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A single two-level atom, with quantized center-of-mass motion, is constrained to move in a one-
dimensional harmonic potential while interacting with a single-mode classical traveling-wave light field.
When the classical light field is tuned to the atom’s lower vibrational sideband, cooling can occur. The
strong-sideband and Lamb-Dicke perturbation regimes for the system are defined. The steady-state and
time-evolution behaviors in the strong-sideband regime are discussed and, in particular, it is shown that
the steady-state average trap number saturates when spontaneous emission is weak and that the steady-
state average trap number depends more strongly on the trap frequency in the saturated regime than pre-
viously predicted. Finally, the possibility of observing quantum jumps between trap levels is discussed.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

The cooling and trapping of atoms and ions is current-
ly attracting considerable experimental and theoretical
interest. The goal of cooling and trapping is the ability to
control the state of motion of atoms or ions by utilizing
their mechanical interaction with light. A single trapped
and cooled ion provides an ideal system for carrying out
investigations in quantum optics, as well as having
promising applications in precision spectroscopy and
time and frequency standards.

In this paper we are concerned with laser cooling of a
single two-level ion in a harmonic potential. In the case
of a Paul trap, the harmonic potential is provided by an
oscillating electric quadrupole field. The motion of a sin-
gle ion in such a trap can be thought of as a secular har-
monic motion in the trapping potential and a micromo-
tion at the frequency of the oscillating electromagnetic
field. When the ion’s absorption sidebands are well
resolved (known as the resolved-sideband limit: v>>T,
where v is the trap frequency and T is the spontaneous
emission rate) the traveling wave can be used to excite the
ion’s first lower vibrational sideband, and in so doing en-
ergy is absorbed from the vibrational motion of the ion
and dissipated via spontaneous emission. In this way the
ion is optically pumped into its lowest vibrational state
and very low temperatures can be obtained.

This type of cooling is known as sideband cooling and
was first reported by Neuhauser et al. [1], who also cal-
culate the final cooling energy. Further theoretical inves-
tigations are carried out in [2], where the irradiating laser
is assumed to be at low intensity. In [3] the effect of finite
laser bandwidth and the energy of the radiofrequency mi-
cromotion are included. Saturation effects are included
in [4-6], the method subsequently being refined to take
into account anomalous coherence effects [7,8]. A sum-
mary of results can be found in [9].

The above calculations were carried out in a regime
where it is assumed that the dominant coherent processes
do not change the trap state. Such a regime can be ob-
tained by going to the Lamb-Dicke limit, where the ion is
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localized to dimensions much smaller than the wave-
length of the driving field. The major advantage of such
a regime is that a perturbation expansion can be carried
out which leads to analytic solutions for the steady-state
energy and the cooling rates [6—8]. This regime will be
referred to as the Lamb-Dicke perturbation (LDP) re-
gime.

But coherent processes which do not change the trap
state need not dominate. If the driving field is tuned to
the first lower vibrational sideband and if the trap levels
are well spaced, v>>Q (where Q is the Rabi frequency),
processes involving off-resonant transitions go as (Q/v)2.
There are, therefore, two competing effects. In the
Lamb-Dicke limit processes involving the sidebands are
small, while large v tends to make the nonresonant pro-
cesses small. In the LDP regime the former effect is
dominant, and if the latter effect is dominant we call the
regime the strong-sideband (SSB) regime.

In this paper a master equation for laser cooling in a
trap, derived by Stenholm and co-workers [6,8], will be
used to consider the system in the SSB regime. In Sec. II
the model is introduced and the equations of motion for
the density operator are obtained. The SSB regime is
defined in Sec. III and a perturbation expansion is
developed which reduces the number of equations which
need to be solved. In Sec. IV simulations of the steady-
state average trap number (7 ), are carried out for vari-
ous regions of the parameter space. It is seen that {n ),
saturates when coherent processes dominate over in-
coherent. In the saturation regime {n ), depends in-
versely on the fourth power of the trap frequency as op-
posed to the usual second power result [9]. In Sec. V
simulations of the time dependence of the average trap
number (n) are carried out. It is noted, in particular,
that transient coherent effects can increase the cooling
time, as well as leading to quantum collapses and revivals
in(n).

One of the applications of trapped ions has been the
ability to observe, for extended periods, the fluorescence
from a single ion. This has made possible the study of
quantum jumps [10-14]. In the experiments to date
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quantum jumps have been observed between internal en-
ergy states of an atom, and in Sec. VI we ask whether the
simple model of laser cooling under discussion would en-
able the observation of quantum jumps between vibra-
tional states of an ion in a trap. To this end a stochastic
simulation of an ion in a trap is carried out. Stochastic
simulations of cooling have already been carried out in
[15], where they are used to obtain ensemble behavior.
Our simulations are based on the approach in [16,17].

II. THE MODEL
AND THE EQUATIONS OF MOTION

We consider an ideal two-level ion of mass m con-
strained to move in a three-dimensional harmonic poten-
tial. The problem becomes one dimensional if one of the
principal trap axes is taken to coincide with the axis
along which the driving field propagates, taken to be the
z axis. Instead of the triplet of quantum numbers
(n,,n,,ny) labeling the vibrational states of the trap, one
quantum number now suffices. The other two are traced
out by summing over the corresponding degrees of free-
dom. In one dimension, therefore, the oscillator states
for the ion have the energies

