The results for the
lower energies are multiplied by 0.1 and 0.01, respectively. Full
lines: coupled-channel calculations; dotted lines: perturbation
theory.

shows an exponential decreasing behavior of the ioniza-
tion rate when the impact parameter is increased. This
holds true in perturbation theory as well as for coupled-
channel calculations and for all bombarding energies
E =500, E =1200, and E =2000 MeV/u.

Figure 9 displays the 5 electron spectra from Pb-Pb
collisions with E=2000 MeV/u with impact parameter
b = 10, b =210, and b =810 fm. As a function of elec-
tron energy the spectra decrease exponentially. This de-
crease is considerably stronger for larger impact parame-
ters.

Obviously the used basis contains the energetically
most important channels. The restriction to states with
angular momentum quantum numbers ~= —2. . . +2
seems to be more stringent. We presume that the results
will be modified by the addition of further angular mo-
menta. Unfortunately, due to computer time and storage
reasons it is not possible to enlarge the employed basis
considerably.

N 1.0— A. Electron excitation

0.5—
ir. ~ ~ ~

~ ~

0.0 I i I i I i I I & I

0 20 40 60 80 100 120

FIG. 7. K- and L-shell ionization rate vs Z~ for the systems
Pb"++Z~ with impact parameter b =20 fm. The probability is
divided by Z~, the scaling behavior of perturbation theory.
K-shell ionization for E =500 MeV/u; 0: K-shell ionization for
E=1200 MeV/u; E: L-shell ionization for E=1200 MeV/u;
full line: unitarity limit.

The excitation into higher bound states is calculated in
the same manner as the ionization, ' we merely substitute a
bound state for the final state. The comparison between
ionization and excitation of the 2s as well as of the 3s
state is displayed in Fig. 10 for the system Pb-Pb at 2000
MeV/u. For large impact parameters the rates decrease,
but for the ionization probability the decrease is weaker
than for the transitions to bound states. This is readily
understood since the used localized wave packets dimin-
ish as 1/r, while the bound states exhibit a much
stronger exponential decline.

The results of coupled-channel calculations show a
weaker decrease for the excitation of bound states than
perturbation theory does. This might be explained by
multistep processes, in which, e.g., the 2s states is excited
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indirectly via the continuum states, which are more
strongly excited. In fact, for very small impact parame-
ters, we note a slight increase of the probabilities.

Finally, in Fig. 11 we analyze the various spin contri-
butions by depicting the ratio of spin Aip to non-spin-Aip
contributions. For central collisions (b =0) the projectile
potential contains only angular momenta with M=O.
Due to the additive behavior of the magnetic quantum
numbers a spin Rip is not possible and the ratio diverges.
By increasing the impact parameter, the spin Aip becomes
more and more probable.

B. Pair creation

103 =-

10' {c}

10 '

10 2

10 3

0.0
I

0.5 1.0

E (MeV)

1.5

FIG. 9. 5-electron spectrum for the collision system Pb-Pb at
E =2000 MeV/u and impact parameter (a) b =10 fm; (b)
b =210 fm; and (c) b =810 fm. The lines display the probability
for the excitation into a wave-packet state with the width
hE =0.2 mc . The full curve at the top represents the sum over
all angular momenta, while the other curves show the contribu-
tions of the different angular momenta. Dashed line: a= —1;
full line; ~= + 1; dash-dotted line: sc = —2; dotted line: ~= +2.

In the framework of our formalism, pair creation can
be regarded as the excitation of an electron from the
negative-energy continuum into a bound state (pair
creation with capture) or into a state of the positive-
energy continuum (direct pair creation). Thus the basis
that should be used to describe this process has to con-
tain the negative-energy continuum in an appropriate
manner.

We make explicit use of the time reversal invariance.
As a consequence, a single coupled-channel calculation is
sufficient for the calculation of the pair-creation probabil-
ity with capture of the electron into the K shell of the tar-
get.

