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The performance of approximate theories for the collective nonlinear optical response of assemblies of
interacting molecules is investigated by comparing their predictions to exact calculations. To this end,
the nonlinear absorption coefficient of linear molecular aggregates with energetic disorder is studied with
the aid of Monte Carlo simulations. It is shown that the well-known local-field approximation (LFA)
cannot describe the near-resonance nonlinear absorption spectrum for disorder values up to the nearest-
neighbor intermolecular interactions; surprisingly, it is found that the validity of the LFA does not at all
improve with growing disorder. By contrast, the “excitonic two-level system” approximation, in which
each collective one-photon transition (Frenkel exciton) of the assembly is treated as an independent
two-level system, turns out to describe the collective nonlinear response of the aggregates in a much
better way and, moreover, rapidly improves for growing disorder values. It is shown that both models
correctly describe the linear optical response and that, within the framework of the LFA, a close connec-
tion exists between the rotating-wave approximation and the Heitler-London approximation.

PACS number(s): 36.40.+d, 42.65.—k, 42.50.Fx, 73.20.Dx

I. INTRODUCTION

The calculation of the nonlinear optical response from
nanostructures, such as molecular aggregates [1-14], po-
lymers [15-17], and semiconductor microcrystals
[18--21] is an important problem because of the interest
in their special optical properties. The interactions be-
tween the constituents in these systems give rise to collec-
tive (delocalized) electronic eigenstates, which in turn
lead to collective effects in the optical response. Well-
known and rather trivial examples of such effects are
shifts in absorption and fluorescence spectra [1,2]. More
exciting signatures of collective optical response, howev-
er, are (i) exciton superradiance (or cooperative spontane-
ous emission) [4,5,9~15,18-22], (ii) motional narrowing
[1,2,4,14,23], and (iii) “giant” nonlinear optical suscepti-
bilities [8—11,18,24]. Theoretically, the interactions pose
the problem of calculating the electronic (excitonic)
eigenstates, as these form the basis for the application of
standard nonlinear response theory. Even in the case of
linear optics, where only the limited class of exited states
is relevant that can be reached from the ground state by a
one-photon transition, this may already be a difficult
problem, especially if the system contains disorder [14].
For molecular systems, these one-particle states that
determine the linear response are the well-known Frenkel
excitons [25,26]. The calculation of the optical response,
however, becomes almost forbiddingly complicated in the
nonlinear regime, where multiply exited states (two or
more correlated particles) are accessible. In general,
these states are impossible to obtain analytically, even for
perfectly ordered systems; moreover, the numerical deter-
mination of these states is very difficult because of the
large matrices that need to be diagonalized (see Sec. II).
Therefore the nonlinear optical response of extended sys-
tems with interactions is mostly treated with approximate
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theories. The best known example is the local-field ap-
proximation (LFA) [27,28]. This is a mean-field approxi-
mation [29], in which the interactions are incorporated
by adding to the external field that acts on a given parti-
cle (excited molecule; electron) a classical contribution
caused by the polarization of all other particles in the sys-
tem, without taking into account the quantum correla-
tions that exist between the various particles. Tradition-
ally, the LFA has played an important role in the realm
of linear polarization phenomena [30], nowadays, it is
also frequently used to describe the nonlinear optical
response in condensed phases [24,31]. Very recently,
however, the LFA has been seriously criticized following
model calculations on homogeneous molecular aggre-
gates which showed that near resonance, local-field
theory does not correctly describe the nonlinear absorp-
tion coefficient [11,32]. A second approximation consists
of assuming that each one-photon transition (probed in
linear optics) responds to the external fields as an in-
dependent two-level system. The total nonlinear response
of the system then simply follows by superimposing the
response of these noninteracting two-level systems. This
approximation, which can be found in recent literature
[13,14,17], is intuitively correct if the various one-photon
states are well separated. Its validity has, however, never
been studied systematically. Within the framework of
molecular assemblies, to which we will restrict ourselves
in this paper, we will refer to this approximation as the
excitonic two-level system (ETLS) model. A third approx-
imation consists of neglecting the interactions altogether.
Then, the system’s optical response is a superposition of
the response of its single constituents and any collective
effects are completely missed. This trivial approximation
may serve as a zeroth-order point of reference.

Based on the general idea that in the presence of disor-
der the eigenstates have a tendency to localize on part of
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the system [14,33], one may expect that interactions play
a less important role with increasing disorder, so that the
approximate theories will improve their validity.