E,=#vn+1), 1)

where the n are the occupation numbers for the trap
states and v is the characteristic trap frequency for the
mode along the principal trap axis. The energy levels
corresponding to the internal electronic degrees of free-
dom and the external vibrational degrees of freedom are
shown in Fig. 1. Number states |# ) can be used as eigen-
states for the vibrational states, while creation and an-
nihilation operators, a’ and a, ladder between the states.
The operators are related to the ion’s position and
momentum operators according to

z=V'#/2vm (a +aT), p =iVHivm 2a"—a). (@)
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FIG. 1. The energy-level structure for the internal and exter-
nal degrees of freedom for an ion in a trap of characteristic fre-
quency v interacting with a classical traveling-wave light field of
frequency w;. The ion has an atomic transition frequency w,
and is detuned by an amount A from the driving field.
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The internal states of the ion are labeled |e ) and |g ) for
the excited and ground states, respectively, and the ener-
gy difference is #iw,,. The operators o, 0", and 0~ act
on this internal space in the usual way. The ion’s internal
and external degrees of freedom are coupled together by
a traveling light field given by

E(x)=Eecos(w;t —kz) , (3)

where e is the polarization vector and k is the wave vec-
tor. In the dipole approximation the transition matrix
element is

—la)Lt

(e,n|D-Elg,n") =1#0[ emLtu*,,:(k)-i“e

n,

un,n’(k)] ’
4)

where u,,,,,'(k)=(n|eik"|n’> and Q is the Rabi frequency
Q=(E /#){ele-Dl|g).

The part of the Hamiltonian which gives the free ener-
gy and the coherent interaction between the traveling
wave and the ion is

H,=#v(a'a +3)+ 3w, 0,

+1Q(Fote 4 Froe M), (5)
where FEeikZ:eié(aT-f-a).
The Lamb-Dicke parameter € is given by €

=(E,/E,)"?, where E,=#?k?/2m is the classical recoil
energy of the ion and E,=7v is the energy of a trap
quantum. In the classical limit, with trap states very
close together, € is large, and the absorption or emission
of a photon will always cause some change in the vibra-
tional state of the atom. In the nonclassical or Lamb-
Dicke limit of small €, the trap states are well spaced, and
many photons may need to be absorbed or emitted before
the atom changes vibrational state.

Spontaneous emission can be included in this system by
coupling to the vacuum field given by the operators bl
and by, which create and annihilate photons of energy
i, in the mode |k). The Hamiltonian describing the
process is

H,=#3 opblby—#3 g(K')Fo b, +F*cbl),
k' Kk’

(6)
where the coupling constant is
) fon |2
k
k)=— -D
g (k) ﬁ(ele lg) 7 (7

The prime on the summation is a reminder that the
strong mode when k’=k is excluded.
The equation of motion for the density operator is

i

p=—4Hupltp,, (8)

where p. is the relaxation term due to the spontaneous
emission model by H,, and can be derived in a standard
way by regarding the vacuum as a heat bath [18]. The
density operator matrix elements can be defined as
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pagln,n’)=<{a,nlp|B,n") , 9

where a,BE {g,e}. We also remove the fast oscillation at
the frequency of the driving field
ﬁeg(n,n')=eithpeg(n,n’) . (10)

The equations of motion become

Pecln,n’)=—[iv'(n —n")+T"'])p,.(n,n’)
+—;_E peg n, m)umn n,mﬁge(m?nl)] ’
Pgg(n,n’)=—iv'(n —n')p,.(n,n’)
+é2[ﬁge(n’m)um,n‘—ur:mﬁeg(m’n')]
— 3 [d*eiku,,k,)
Xpem,muy: (k) , (11)
Peg(mn')=—[iv'(n —n")+iA +T"/2]p,(n,n")

+é 2 [pee(n’m)um,n’—un,mpgg(m’n’)] ’

m
and §,(n,n")=[p,(n',n)]*. The derivatives are with
respect to the scaled time parameter 7=Q¢. The parame-
ters I'" and v’ are the spontaneous emission rate and the
trap frequency scaled by the Rabi frequency. A’ is the
detuning given by

A'=(wg —awy)/Q . (12)

The integration [ d2Q is over all directions of the outgo-
ing radiation, weighted by the angular distribution func-
tion ©(k). The wave vector of the spontaneous photon is
described by a unit direction vector k and a magnitude
|k| and has a component k, in the z direction. In what
follows the angular distribution of spontaneously emitted
photons will be assumed to be isotropic: ©(k)=1. The
integration can be carried out by changing the integra-
tion variables to the spherical polar coordinates 6 and ¢:

Jd* = [dod¢sing . (13)

The matrix elements under the integral have a depen-

dence on 6,

ik,z

Uy (k)= nle" " |m )= (n|elz0|py ) (14)

and when the integration is carried out the recoil term
becomes

! ! ! AV ’
Q(n,n’ 2|k| 2 f dk u,,,m(k )Pee (M, m )um’,n’(k )

=r 2 x""“ . (15)

The u, ,- are matrix elements of F between the number
states, and give the strength of the coupling between
different vibrational states. They can be evaluated by
writing F as a series in the operators a and a ', and acting
with these left and right on the number states. The result
forn=n'is
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Uy =€ ""i€) LY "€, (16)

"

where L ~" is an associated Laguerre polynomial. Uy o
is symmetric on interchange of its indices. In the Lamb-
Dicke limit u, ,- can be expanded in powers of € giving

=1 s
Upy 1 =16V F1

um,m

(17)

as the only nonzero terms to first order in €.

III. THE STRONG-SIDEBAND REGIME

The equations of motion for the density operator ma-
trix elements form an infinite set of coupled linear
differential equations, and if they are to be solved analyti-
cally an approximation must be made. One of the most
popular approximations [1,2,6—8] is to assume that the
dominant coherent process is a Rabi cycling between
states with the same trap quantum number n (LDP re-
gime). In the Lamb-Dicke regime coherent processes
which change the trap quantum number by one will be
proportional to € (or higher powers of €), and in the limit
that € << 1, these processes will be weak compared to the
Rabi cycling between states with the same trap quantum
number. This limit can be quantified by introducing an
absorption line shape for the ion

Pix)=— 24 (1)

x“+TI'“/4

When the traveling light field is detuned by an amount A’
from the atomic resonance and the ion is in the state
lg,n), the rates for transitions to the states |e,n),
le,n —1), and le,n +1) are lu, 2P (A"),
[ty —1|*P(A"—"), and |u, , +{|*P(A" +v'), respective-
ly.