The dependence of ionization and pair-creation chan-
nels on collision time is represented in Fig. 12 assuming
different approximations. Figure 12(a) shows the result
of perturbation theory, while Figs. 12(b) and 12(c) display
results of coupled-channel calculations. In Fig. 12(b) the
continuum-continuum interactions are neglected, while
in Fig. 12(c) all couplings are included. During the in-
coming part of the trajectory, differences between the
various approximations are hardly visible. Not until
t=0, when strong excitations occur, do deviations be-
come recognizable. In particular, for the pair creation,
relatively large differences are visible during the outgoing

CL
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FIG. 10. Excitation of the bound 2s state (dashed line) and 3s
state (dotted line), compared with the excitation of continuum
states (full line) for the system Pb-Pb at E=2000 MeV/u. The
lines marked by circles, triangles, and squares are calculated us-
ing the coupled-channel equations, while the other lines
represent the result of perturbation theory.

FIG. 11. Ratio of excitations without spin flip and excita-
tions with spin flip P( f)/P( $) for the states 2s (dashed) and 3s
(dash-dotted) at a bombarding energy E=2000 MeV/u in the
system p-Pb. Due to the low projectile charge, perturbation
theory has been used. The full line represents the same calcula-
tion for the 2s states at E=500 MeV/u.
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FIG. 12. Excitation of ionization and pair-creation channels
during a Pb-Pb collision with E =1200 MeV/u and b =20 fm.
The time t is given in natural units defined by A=c=m =1.
Full line: 1s state; dashed line: ionization; dash-dotted line:
pair creation. (a) Perturbation theory; (b) coupled-channel cal-
culations, continuum-continuum couplings neglected; and (c)
coupled-channel calculations, all couplings included.

part of the trajectory. Using perturbation theory, the ex-
citation decreases very much after t=0 and finally ap-
proaches a low level. However, in the coupled-channel
calculations the pair creation decreases much less after
the collision and remains more than one order of magni-
tude above the outcome of perturbation theory.

Comparing both coupled-channel calculations demon-
strates that the continuum-continuum couplings are not
responsible for this effect. Rather it seems that the ap-
proximation a &, „=1 that forms the basis of perturbation
theory is—due to excitation of higher bound states and
ionization channels —no longer justified. The depopula-
tion of the 1s state during the colhsion is responsible for
the fact that the probability that Aowed into the positron
channels cannot Aow back completely.

The transition from the validity region of perturbation
theory to the nonperturbative behavior [1,34,35] can be
deduced by varying the projectile s charge. This is ac-
complished in Fig. 13. The probabilities are divided by
Z, the scaling behavior in perturbation theory, as in Fig.
6.

Obviously also the pair-creation probability ap-
proaches continuously the perturbative value for Zz ~0.

10 '
PU

CL -8

( I i I ( I i I ( I

0 20 4 0 60 80 100 120

FIG. 13. Pair-creation probability with capture of the elec-
tron into the K shell (full line) and in the LI shell (dashed line)
of the target as function of the charge of the projectile. The sys-
tem is Pb ++Z~ at a bombarding energy E =1200 MeV/u and
impact parameter b =20 fm. The probability is divided by the
scaling behavior of perturbation theory Z~.

But with an increasing nuclear charge of the projectile,
the probability for the creation of an electron-positron
pair rises very fast over the result of perturbation theory
[1,35]. At Zz =92, i.e., for a totally ionized uranium nu-
cleus as projectile, the result from the coupled-channel
calculation is nearly two orders of magnitude above the
corresponding result of perturbation theory. Strayer
et a1. solved the time-dependent Dirac equation on a grid
using B splines and likewise found —in the case of muon
pair production —large deviations from perturbation
theory [34].

For the energies investigated in this paper, the pair-
creation probabilities are relatively small. This probabili-
ty increases at higher bombarding energy and finally also
violates unitarity. But these high energies cannot be han-
dled by the present coupled-channel calculations employ-
ing the basis as indicated above. Nevertheless, Best,
Greiner, and Soff [36] showed that the violation of unitar-
ity in these cases does not prohibit the application of per-
turbative methods. Instead, the sum of the squared am-
plitudes can be interpreted as the mean number of pro-
duced pairs, which of course is not normalized to unity.