The main objective of this paper is to study the perfor-
mance of the above-mentioned approximate theories by
comparing their predictions for the first- and third-order
optical response of linear molecular aggregates to exact
results. Linear aggregates have received considerable at-
tention lately [1-14]. Moreover, these systems provide
an ideal testing ground, as the exact expressions for their
nonlinear response are relatively easy to evaluate. In par-
ticular, attention is paid to the role of energetic disorder
(inhomogeneity), which requires numerical simulations.
The organization of this paper is as follows. In Sec. IT we
discuss the general linear and third-order response of
molecular assemblies, without alluding to a specific mod-
el or experimental technique. In Sec. II A the exact ex-
pressions for the (non)linear susceptibilities are given in
terms of the, as yet unknown, one- and two-exciton eigen-
states. In Sec. II B we derive and discuss these suscepti-
bilities in the approximate theories (noninteracting mole-
cules, LFA, and ETLS). It is shown that in the case of
linear response, the LFA and the ETLS model are
equivalent to the exact theory. Next, in Sec. III, we ap-
ply the general expressions for the third-order response to
disordered linear molecular aggregates, where we focus
on the susceptibility that describes nonlinear absorption.
Also, we briefly discuss the simulation method in this sec-
tion. Analytical results for the off-resonance nonlinear
absorption at arbitrary magnitude of the disorder and for
the resonant nonlinear absorption of homogeneous aggre-
gates are discussed in Sec. IV. In Sec. V we present and
discuss the results of our numerical simulations for the
resonant nonlinear absorption for chains with diagonal
disorder that ranges in magnitude from 0.05 to 1 times
the nearest-neighbor intermolecular interaction. Finally,
in Sec. VI we summarize our findings. An Appendix con-
tains the technical details of the local-field approxima-
tion.

II. OPTICAL RESPONSE OF MOLECULAR
ASSEMBLIES: GENERAL THEORY

(1) (3)

A. Exact formalism for y'*’ and y

In this section, we consider the general theory of (mul-
ticolor) frequency-domain optical response of a dilute dis-
tribution of molecular assemblies. We will make the fol-
lowing assumptions about the assemblies: (i) They consist
of nonpolar molecules that have only one relevant elec-
tronic transition, so that they may be considered two-
level absorbers. (ii) The size of each assembly is small
compared to an optical wavelength. The latter restric-
tion is not essential, but applies to many situations of
practical interest. It may be relaxed without major com-
plications, by accounting for the phase differences of the
electric fields over the assembly introduced by finite wave
vectors [11]. Apart from these restrictions, the system is
general. We allow for arbitrary dimensionality and for
disorder in the transition frequencies and the positions
(interactions) of the molecules that make up an assembly,
while also the magnitudes and orientations of the indivi-
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dual molecular transition dipoles within an assembly are
not necessarily equal. As the density of assemblies is low,
we may neglect the interactions between them, so that
the optical response of the total system is obtained from
superimposing the response of individual assemblies.

The optical response of one assembly is obtained by ap-
plying response theory to the Hamiltonian

A A

A=8,-3p,Er,1), (1)

where H is the Hamiltonian of the assembly, i, is the
dipole operator of molecule n, and E(r,,?) denotes the
external electric field at position r, of molecule n. The
electric field is a superposition of a few plane-wave com-
ponents i, which are characterized by their frequencies
w; >0, wave vectors k;, and amplitudes E;:

E(r,t)=;> E;explik; r—iw;t)+c.c.
i
=13E;exp(—iw;t)+c.c., (2)

where c.c. stands for the complex conjugate and the last
step is a consequence of the size restriction that we im-
posed on the assembly. In this limit, the assembly’s opti-
cal response is fully determined by its total dipole, which
can also be separated in its frequency components:

<§(t))52(ﬁ,,(t)>:%2P,exp(—icuit)-f-c.c. (3)

Here ( ) denotes the quantum-mechanical expectation
value. We define the optical susceptibilities of the assem-
bly as the expansion coefficients of the amplitudes P; in
terms of the electric field amplitudes:

P, =y —wi;w,»)-E,»+2k*)((2)( —w;;0;,0; )EE,
J,

+%y‘;x(3)(—wi;wj,wk,wI)EEjEkE,+ LR 4)
where the asterisk on the summations indicates that the
sum of the frequencies wj, Wy, etc., must equal w;. ¥ is
a tensor of rank i + 1, whose second (third, etc.) index is
contracted with Ej (Ey, etc.); if ; is replaced —wj, Ej
should be replaced by its complex conjugate E} (analo-
gous for k and /). For our system of nonpolar two-level
molecules, Y’ vanishes identically. We note that the y'”
defined by Eq. (4) are generally referred to as the
(hyper)polarizabilities of the assembly; here, we rather
use the word “‘susceptibilities,” to distinguish them from
the (hyper)polarizabilities of the individual molecules,
which also play an important role in this paper. Of
course, in an experiment one observes the macroscopic
susceptibility of the total ensemble of molecular assem-
blies, which is given by

iril)ac:"]<x(l)>d ’ 5
where 7 is the density of assemblies and ( ), denotes an
average over any disorder in the system [energetic, posi-
tional, and (or) orientational]. The standard ways to cal-
culate the susceptibilities consist of either using nonlinear
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response theory [27,28,34] or iteratively solving nonlinear
equations of motion [11,35]. Both methods essentially in-
volve the diagonalization of the unperturbed Hamiltoni-
an H,. We will only focus on the electronic degrees of
freedom and not consider vibrations or phonons. In that
case, fIO is the Frenkel-exciton Hamiltonian, which in
second quantized form and within the Heitler-London
approximation reads [25,26]

A,=3#0,B}8,+34V,,B B, =3#H,,B}8
n

n,m n,m

(6)

where B, and ﬁ:r, denote the Pauli annihilation and
creation operators for an excitation on molecule n, re-
spectively. (1, is the transition frequency of molecule n
and V,,, is the (dipole-dipole) interaction matrix element
between the molecules n and m, which tends to delocalize
the excitations over the assembly. The prime on the sum-
mation excludes the case n =m. The Hamiltonian Eq. (6)
conserves the number of excitations, so that the eigen-
states separate into classes of linear combinations of
states with a fixed number of molecules excited: exciton
manifolds (see Fig. 1). In order to describe linear
response, it is sufficient to know the eigenstates of ﬁo
that can be reached from the overall ground state |0)
(with all molecules in the ground state) by absorption of
one photon. These states are the one-excitons (or Frenkel
excitons):

etc.

two-exciton
manifold

U .

one-exciton
manifold

ground state

FIG. 1. Schematic representation of the energy levels of an
assembly of two-level molecules. The assembly’s excited states
separate into manifolds (bands) in which the total number of ex-
citations shared by the molecules is a constant. The separation
between two consecutive manifolds is on the order of a typical
single-molecule transition energy, whereas the width of the n-
exciton manifold is on the order of 4n times the typical inter-
molecular interaction. Optical transitions are only allowed be-
tween two consecutive manifolds.
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lo)=S@,.ln), (7)

where |n ) denotes the state in which only molecule 7 is
excited, and ¢@,, is the nth component of the normalized
oth eigenvector of H,,,; the eigenvalue 1, gives the fre-
quency of the exciton |0 ). Linear response thus involves
the diagonalization of an N X N matrix, where N is the
number of molecules in the assembly. To describe
higher-order optical processes, we need eigenstates that
can be reached from the ground state in two or more op-
tical transitions. The simplest of these, the two-excitons

10'10'2): 2 ¢ol02n1n2‘n1n2> (8)

nypny

follow from an N(N —1)/2XN (N —1)/2 matrix diago-
nalization. Here 0,0, formally represents one label; the
two-exciton frequency is denoted Q, ,. . Three-excitons

involve a matrix of the order N3, etc. Thus the difficulty
of calculating the higher excited states increases rapidly
for typical aggregate sizes.

The transition dipole operator of the total aggregate,

P=>u,(B!+8,), 9)

has nonzero matrix elements only between two consecu-
tive exciton manifolds. Here, g, is the dipole matrix ele-
ment of molecule n, which is assumed real. The transi-
tion dipole from the ground state to the one-exciton lo)
is

p005<0@|0>=2¢)0nun . (10)

Similarly, the transition dipoles between the one- and
two-exciton manifolds, ﬂoyolgz—__—<0|P|0'10'2), can be ex-

pressed in terms of the expansion coefficients ¢, and
Poioynny° It follows quite generally from'the structure of
nonlinear response theory that for calculating the third-
order polarization, it suffices to know the one- and two-
exciton states. Of course, it is possible to reach the
three-exciton manifold through three interactions with
the external field, but these states do not have a transition
dipole to the ground state and, therefore, do not contrib-
ute to the third-order polarization. Straightforward ap-
plication of response theory gives the first- and third-
order susceptibilities of the assembly; in the rotating-
wave approximation (RWA) with respect to all frequen-
cies we find