The system is in the LDP regime, therefore, when

lun’n|2P(A')>>‘un’n_1|2P(AI_V,) ,
'u"’”|2P(AI)>>|un,n+1|2P(A'+v’) )

When the driving field is tuned to the ion’s first lower
sideband, A’'=+', and the system is in the resolved-
sideband regime, the first condition becomes

2

’

(19)

- | »>€, (20)
2v

while the second condition restates the Lamb-Dicke lim-
it.

We are interested in the behavior of the system in the
SSB regime, where the trap levels are well spaced, v' >>1,
such that transitions between the states |g,n) and
le,n —1) will be strong compared with other transitions.
In this case the relationship between the strengths of the
various transitions becomes

lu, ,I?P(A)<<|u, , _|*P(A"—V"),

[ty w1 PP (A +v) <<|u, , PP (A" —v') .
When the driving field is tuned to the ion’s first lower
sideband, A’=+’, and the system is in the resolved-
sideband regime, the condition for the SSB regime be-
comes

(21)
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r’ ?
-— | €

2
2

(22)

The LDP regime corresponds to an absorption spec-
trum (Fig. 2) where the central line at the atomic frequen-
cy is the strongest, and the sidebands are weak. The SSB
regime corresponds to an absorption spectrum where the
first lower sideband is the strongest, and other lines are
weak.

The behavior of a trapped ion has already been studied
in the SSB regime [19], and it was shown that quantum
collapses and revivals occur. One of the most recent ex-
periments on sideband cooling, by Wineland and co-
workers [20], is also carried out in this regime. In [20]
the narrow %S, ,,-’Ds,, electric-quadrupole transition in
198Hg* is used to cool the ion. The trap frequency is
v=2.96 MHz, the decay rate is T=11 Hz [21], and the
|
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wavelength of the transition is A=281.5 nm. These pa-
rameters give €~0.07 and (T /2v'€)*~1.7X 10710,

Perturbation expansion
in the resolved-sideband limit

In the resolved-sideband limit, a perturbation expan-
sion can be developed in the small parameter '’ /v'. We
also assume the system to be in the strong-trap limit,
v'>>1, so that a simultaneous expansion can be carried
out in 1/v'. This perturbation expansion will allow a
division into quickly and slowly varying density operator
matrix elements, the former of which can be adiabatically
eliminated.

In this perturbation expansion the populations of the
upper and lower electronic states and the coherences be-
tween the states |e,n ) and |g,n +1) are slowly varying
and can be written as

pee(n,n)=—r'pee(n,nwé[ﬁeg(n,n FDUS 1y~ 1Pge(n F1,m)]

s

>

m (Fn+1)

Bag ()= S [Pge(nn — Dy 1 =%, 1 Peg(n —1,n)]

[}

D T e MUN IR JUR

m (#Fn—1)

p"eg(n,n +1)=—1T"p,(n,n +1)+é[pee(n,n)u,,,,,+l—u

+L 2 pee(n?m)um,nle—_;_

2m(¢n) m (#n+1)

and Py (n,n')=[p,(n',n)]*. The mean values of the

quickly varying variables,

(n,n')= ___i2
Pee’ s iviin—n")+T"
Xz[ﬁeg(n’m)ul:,n'—un,mﬁge(m’nl)]
(n#n'),
" i/2 ~
Peg(mn’) iv'(n —n’) % [ Pge (s m )ty e
—ur:mﬁeg(m’nl)]
+W.Q'(n,n ), (n#n'),
iv'(n—n')
. (24)
5 (nn')= i/2
Pegi ivin—n'+1)+T'/2
Xz[pee(n’m)um,n’_un,mpgg(m’n')]
(n#n'+1),
~ " i/2
pge(n’n )=

iviin —n'—1)+TI"/2

X 2 [pgg(n’m )ur:,n‘ ——ur:mpee(m9n')]
m

(n¥n'—1),

[ﬁEQ(n’m)u;,n —un,mﬁge(m,n)] ’

wn+1Pge(n F1L,n +1)]

Uy mPgg{m,n +1),

can be expanded recursively to the required order in 1/v'
and I'"/v' and substituted back into Eq. (23). In the
Lamb-Dicke limit, € < 1, a simultaneous expansion in the
small parameter € /v’ can also be carried out.

It should also be noted that in solving these equations
for the density matrix the equations must be truncated
for some value of the trap quantum number n. This
should not be a problem as initial coherent or thermal
states for the trap tend to zero for large n and cooling
should give probability distributions which are peaked at
n =0. If the equations are truncated at n =N there will
be 4(N +1) equations to solve after adiabatic elimination
rather than 4(N + 1) for the full density operator.

IV. THE STEADY STATE

A. The LDP regime
The average trap quantum number is given by
(n)=Tr(a'ap)

=3 nlpgn,n)+p,(nn)], (25)

and is calculated in the LDP regime for the steady state
in [6] from rate equation considerations and in [7,8] in-
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cluding coherences. For isotropic spontaneous emission
and for no phase relaxation the steady-state average trap
number is given in the resolved-sideband limit, I'' <</,
by
(ny= 2|
48 l v

The initial analysis of [6], while not correct in detail,

(26)
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does give some insight into the physical processes at work
in the cooling. The argument leading to the final temper-
ature will be sketched here and used to give some under-
standing of the behavior of the steady-state average trap
number in the SSB regime.