Now we want to expand the investigation to negative
projectile charges, i.e., to antinuclei. Experimentally, this
appears highly unrealistic, since at present it is not possi-
ble to produce heavy antinuclei, not to mention a beam of
antinuclei. Antiprotons are accessible, but the charge
is—as for protons —so small that the difference with
perturbation-theory calculations is negligible. However,
from a theoretical point of view it is interesting to explore
how ionization and pair creation behave for large nega-
tive projectile charges in order to point out the inAuence
of strong Coulomb field effects. First results are given in
Fig. 14. The ionization probability falls more and more
below the result of perturbation theory, while the proba-
bility for pair creation decreases only slightly below the
perturbative result and then remains constant (remember
the scaling with 1/Z~ ).
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FIG. 14. K-shell ionization and pair-creation probability
with capture into the K shell of the target as function of the pro-
jectile charge Z~ for the system Pb+ Z~ at the bombarding ener-

gy E=1200 MeV/u and impact parameter b =20 fm. The
probability has been divided by Z~. Dash-dotted line: ioniza-
tion probability; dashed line: pair-creation probability; full line:
unitarity limit.

FIG. 16. Direct pair-creation probability vs Z~ for the sys-
tem Pb-Pb, bombarding energy E=1200 MeV/u, and impact
parameter b =10 fm. Five electron states of the upper continu-
um are chosen. Full line: Capture into the K shell; dash-dotted
line: electron energy E =1.1 mc; dashed line: electron ener-

e

gy E =15 mc; Q'. v= —1; '7: v=+1;*: v= —2; +:
K —+2.

Finally, in Fig. 15 we display the dependence of pair
creation with capture in the K shell on the impact param-
eter b. For small impact parameters the large deviation
of perturbation theory from the results of the coupled-
channel calculation is recovered. The difference de-
creases fast with larger impact parameter and practically
vanishes at about 600 fm. For b &600 fm it is known
from analytical calculations using perturbation theory
that the pair-creation rate decreases almost exponentially
[»].

For the calculation of pair creation with capture of the
electron in the K shell a single coupled-channel calcula-
tion was sufticient. The calculation of direct pair creation
is more time consuming since every state of the positive-
energy continuum may serve as the final state. We have
to perform a full coupled-channel calculation for each
basis state of the positive-energy continuum. For reasons
of computer time we could not take into account all con-
tinuum states. Instead, we restricted ourselves to a few
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FICx. 15. Pair creation with capture with respect to the im-
pact parameter for the system Pb-Pb, E= 1200 MeV/u. Dashed
line: coupled-channel calculations; full line: perturbation
theory.

continuum states with positive energy. Thus, the results
correspond to a multiple differential cross section.

In the first place we want to know whether the nonper-
turbative behavior of pair creation with capture can be
found again for direct pair creation. Figure 16 demon-
strates that this holds true. The increase over
perturbation-theory data is different for different states,
but amounts to more than one order of magnitude in all
considered cases. This increase is weakest for the highest
angular rnomenta and energies.

IV. COUPLED-CHANNEL EQUATIONS
AND GAUGE TRANSFORMATIONS

The Dirac equation is invariant under local gauge
transformations when the minimal coupling is used for
the coupling to the electromagnetic field. A local gauge
transformation of the complex phase of the wave function
causes additional terms in the Dirac equation due to the
derivative operators in the Hamiltonian. These addition-
al terms are canceled by the gauge transformation of the
electromagnetic potentials. Of course, observables are
not changed by this procedure.

Now we want to investigate the inhuence of a gauge
transformation onto the coupled-channel equations. It
should be clear that the description of an electron by a
complete set of basis states is gauge invariant, since this is
an equivalent representation of the Dirac equation. But
the question arises whether the results depend on the
chosen gauge when using a truncated basis set or even
perturbation theory.