Hoolso

1
e Ve L 1
R Ty an
and
Y3 =050, —0,,03) =X — 001, —©,,03)
+X(1%)(—ws;w1,—a)2,w3), (12a)

with
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2 “001”010”’002“020 1 1
R * :
s 8#° ;& (0,—Q, —iT)Nw,—Q, +iT) | @,—Q, +il[ ' @;—Q, +il
(12b)
3 2 u002”0304,01#a2,03a4”0l0 ”02,0304"0304,01”’002“010
X (—og0), —0,03)=—— ~a 4T ~a. —ir
8% 01,0, (ON o, 4 [90) o, l
0304
X L (12¢)

(03— Q, +il) @ +0;—Q, , +2iT) ’

where o, =0, — 0, t+ ;. When using Eq. (12) to calculate
the assembly’s third-order dipole component with fre-
quency ,, one should in the spirit of the RWA only al-
low for the permutations (©,, —w,,®;) and (@3, —®,,w;)
of (0,0, w;) in Eq. (4). The other permutations contain
two antirotating factors. The full expressions for the sus-
ceptibilities (i.e., without making the RWA) are obtained
from Egs. (11) and (12) by adding their complex conju-
gates with opposite frequency arguments: w— —o and
(W, @, —wy, w3)—>(—w;, —0,, ®,, —w3); moreover, one
should then allow for all six permutations of (@;,w,®;)
in Eq. (4). In the derivation of Egs. (11) and (12), we have
invoked a damping model described by the following ac-
tion on the density operator [32]:

4P| — _r>B1Bp+pBIB,—2B,pBY). (13
dt rel n
This describes relaxation of every single-molecule

ground-state <> excited-state coherence with rate I' and
of excited-state populations with rate 2I"; the feeding of
the molecular ground state by decay of the excited-state
population is described by the last term. Pure dephasing
processes are neglected. Within this model, all ground-
state <»one-exciton coherences in the assembly relax with
the same rate I'; one-exciton populations (|0 ){¢’|) and
also coherences between the ground state and two-
excitons (|0){oo’|) all decay with rate 2I'. Refinement
to allow for o dependence of these damping rates is
straightforward in principle. We finally note that the
present damping model is not the same as the one found
in the superradiant limit [36]; local nonradiative decay
channels are assumed to dominate here.

The first contributions to y'3’ derives from perturba-
tion pathways of the density matrix [34] in which only
one-exciton states play a role [Fig. 2(a)]; in the second
contribution, also two-exciton states are involved [Fig.
2(b)], which result in the two-exciton resonances in Eq.
(12¢c). A subtle point in the derivation of ¥'*’ is the possi-
ble feeding of the ground-state population |0){0| with
rate 2T from the one-exciton populations |o,){o,l,
which adds the pathways with the dashed arrows in Fig.
2(a). Neglect of this feeding results in unphysical diver-
gencies in ¥'¥, as is well known from single-absorber
problems [37]. The possible feeding of one-exciton coher-
ences from coherences between one-excitons and two-

10><0l ——— I0><o"1| — [0><0] ——» IO><($'2I

’ l
7
7
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7
7
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v
-
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7
7
7
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16,6, ><0l — I:53<54 ><o}! (b)
7
7
7
Y»
I02> <0l

FIG. 2. (a) Diagram representing the Liouville-space path-
ways that contribute to x> given in Eq. (12b). Every horizontal
(vertical) arrow indicates an interaction with one of the external
electric fields with the bra (ket) side of the density operator.
Each of the eight different pathways that starts from the ground
state |0)(0| and follows three (horizontal or vertical) arrows,
gives a different contribution to the third-order polarization (see
Ref. [34]). Two additional pathways result from the possible
feeding of the ground state due to relaxation (with rate 2I') of
one-exciton populations with o,=0 (dashed arrows). (b) Dia-
gram representing the Liouville-space pathways that contribute
to xi}’ given in Eq. (12¢). [Cf. (a)].
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excitons [dashed arrows in Fig. 2(b)] has been neglected
in the calculation of x\3’; those processes lead to negligi-
ble contributions if T" is small compared to typical sepa-
rations between one-exciton levels [38]. Finally, we note
that the inclusion of pure dephasing would considerably
complicate the calculation of the third-order response, as
it would couple all one-exciton populations |o;){c| to
each other in a master equation, and eventually give rise
to dephasing-induced extra resonances (see, e.g., Ref.
[35]).