The derivation of the steady state in [6] begins with the
master equation [Eq. (11)], from which rate equations for
the populations are obtained:

. — eE(n+1) r'/4
Poelnyn)= "FPee(n,n)‘*‘—“r,—‘[ng(n +1,n +1)—pee(n,n)]-l-m[pgg(n,n)—pee(n,n)]
enl' /4
42 +T2/4 [pgg(n —1Ln—1)—p.(nn)], 27)
2 ’
. __€n Ir'/4
Pgg(n,n)= —F—,[pee(n —1,n -—1)-pgg(n,n)]+m[pee(n,n)—pgg(n,n)]
2 + '
W[pee(n,n)—pgg(n,n)]-kl"[1—%62(2n+1)]pee(n,n)

+ire(n +1)p,(n +1,n +1)+np,(n —1,n —1)] .

The important processes which change the trap num-
ber are shown in Fig. 3. In Fig. 3(a) Rabi cycling be-
tween |g,n ) and |e,n ) is followed by spontaneous emis-
sion to |g,n +1). In Fig. 3(b) Rabi cycling between

(a) ¢
o
)
=
=
o
2
<
N 1 1 N ,
02V -V o, OFV w,+2V
laser frequency
( b ) 7~
=
g
=
£
)
S
<
1 | 1 1 5
-2V oV W, OFVv w,+2v

laser frequency

FIG. 2. The absorption spectrum (in schematic form) for a
trapped ion as a function of the frequency of the driving field, in
the (a) LDP and (b) SSB regime.

lg,n +1) and |e,n +1) is followed by spontaneous emis-
sion to |g,n). In Fig. 3(c) Rabi cycling between
lg,n +1) and |e,n ) is followed by spontaneous emission
to |g,n). In Fig. 3(d) Rabi cycling between |g,n ) and
le,n +1) is followed by spontaneous emission to
lg,n +1). The rates at which these processes proceed
are given by

R,=1T"é(n+1)P(A"), (28)
R,=R, , (29)
e — — e
g = —_— - g
n n+1 n n+1
(a) (b)
e — — e
g — —_— —_ —_— g
n n+1 n n+1

(©) (d)

FIG. 3. The dominant processes considered in the determina-
tion of the steady-state average quantum number in the LDP re-
gime [6].
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R, =T'é(n+1)P(A'—V'), (30) 06
R;=T'é(n +1)P(A'+V') . B B8 sl ]
£
In the LDP regime a rate equation for the total probabili- E
ty for the ion to be in the nth trap state, f(n), can be é' 04 i
written. If the only significant contributions come from )
the processes shown in Fig. 3 then detailed balance of the § 03r 1
transition rates between the states n and n +1 gives S
§ 0.2 + ]
A, f(n)=A4A_f(n+1), (32) 5
<
where A, =R,+R, and A_=R,+R,. This gives rise & 0! 1
to a Planckian-type distribution for f(n) and if
A _ >> A, then the average trap number is given by 0 - -
.S 1 1.5 2 25 3

A,
(n), —T (33)

to first order in 4, /A _. When the rates are evaluated
for optimum detuning, that is, A’=1+’, the standard result
of Eq. (26) is obtained.

B. The SSB regime

There would seem to be no simple analytic solution to
the master equation [Eq. (11)] in the SSB regime, as all
the density matrix elements are coupled together by the
coherent driving between |g,n +1) and |e,n) followed
by spontaneous emission. It might be hoped that the per-
turbation expansion [Eq. (23)] introduced in Sec. IITA
could be used but that would require that terms up to at
least order €2/v'? be included, as it was seen in the
preceding section that lowest-order heating terms are of
order €2/v'2. But this gives no simple rate equation as in
[6-8].

The steady state is found, rather, by numerical evalua-
tion of the truncated system, which is carried out by writ-
ing Eq. (11) in matrix form and calculating the orthonor-
mal basis vector for the null space of the coefficient ma-
trix. The spontaneous emission recoil term [Eq. (15)] is
not included in full, but is expanded to second order in
the Lamb-Dicke parameter €.

It should be noted [7] that this truncation leads to non-
conservation of probability in the system, as there is some
probability that an excited-state ion will decay into a
ground state with n» > N. In order to ensure the conserva-
tion of probability the spontaneous emission rate needs to
be modified by replacing

F’pee(n7n')—'"r‘:m’pee(n’ )=%‘(F:1 +F:t')pee(n’nl) ’

(34)

where

lkl k' u* '
r, —2'k| 2 I o Kt (Kt () (35)

The behavior of (n ). as a function of the detuning is
shown in Fig. 4. The global minimum occurs when the
driving field is on resonance with the first lower sideband,

=+v', as expected. There are also local minima corre-
sponding to resonances with the second and third lower

detuning A/v

FIG. 4. The steady-state average trap number as a function
of the detuning scaled by the trap frequency. Parameters are
=1000, I''=0.01, €=0.07, and N =10.

sidebands. The temperature in these cases is higher be-
cause there is no pumping of the n =1 (or n =2 in the
case of A’=3+') states to n =0.