Two different requirements for gauge invariance of the
coupled-channel equations can be distinguished. The
stronger requirement for manifest gauge in variance
means that all amplitudes a, at every time step are in-
dependent of the gauge. The second requirernent-
which is weaker —we call "asymptotic gauge invari-
ance. "
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0= X &krak
k

(54)

Now there are two possibilities: We may transform ak as
well as pk. If the ak shall remain unchanged we have to
write

In this case it is merely required that, e.g. , in a heavy-
ion collision the coefficients a; are independent of the
gauge for t~+~, when the perturbing fields vanish.
For this it has to be assumed that at the time t —++DC,
when the a; are compared, a fixed gauge is given. But
only for vanishing fields a certain gauge is distinguished
from all the others, namely 3"=0. This is fulfilled in the
case of a heavy-ion collision for t ~+~. But this condi-
tion is not fulfilled in every case, e.g. , in an electromag-
netic wave of infinite extension (atom in a laser field).

We start with the expansion of a wave function in
terms of a complete basis set I pk I. After a gauge trans-
formation we have

x( r ~ co ) =x( t ~+ oo ) = () . (61)

This boundary condition causes a vanishing surface in-
tegral in (60). Using the continuity equation of the tran-
sition currents of the stationary basis wave functions pk,

i EEfkpf pk+ V(p~apk ) =0, (62)

we proceed

&0f Ia vxIek ) i~+fk fd~P f0kx i~+fk &4f IX 0k )

In order to simplify this expression, we first consider the
matrix element

&pf la VXlpk ) = fdI $Iapk'VX

= —fdI'V(p,'ayk )X+ f dry yfapkX .

(60)

In the following we require

4'k 0k (55) (63)

and since the basis functions pk are eigenstates of Ho,

Ho~Ho (56)

Now the coefficients are independent of the chosen gauge
and thus can be considered as probability amplitudes
without any difficulties concerning their interpretation.
We get the manifest gauge invariant formulation of the
coupled-channel equations when all quantities are written
from the beginning in a gauge invariant manner [38,39].
In this case it results that Ho has to contain the spatial
components of the electromagnetic potential. Thus the
manifest gauge invariance leads to a complicated form of
Ho and a complicated calculation of the basis wave func-
tions. Different aspects and examples of gauge transfor-
mations from this point of view are discussed in a series
of publications by Kobe and co-workers [40—43].

But the manifest gauge invariance is not necessary and
Ho can be chosen in such a way that the basis states are
easy to calculate and constant in time. Then the
coefficients ak in Eq. (54) have to be transformed. In the
following we want to investigate whether in this case the
asymptotic gauge invariance remains fulfilled [44].

Thus it follows

&V, Ia vx'~, xIVk&e' '" =~, &O, Ixe

This relation is inserted in (59) and results in

i & ~k & y—g I vl yk )e'"tk'
k

+te yttkd, &yflXe' '
leak& .

k

(64)

(65)

Since the additional term from the gauge transformation
is a total time derivative, we derive the result that in
first-order perturbation theory

a (t = oo ) =a&(t = ~ ) for X(t =+~ ) =0f (66)

B. Gauge transformation of the target potential

is valid, i.e., the asymptotic gauge invariance is fulfilled.
We already mentioned that for a complete set of basis

states the coupled-channel equations are asymptotically
gauge independent. Rumrich, Soff, and Greiner [44]
proved this explicitly in the representation of the coupled
channels. In addition, an example has been given for the
gauge dependence when using a truncated basis.

A. Perturbation theory

The coupled-channel equations read

df i gttk&fflI leak
&e'

k

(57)

Now we want to discuss a slightly different point of
view. Instead of transforming the projectile potential ac-
cording to Eq. (58),

V'= V—AV= V —ea Vg —eh, g,
with the electromagnetic potentials V=ea A —eV and
the energy difference AEIk =E& —Ek. Inserting the
gauge transformed electromagnetic potentials

likewise we may transform the target potential that is
contained in Ho.