Equations (11) and (12) constitute our exact results for
the linear and third-order response in terms of the one-
and two-exciton states, which still depend on the detailed
model for the assembly.

B. Approximate theories for y

In this section, we introduce three theories for ‘!’ and

x® of a single assembly, which account for the inter-

(3)
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molecular interactions (collective eigenstates) in different
approximate ways. In the first, “independent-molecule,”
model, we neglect the interactions completely. In this
limiting case, the aggregate’s response is just the superpo-
sition of the single-molecule responses, so that

=37 14
n

where 7' denotes the ith-order polarizability of molecule
n. We have (in the RWA)

(—w,;0, — 0,0 )=’%—
Yn KR ad 223 8‘ﬁ3 (wz__

These expressions are easily obtained from Egs. (11) and
(12) by restricting the assembly to one molecule, for
which the one-exciton states are trivial and the two-
exciton states do not exist.

Next, we consider the local-field approximation. In
this well-known approximation, the intermolecular in-
teractions within the assembly are incorporated by as-
suming that each molecule responds to a local field that
consists of the external field plus a classical contribution
that describes the electric field caused by the other molec-
ular dipoles in the assembly [27-29]:

E(r,,t)=E(r,,t)— 3 T(r,,){@,0)),

m (Fn)

(16a)
with

2
T(r)="13 (16b)
r
the dipole-dipole interaction tensor. The enormous ad-
vantage of this approximation is that it simplifies the
many-body optical response to a single-molecule response
with respect to the self-consistent field E, . (self-
consistent, because it depends on the dipoles themselves).
Moreover, it turns out that the fulfillment of the self-
consistency condition essentially requires the solution of
the one-exciton problem only (vide infra). It should be
realized that the approximate nature of this treatment re-
sides in the fact that in the right-hand side of Eq. (16a)
the expectation values of the molecular dipoles occur and
not the operators themselves; if the operators themselves
are kept, Eq. (16a) is of no use, because it is then
equivalent to the total Hamiltonian (without the Heitler-
London approximation) and requires the solution of the

1 Hnldn
(e .. —_ - 15
M and ¥ Ly T (152)
and
|
Halbnn iy 1 1 (15b)
Q,—iD)w,—Q, +il) |0,—Q,+iT  ©,—Q,+il [

entire many-body problem. Equation (16a) is a mean-
field approximation that can be derived quite generally
[29] by assuming that the expectation value of any prod-
uct of operators acting on different molecules can be fac-
torized into the product of the expectation values of the
separate operators, €.g.,

i, (Ofi, (1)) — (B, ()R, (1) (17)

This is only exact if the molecules do not interact,
whereas the whole aim of the local-field approximation is
to account for interactions. Even without any further
calculations, this raises strong doubts concerning this ap-
proximation. Equation (16) may alternatively be formu-
lated as

Ky 'Eloc(rn’t ):.u’n 'E(rn’t)

- S #V, (B ()+B,1), (18)
m(#n)

with V,,, the interaction matrix element. In this form,
the local field is not restricted to dipole-dipole interac-
tions.

The procedure to obtain the susceptibilities now con-
sists of using the self-consistency of the local field in an
iterative way [27,39]. First, all the variables are written
in terms of a mode expansion like Eq. (3), which defines
amplitudes (fi,);, E;(r,), etc. By definition, the
(fi,); can be expanded in terms of the local field at site n
through the polarizabilities of molecule n:
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<F’n> —"}/(” wi;wi)'Eloc,i(rn)

F3
J k1

><]:‘-:loc,k(rn )Eloc,l(rn)+ T (19)

_wi;wj)wkya)[)sEloc,j(rn)