Figure 5 shows the behavior of {(n ), as a function of
the scaled spontaneous emission rate for various values of
the trap frequency. In the LDP regime the cooling is al-
ways enhanced by decreasing the spontaneous emission,
whereas in the SSB regime saturation occurs as the spon-
taneous emission is decreased. At some stage the ion,
when excited into the |e,n ) state, is more likely to be
coherently cycled between |e,n) and |g,n +1) rather
than decaying back to |g,n ). One of the set of traces in
the figure corresponds to solutions of the simplified equa-
tions of motion [Eq. (27)]. They show saturation occur-

104 : - —

T

L

10!

steady state average trap number

10 10 104 103 102 107! 100 10!

spontaneous emission I’

FIG. 5. The steady-state average trap number as a function
of the scaled spontaneous emission rate for various values of the
scaled trap frequency. The parameters are N =15, €=0.001,
and v'=10,50,250, labeled (a)—(c), respectively. The solid line
is the solution of the full equations [Eq. (11)], the dotted line is
the solution to the rate equations [Eq. (27)], and the dashed line
is the analytic result given in Eq. (38).
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ring at the same spontaneous emission rate for all three
choices of the trap frequency. When the full equations
[Eq. (11)] are solved the point at which saturation occurs
is dependent on the trap frequency. The result of this is
that the steady-state average trap number is more strong-
ly dependent on the trap frequency for small spontaneous

Peg(mon +1)=—1T"p(n,n +1)+~;~[pee(n,n)—pgg(n 1m0 Uy, —

This additional term is not present in the rate equa-
tions [Eq. (27)] and leads to a modification of the transi-
tion rate R, such that

A _eEnr4+ra+r?) & rv4
— A=/ 2 (1+1—\12)2+(V/I-w)2 3 V/2+rl2/4 .
(37)
The steady-state average trap number is now
12\2 12
(n),= 7 (14T +('T) ' (38)

24v? 14T 42472

For (v'T")?<<1 and I'"? << 1 the average trap number ex-
hibits saturation. In this regime {(n ), goes inversely as
the fourth power of the trap frequency

7
(n),= .
ST

(39)

The analytical result of Eq. (38) is also shown in Fig. 5.
The transition from a 1/v'% to a 1/v'* dependence for the
steady-state average trap number can also be seen clearly
in Fig. 6.

steady state average trap state

10° — NI

10! 102
trap frequency V'

FIG. 6. The steady-state average trap number as a function
of the scaled trap frequency for various values of the scaled
spontaneous emission N =5, e=0.01. The values of the scaled
spontaneous emission are I''=1,0.1,0.05,0.001, labeled (a)—(d),
respectively.
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emission rates than for large spontaneous emission rates.

A semiqualitative analysis of this effect can be obtained
from the expansion procedure outlined in Sec. III A. The
highest-order correction to the equation of motion for the
coherence p,.(n,n +1) in Eq. (23) is frequency depen-
dent:

1 1 €

11 5 F1)+
2 “ivar Pelmn tDTO

(36)

This argument should be considered to be only semi-
quantitative because terms of order €?/v'? are included in
the calculation of {(n ), via the transition rate R, but are
neglected in the expansion leading to Eq. (36). If an at-
tempt were made to consistently include all terms to or-
der €?/v'? Eq. (36) would no longer allow an easy inter-
pretation in terms of transition rates.

In the LDP regime (n), does not depend on the
Lamb-Dicke parameter €. In the SSB regime (n ), will
also not depend on € for sufficiently small values of e.
But in both regimes, as € is increased in size towards uni-
ty, the terms in the coupling matrix u, ,, which are of
higher order in € will increasingly come into play. For
instance, rather than only the heating process |g,n >
—>le,n)—|g,n +1) (goes as €*) occurring, there will
also be |g,n)—|e,n)—|g,n+2) (goes as €*). The
growing strength of such terms should lead to a quadratic
dependence of {n ). on €. The independence of {n ), on
€ for small € can be seen in both Figs. 7 and 8.

The saturation behavior can also be seen in Fig. 9. The
e-independent behavior can be seen for small I'". For
small € saturation occurs at essentially the same value of
I''. As € increases saturation occurs for higher values of
I'’. This is due to the fact that the coherent oscillation
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FIG. 7. The steady-state average trap number as a function
of the Lamb-Dicke parameter € for various values of the scaled
spontaneous emission rate. The parameters used are N =5 and
v'=100, with I'"=0.02,0.01,0.001, labeled (a)—(c), respectively.
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FIG. 8. The steady-state average trap number as a function
of the Lamb-Dicke parameter € for various values of the scaled
trap frequency. The parameters used are N =5 and I'"=0.001,
with v = 100,200,400, 800, labeled (a)—(d), respectively.

between |g,n +1) and |e,n) increases in strength for
higher e.

In the sideband cooling experiment of Wineland and
co-workers [20] a theoretical value for the steady-state
average trap number of {n)~10"° is obtained. This
value is based on the work in [3] and includes the effect of
the laser linewidth and micromotion, but it does assume
the LDP regime. We have already seen, however, that
the single mercury ion system is [20] is in the SSB regime.
With experimental values of the order of I ~2.5X 107
and v'~7.5, the system is in the parameter regime where
saturation of the average trap number occurs. The
steady-state trap number can, therefore, be described by
Eq. (39) and has an order-of-magnitude value of
(n),~107° 1t should be noted that this cannot be
directly compared with the theoretical value quoted in
[20] as we have not included the linewidth of the driving
field or the micromotion.

spontaneous emission I’

FIG. 9. The steady-state average trap number as a function
of the spontaneous emission for various values of the Lamb-
Dicke parameter €. The parameters used are N =5 and
v/ =100, with €=0.1,0.01,0.001,0.0001, labeled (a)-(d), respec-
tively.

V. TIME EVOLUTION

The time evolution of the ion in the trap is governed by
the cooling rate .. In the LDP regime the cooling rate
is given by

c

€
y{,‘—r\r

(40)

to zeroth order in I''/v' for the case where incoherent
effects are dominant, I'">P(A’) [7,8]. It might seem
more reasonable to expect ¥ . to be directly proportional
to I, but the cooling is essentially due to the
lg,n)—|e,n —1)—]|g,n —1) process and the strength of
the coherent transition |g,n )«>|e,n —1) goes as 1/T".