V'= V —ea.V'g —eB,y, (58)
IIo =Ho —a V (67)

we get
If at the same time the basis wave functions are changed
according to

+f t g tik&pf I I leak &e
k

y'=y exp(iX) (68)

+i & ak&pyIea V'X+e8 Xlpk )e'
k

(59)
the Dirac equation for the basis states remains un-
changed:
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id, P'=Hog' . (69) P"(r, t ) =P(r, t ) exp(iy) (77)

Thus the only effect for the coupled-channel equations (7)
is a substitution of the basis wave functions by the
transformed wave functions P'. But P' differs from P only
by a phase factor that is the same for all basis states and
thus cancels in the matrix elements:

(70)

and

e Zp
ln(upt'+R ')

R'=[b +y (U t —hz) ]'i

(78)

(79)

Therefore a gauge transformation of the target potential
does not influence the coupled-channel equations at all
and thus may be ignored. But in principle the initial con-
ditions have to be changed according to

P, (r ~—oo )=P, (t~ —oo )

= g a k(t ~ —oo )P'k ( t ~ —oo ),
k

(71)

which in general is possible only in a complete basis set.
But requiring the initial conditions (61) for the gauge
field, we have P, (t ~—oo ) =P', (t~ —oo ) and also the in-
itial conditions remain unchanged.

Now we turn to an alternative description of (projec-
tile) gauge transformations and show the connection to
target gauge transformations and to changes of the basis
set. We split the total Hamiltonian H=Hp+ V in a
different way:

obviously is just described by a gauge transformation as
also pointed out in [6].

Toshima and Eichler [45] solved the coupled-channel
equations, taking into account the Coulomb boundary
conditions. Their result clearly shows a reduced interac-
tion range compared with calculations not taking into ac-
count these boundary conditions. With first-order per-
turbation theory the result for t ~ ~ remains unchanged.
This is in agreement with our more general examination
of the inhuence of gauge transformation on perturbation
theory.

In addition to the reduction of the interaction range
the result of the coupled-channel calculation displays
large differences of the occupation probabilities for
t~~. This is due to the incompleteness of the used
basis, since in a complete basis the result is independent
of the basis.

H=Hp+ V

where

(72)
V. SUMMARY AND CONCLUSION

Hp =Hp+6 V,
v'= v —aP,
6V=ea Vg+eB,g .

(73)

(75)

0k 4k exp( 'X) (76)

This again elucidates the fact that only for a complete
basis set the coupled-channel equations are gauge invari-
ant. Only in the case of a complete basis set does the
transition to another basis not change anything at all.

C. Coulomb boundary conditions

Toshima and Eichler [45] demonstrated that the basis
wave functions for the coupled-channel equations can be
modified in such a way that. the resulting interactions be-
tween these basis states become short-range interactions.
The necessary modifications of the wave functions [45]

The transition from Hp to Hp is just a target gauge trans-
formation and thus may be omitted without changing the
equations. What remains is a gauge transformation of
the projectile potential, which we already considered in
detail.

Thus a projectile gauge transformation may be con-
sidered as the change of the basis by a (space and time
dependent) phase factor

In this paper we presented coupled-channel calcula-
tions for the nonperturbative description of relativistic
heavy-ion collisions. The time-dependent Dirac equation
has been solved by expanding the wave function into the
atomic basis set and the resulting system of ordinary cou-
pled differential equations is solved numerically. The an-
gular integrals of the required matrix elements have to be
calculated by numerical quadrature. For the matrix ele-
ments one should exploit the symmetry relations derived
in Sec. II.

The most important result deduced from the coupled-
channel calculations is that the probability for the
creation of an electron-positron pair during the collision
is strongly underestimated by first-order perturbation
theory. At a first glance this is amazing since the proba-
bility is small compared with unity. The breakdown of
perturbation theory is caused by the depopulation of the
initial state by ionization and excitation.

Concerning gauge transformations we demonstrated
that results obtained from perturbation theory remain
unchanged under gauge transformations. However, the
solution of the coupled-channel equations is gauge invari-
ant only in the case of a complete basis set. Since the use
of Coulomb boundary conditions represents a specific
gauge, differences compared with calculations that do not
include these boundary conditions [45] are caused by the
incompleteness of the employed basis.
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