This represents a nonlinear set of equations for the (fi, );
(n=1,...,N), which can be solved by reexpansion: we
substitute the unknown expansions of the {fi, }; in terms
of the external-field amplitudes E; directly into the left-
hand side of Eq. (19) and indirectly into the right-hand
side by using Eq. (16) or (18) and equate terms of equal
powers in the external-field amplitudes that occur on
both sides of the equation. This procedure enables us to
iteratively solve the expansions for the {fi, ); in terms of
the external-field amplitudes, which, using Egs. (3) and
(4), gives the expressions for the assembly’s susceptibili-
ties. The algebra is, in particular for disordered systems
with possibly different orientations of the transition di-
poles, rather involved and is worked out in detail in the
Appendix. Here, we just give the results for ' and xy*,
where we restrict to the RWA and for simplicity also
confine ourselves to the case where all molecular transi-
tion dipoles within the assembly are equal and parallel.
We find

(1)
X1rAl

—w;w)= EL y' (—w;0), (20)

and

(3)

Xreal — wi;wj,wk,wl):an(wi )L, (;)L, (o )L, ()

Xy —w;0;,0,0;), (21

j b
with local-field factors

o—Q,+ill
w)—2¢an¢amm Q +ir (22)

o,m

If in Eq. (21) w; is replaced by —w;, L,(w;) must be re-
placed by its complex conjugate [L, (a) ]* analogous for
k and ). In Eq. (22), the ¢,, are the one-exciton trans-
formation coefficients, defined in Sec. II A, which have
been assumed to be real (the more general form can be
found in the Appendix). The general structure of Egs.
(20) and (21) is well known [27,28]: the susceptibilities are
given by the single-molecule polarizabilities corrected by
local-field factors (one for each frequency that takes part
in the process). Equation (22) demonstrates explicitly the
above-mentioned fact that one-exciton states are
sufficient to account for the self-consistency. In the LFA,
the one-exciton states constitute the only collective input of
the assembly into its susceptibilities, no matter the order of
the susceptibility. It is not necessary to determine exci-
tons in higher manifolds. In the usual LFA for bulk sys-
tems, this is manifest from the fact that the Lorentz-
Lorenz local-field factor (e+2)/3 only depends on the
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linear dielectric function €. As is clear from Eq. (22),
each L, cancels a molecular resonance in the
(hyper)polarizabilities in favor of a collective (one-
exciton) resonance. This is physically sound, as the sus-
ceptibilities of the assembly should exhibit collective res-
onances; it is also clear, however, that two-exciton reso-
nances that are contained in the exact expression Eq.
(12¢) are not recovered in the LFA [11]. In the case of
linear optics, where two-excitons play no role, the LFA is
exact, as follows quite generally by combining Egs. (10),
(15a), (20), and (22) and comparing the result to Eq. (11).
This exactness is also intuitively clear: the factorization
approximation Eq. (17) is not relevant for linear optics, as
expectation values of two-body operators are at least of
second order in the external electric fields. We further
note that in the absence of interactions L,(w) reduces to
unity, so that the independent-molecule expressions are
correctly recovered from Egs. (20) and (21).

In the general case of arbitrary orientations and magni-
tudes of the transition dipoles within each assembly, the
local-field factors are tensors. Also in this most general
situation, which is worked out in the Appendix as well,
the only collective knowledge needed to obtain the local-
field factors are the one-exciton states, and the linear sus-
ceptibility calculated within the LFA is exact. Finally, it
is noteworthy that if we do not apply the RWA, the
local-field factors are still determined by the one-exciton
states, provided that we also relax the Heitler-London ap-
proximation (HLA) in the Hamiltonian Eq. (6). Then,
too, the LFA is exact for ¥'!. This is shown in the Ap-
pendix. It is not surprising that the RWA and the HLA
are closely related: In the RWA, one neglects interac-
tions between the positive frequency parts of the dipoles
and the electric fields (B :r,E;*exp(iwt )),whereas in the
HLA, one neglects the interaction between the positive
freﬁ‘luency parts of the dipoles on different molecules
(B ,B,,) [see Eq. (A19); analogous for the negative fre-
quency parts] As the LFA mixes the molecule-field and
molecule-molecule interactions, it relates the RWA to the
HLA.