We calculate the time evolution of the system in the
SSB regime by solving Eq. (23) where the correction
terms are evaluated to order 1/v'%:

pee(n’n):_F’rtnpee(n’n)+é[ﬁeg(n’n +1)u:+1,n ~un,n+lﬁge(n + l’n)]

Ir's/4

m[pgg(n,n)—pee(n,n)] 5

pgg(n,n)Zé[ﬁge(n,n =Dy gy Uy —1P(n —1,n)]+

v2i+T%/4

D pe(nn)—pg ()] +Q (n,n)

Pog(nsn +1)=—1T"p,(n,n +1)+é[pee(n,n)—pgg(n +1,n+1)]u, , 4+ CPn)pg(n,n +1)

+ 3 CPnk)pyk +1,k)+ 3 COVn k), (k,k)
k

k (#n)
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and p,.(n +1,n)=[p,(n,n +1)]*, where

(1) |um,n+1|2
cin)=—1

e iv(in—m)+T,

. lumnl> 1 T/

Yoy Wim—n—1) v —iyv'+T,

C(n. k)= — Tk Unk+18n+1,k , 42)
’ 4 [iv'(n—k)+T, )ivi(n—k)

; u
G, k)=~ _Tm e Dm) (43
Cin k) 2F > iviin—m +1) k @3

m (Fn+1)

The spontaneous emission rate has been modified for a
truncated set of equations as in Eq. (35). The recoil term
must also be expanded and takes the form

Q(n,n)=T"3 [ AP +CUn,k)p,,(k,k +1)
kk g

k
+CUn,k)*pg.(k +1,k)], (44)
where
i Uk +1,k'
CiUn,k)=—=T" Al : (45)
2 2 kT,

The time behavior of the average trap quantum num-
ber (n) for different values of the scaled spontaneous
emission rate is shown in Fig. 10. The results are ob-
tained by integrating out Egs. (41) using a Runge-Kutta
procedure. The ion is initially in its electronic ground
state with its external motion in a thermal state with
average trap number {n),;. When incoherent processes
are dominant the cooling rate is inversely proportional to
the spontaneous emission rate. When coherent processes
are dominant the cooling rate is directly proportional to
I'. Figure 11 shows the time evolution of {n ) for vari-

average trap number

800

1200 1600 2000

scaled time 7T

FIG. 10. Time evolution of the average trap number for vari-
ous values of the spontaneous emission. The ion is initially in
its ground electronic state and in a thermal state in the trap
with {(n),=3.96. The parameters used are N =15, €¢=0.05,
and v'= 1000, with I'"=0.01,0.05,0.1,0.5, 1, labeled (a)-(e), re-
spectively.
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FIG. 11. Time evolution of the average trap number for vari-
ous values of the Lamb-Dicke parameter. The ion is initially in
its ground electronic state and in a thermal state in the trap
with (n);,=3.96. The parameters used are N =15, I'=0.1,
and v' =100, with €¢=0.01,0.025,0.05,0.075, labeled (a)-(d), re-
spectively.

ous values of the Lamb-Dicke parameter €. In the
Lamb-Dicke limit the rate of cooling is directly propor-
tional to €.

Coherent processes dominate over incoherent when
I'" <e, and give rise to oscillations in {n ), which can be
seen in Fig. 10 for I'"=0.01. These coherent effects have
the same origin as the quantum collapses and revivals in
the atomic inversion shown to occur in the trapped ion
system [19]. For such behavior to occur the driving field
must be tuned for maximum cooling A'=+v' and also
v'>>1 to ensure that oscillation between |g,n) and
le,n —1) is the dominant coherent process. The spon-
taneous emission rate must also be such that the collapses

6.8 B

average trap number

0 200

400 600 800 1000 1200 1400

scaled time T

FIG. 12. Time evolution of the average trap number showing
quantum collapses and revivals. The ion is initially in its
ground electronic state and in a coherent state in the trap with
(n)eon=6.9. The parameters used are N =15 I''=0.001,
v'=1000, and €=0.05.
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FIG. 13. Time evolution of the average trap number for vari-
ous values of the spontaneous emission. Parameters are as for
Fig. 9.

and revivals are not damped out.
therefore, to satisfy

I'" must be chosen,

1
— <7

o <7 (46)

where 7, is the revival time for the oscillations [22,19].
Finally the ion must be prepared in a coherent state in
the trap. If these conditions hold the effective Rabi fre-
quency corresponding to oscillation between the states
lg,n) and |e,n —1) is a function of the trap quantum
number n. The time evolution of the atomic inversion
shows collapses and revivals due to dephasing and re-
phasing between these Rabi oscillations. This behavior
can also occur for the average trap quantum number as
can be seen in Fig. 12.

There are other effects to be seen in the time behavior
due to strong coherent oscillations in the system. The
rate of cooling is determined by the real part of the eigen-
values of the system, in particular by the negative real ei-
genvalue whose absolute value is the smallest. For dom-
inant coherent processes such eigenvalues are of order I'".
As the most important coherent oscillation is between
lg,n) and |e,n —1), some of the imaginary parts of the
eigenvalues will be of order Iuﬁy1+,_l|~e. If €e>T" the
coherent oscillation may inhibit the decay of the average
trap quantum number (n ). This behavior can be seen in
Fig. 13, where Fig. 10 is replotted except for the scale for
{n ) now being logarithmic. The rate of decay is smaller
than that expected from the smallest real part of the sys-
tem eigenvalues, but does accelerate as the transients are
damped out. For I'' > € the more usual linear plot is ob-
tained.

VI. QUANTUM JUMPS

Recently a Monte Carlo simulation of the master equa-
tion for a trapped ion has been carried out using atomic
wave functions [15]. A large number of simulations were
averaged over to give the ensemble time evolution for the
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system. In this section we look at a single quantum tra-
jectory and carry out a stochastic simulation of the
motion of the ion in the trap. We wish to know whether
information can be obtained on the jumps made by the
ion between different trap states.

For a single ion in a trap, information is carried by the
fluorescent photons. The energies of these spontaneously
emitted photons will be given by w,tmv for
m =0,1,2, ... . If the system is in the Lamb-Dicke limit
the majority of fluorescent photons will have m =0 or 1,
and in the simulation it will be assumed that these are the
only energies occurring. It might be hoped that the mea-
sured energy of any particular fluorescent photon would
give information on which trap states the ion has jumped
between.

There are, however, two difficulties. The first is, that
the measurement process does not collapse the wave
function into any particular trap state, but rather the ion
remains in a coherent superposition of the trap states. It
is not possible to say, therefore, between which trap
states the ion has jumped. This would not be a difficulty
for an anharmonic trap where, in principle, the energy of
the fluorescent photon would give information on which
trap states the ion jumped between. The second difficulty
is that there will be a number of possible coherent pro-
cesses occurring. An ion in the state |g,n) may be
coherently driven into the state |e,n ), |e,n —1), or some
other excited state. For example, consider the case where
the |g,n ) state is equally likely to be coherently driven
into the state |e,n ) or |e,n —1). If a fluorescent photon
of energy w,, is observed it is not possible to say with
high probability whether the trap state has changed by
zero or one quantum of energy. In general if a fluores-
cent photon is observed it is impossible to correlate this
with a change in the trap state.

However, if the SSB regime is considered, the dom-
inant coherent process is between the states |g,n ) and
le,n —1) and there will be a high correlation between
fluorescent photons of energy w,, +mv and changes in
the trap state given by An =—(m +1) (where m is any
integer). Likewise in the LDP regime the dominant
coherent process is between |g,n ) and |e,n ). There is,
therefore, a high correlation between fluorescent photons
of energy w,, +mv and changes in the trap state given by
An =—m.

The simulation will be carried out using the Monte
Carlo wave-function approach of [16,17]. As a first step a
wave function for the system at time ¢ is written in terms
of a set of truncated eigenstates

WY =S [g,(0lgn) +e,(Dlen)Iol0), @)

n=0

where g, and e, are the probability amplitudes for the
atom to be in its ground and excited states, respectively,
and in the nth trap state. The ground state of the quan-
tized electromagnetic field is represented by the |0), that
is, there are no fluorescence photons.

We allow the system to evolve a time dt where
dt <<T L0 LA !, and Q. and A, are characteristic
system Rabi and detuning frequencies. These conditions
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ensure that at most one spontaneous photon is emitted
between ¢ and ¢ +dt. At time ¢ +dt the wave function

can be decomposed over the zero- and one-photon mani-
folds:

lp(t +dt)) =0 +dt)) + |t +dt))

N
|02t +dt)) =3 [g0(t +dt)lg,n)

n=0

+e{0(t +dt)le,n)]1®10) , (48)

N
V(e +dn)) =3 gt +dlg,n)® Bya
n=0 kA

kA),

where k and A denote the wave vector and the polariza-
tion of the spontaneously emitted photon. It should be
mentioned that the sum over the ground states in the ex-
pression for |¢'V(¢ +dt)) is due to the fact that the atom
can theoretically decay into any trap state. Also there is
no contribution from |e,n ) to |y'!), because the condi-
tion Qdt << 1 ensures that any reexcitation after a decay
during dt can be neglected.

The probability of spontaneous emission in the time dt
is given by the square of the norm of |¢'!’) and can be
written

dp =TS (t)dt , (49)

where S(£)=3N_,le,(#)]? is the probability that the
atom will be found in its excited state.

The probability amplitudes g% (¢ +dt) and e *(¢ +dt)
can be obtained by acting on |(z)) with a non-
Hermitian Hamiltonian given by Eq. (5) but which in-
cludes a spontaneous emission term describing departure
rates from the zero-photon manifold. The equations of

motion are, for m =0, ..., N,
. . i X
gm=-lw§ngm—_a E ur:,nen »
2 n=0
N (50)
é,=—Ii cof,,——i—r— em—iﬂ > Uy 8 -
2 2 n=0 '

The free oscillation frequencies are wjf=(m +3)vt1A,
where the plus (minus) corresponds to the excited
(ground) state.

We assume that all spontaneously emitted photons are
detected by a perfect counter. Depending on the result O
or 1 for the number of photons detected, the state
|¥(t +dt)) is projected onto |z +dt)) or [Pt
+dt)) and the result is normalized. For some pseu-
dorandom number x, uniformly distributed between O
and 1, if x > dp,

N
Iyt +dt))=p 3 [\ +dt)lg,n)
n=0
+e!%t +dt)le,n ) 1®10) , (51a)

if x <dp,

N
[yt +dr))=3 g\t +dt)lg,n)el0), (51b)
n=0
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with p=(1—dp)~ 2. We assume that the detected pho-
ton has been destroyed and plays no role in the subse-
quent evolution of the system.

If a spontaneous emission occurs in the interval dt then
the wave function after the spontaneous emission is given
by

_eikgei~x|

o Yz +dt)) , (52)

where k=keg’12 is the wave vector of the spontaneously
emitted radiation. The probability amplitude that the
atom will be found in the state |g,n’) after the spontane-
ous emission is given by

gr(n'”(t +dt)= <g’nllo_—ei2(a +a*)|,¢(t +dl)>
=3 u, (e, (1), (53)

where €=¢€cosf and 6 is a random number chosen from
between 0 and 27.

The spontaneous emission can occur between any two
trap states, and we shall need to be able to calculate the
relative probabilities of spontaneous emission between
the trap states # and n’. The transition amplitude for the
system to be taken from |e,n ) to |g,n’) by spontaneous

.. . _ ik, k-x )
emission is T(n—n')= {g,n'lo"e  '|le,n)=u, ().
To obtain the transition probabilities for all possible
spontaneous emission events which change the trap state
by m we sum over the upper state probabilities:

R(Am)=3 |T(n—n+Am)*le,|* . (54)

In the Lamb-Dicke regime only Am =0,*1 are of in-
terest and the three probabilities in Eq. (54) can now be
normalized to unity and a pseudorandom number x can
be used to decide which of the fluorescent photon ener-
gies, Wy, @, v, O @, —v, is most likely to occur.

A single stochastic simulation is shown in Fig. 14. The

vibrational energy (in units of trap quanta)

0 100 200 300 400 500

scaled time T

FIG. 14. A single simulation of an ion in a trap showing the
change in the vibrational energy in units of #iv. The dotted line
gives the ensemble average for the vibrational energy. The pa-
rameters used are v'=A'=1000, I'"'=0.1, €¢=0.05, N =15, and
r_lcoh =4.
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FIG. 15. The change in trap state in units of #v for (a) an en-
semble average as calculated for Fig. 13, and (b) for an average
over 100 stochastic simulations. The parameters are the same
as those used in Fig. 13.

ion starts in a coherent state in the trap with average trap
number 7., =4. Also shown on the graph is the ensem-
ble average of the trap number obtained by calculating
lg,(t)|*+ e, (t)|>. This exhibits discontinuous jumps at
the times that spontaneous emissions occur. It can be
seen that although the ensemble average shows 4#v ener-
gy lost from the trap, the stochastic simulation shows 67v
energy lost from the trap. Certainly in this single case
there;is not a good correlation between the number of
jumps inferred from the spontaneously emitted photons
and the average number of trap quanta lost in the cooling
process. The reason for this comes from the randomizing
influence of the spontaneous emission in its action on the
ion wave function [Eq. (52)].

In the case that the characteristic Rabi frequency €. is
of the same order of magnitude or larger than the spon-
taneous emission, the ion may undergo several Rabi cy-
cles before spontaneous emission occurs. In such a case
the probability distribution over the trap states rapidly
loses its Poissonian character. When spontaneous emis-
sion does occur the average trap number for the upper
electronic state may be quite different from the average
trap number for the upper and lower electronic states to-
gether. This can lead to a large increase or decrease in
the average trap number. While such events may not
conserve energy individually an average over a number of
stochastic simulations should give behavior approaching
the ensemble average (Fig. 15).

In Fig. 15 the average trap number is calculated by
averaging over Ny =100 stochastic simulations. For
each individual simulation the relative change in the trap
state can be calculated. The correlation between a trap
with average vibrational energy 7 and observing a change
An#iv in the trap energy can be calculated from the rela-
tive probabilities of seeing a certain relative change in the
trap state. For the Nz =100 simulations carried out lead-
ing to Fig. 15 the relative probabilities are shown in Fig.
16. For an ion prepared in a coherent state with 7., =4
the probability of observing a change of 4#v in the trap
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FIG. 16. The relative probability of extracting n#v vibration-
al energy from an ion in a trap. The parameters used are
v'=A'"=1000, I'"'=0.1, €=0.05, N =15, N; =100, and 7, =4.

energy is only 0.25. It should be stressed that the relative
probabilities given in Fig. 16 do not constitute ensemble
behavior as the sample size is only Ny = 100.

VII. CONCLUSION

The analytic results obtained for sideband cooling of an
ion or atom in a harmonic trap are valid only in the so-
called Lamb-Dicke perturbation regime, where the
Lamb-Dicke parameter € is taken to be sufficiently small
compared with unity such that the strongest coherent os-
cillation occurs between the states with the same trap
quantum number. This paper is a discussion of the so-
called strong-sideband regime, where the parameter
(T'/2v'€)? is much smaller than unity, such that the
dominant coherent oscillation occurs between the states
lg,n) and |e,n —1).

In the LDP regime the equations of motion for the
master equation decouple to zeroth order in the Lamb-
Dicke parameter, which enables analytic solutions to be
found. In the SSB regime all the states of the system are
coupled together to lowest order in 1/v', which makes it
impossible to find analytic solutions to the equations of
motion. A perturbation expansion in the small parame-
ters 1/v', T /v', and €/v' is developed which reduces the
dimension of the problem from 4(N +1)* to 4(N +1),
where N is the trap number at which the equations of
motion are truncated.

This perturbation expansion leads to a semiquantita-
tive discussion of saturation effects for the final cooling
energy. It is shown that the steady-state average trap
number saturates for small values of the spontaneous
emission rate. It is also shown that for spontaneous emis-
sion rates much smaller than the trap frequency the
steady-state average trap number {n ) goes inversely as
the fourth power of the trap frequency, rather than as the
second power when not in the saturation region. It is
also argued that the sideband cooling experiment of
Wineland and co-workers [20] is carried out in the SSB
regime.

Simulations of the time evolution are also presented.
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There are various transient coherent effects present in the
system including inhibition of the decay of the average
trap number {(n ) and quantum collapses and revivals in
(n).

In the final section of this paper we have asked whether
it is possible to observe the jumps made by an ion be-
tween different trap states as the cooling progresses. In
particular, is there a high correlation between the vibra-
tional energy lost from the ion and the average vibration-
al energy in the trap before cooling? We have carried out
a simulation in the regime where Q, ~T, as this mini-
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mizes computer time. These simulations show that for a
single quantum trajectory the correlation is not high.
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