The third approximation for the assembly’s optical
response that we discuss here can be found in the litera-
ture (see, e.g., Refs. [13,14,17]), but is not known under a
specific name. It consists of assuming that each one-
photon transition (i.e., ground-state<>one-exciton transi-
tion) responds to the external fields as an independent
two-level system, which seems justified if the various
one-exciton levels are well separated. The total system of
N interacting two-level molecules is thus replaced by N
noninteracting two-level systems, with transition frequen-
cies and dipoles of the one-exciton states. Therefore we
will refer to this model as the excitonic two-level system
model. As in the LFA, the collective optical response is
now fully determined by the one-exciton states, irrespec-
tive of the order of the nonlinear process. Thus this ap-
proximation also misses multiexciton resonances. The
first- and third-order susceptibilities follow by using Egs.
(15) for each one-exciton state. For the linear susceptibil-
ity, we then recover the exact result Eq. (11), because
multiexcitons do not play a role in linear optics. For %,
we obtain
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III. NONLINEAR ABSORPTION
IN LINEAR AGGREGATES

In the preceding section, we did not specify the
configuration and the interactions in the molecular as-
sembly. From now on, however we will restrict our study
to linear molecular aggregates with nearest-neighbor in-
teractions. Linear systems, such as aggregates and poly-
mers, have received considerable attention lately [1-17].
The prime motivation to restrict to this model, however,
is its unique property that all 2" eigenstates can be found
exactly from the diagonalization of only the N X N matrix
H,, [Eq. (6)]: one-excitons, two-excitons, etc. are all
determined by diagonalizing this single symmetric tridi-
agonal matrix [38,40,41]. This enables us to evaluate the
exact expressions for the nonlinear response relatively
easily, which makes this an ideal model system to assess
the validity of the approximate theories. We note that
this property holds for arbitrary disorder in the transition
frequencies and the interactions on the chain; it only de-
pends on the ordering of the molecules imposed by the
linear system in combination with the nearest-neighbor
interactions. Furthermore, we stress that no periodic
boundary conditions are used. We will assume that all
molecular transition dipoles are equal in magnitude (u)
and in orientation (Fig. 3).

The eigenstates are fermion states, which are obtained
as follows [38,40,41]. As in Sec. II, let Q, and ¢,,
denote the eigenvalues and normalized eigenvectors of
H,,. Then, the N one-exciton states |o) are given by
Eq. (7) with energy #, and transition dipoles py, from
the ground state as in Eq. (10). The expansion
coefficients of the multiexciton states [like the Poyoyn,n,

in Eq. (8)] are given by Slater determinants of the ¢,,.
For instance, the N(N —1)/2 independent two-exciton
states are now labeled by o, and o, (0| > 0,) and read

|0'10'2): 2 (¢o]nl¢02n2_(poln2¢)oznl)|n1n2> ’ (24)
ny,n,

(ny <ny)

with energy 7} —fi(ﬂg1 +Q‘72)’ and transition dipoles

g0,
to the one-exciton manifold

IS S
LT 7777

FIG. 3. Linear aggregate of N two-level molecules with
parallel transition dipoles, indicated by the arrows, which is in-
troduced as model system in Sec. III.
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2 2 Kool ooloot o0 1 1 (23)
8% < (0,— Q,—iT N, —Q,+il) | 0;—Q,+il  @;—Q,+il [’
Booo,=H 2 (@5, t@5,)
"l’nZ
(n; <n,)
X((Polnl(pazn2_¢aln2¢)oznl) . (25)

Sum rules for the transition dipoles follow directly from
the orthonormality of the eigenvectors ¢,,. Of particu-
lar interest are

DHookoo=Npp (26a)
S Hooo oo =N =2uptpostteo » (26b)

(71,02

(0,>0,)

> Bo.oBoy,0i0l00,0, 00,0 = 2N(N = Dpppp .

T1p02 03,04

(03>0y)

(26¢)

The linear and third-order susceptibilities for the linear
aggregate are now obtained by substituting the above fre-
quencies and transition dipoles into the various expres-
sions given in Sec. II. As we have seen quite generally in
Sec. II that the linear response is covered exactly by the
LFA and in the ETLS model, we will from now on focus
on the third-order response of ensembles of aggregates.
Specifically, we will study the nonlinear absorption spec-
trum, which is given by

Ay(@)=Im[{{ex(—w;0, —0,0)ieee) ;)] »

(27

where e is the unit polarization vector of the incident
laser beam and @ >0 is its frequency. Furthermore, ¢ )d
denotes an average over possible realizations (transition
frequencies and intermolecular interactions) of the aggre-
gates and ),mg is an average over the orientations of the
aggregates in the sample. The full nonlinear absorption
coefficient contains extra factors, such as the density 7 of
aggregates and the frequency w [28]. As these factors are
equal for all models, they are not of interest in our com-
parative study and we will omit them here. The orienta-
tional average in combination with the tensor nature of
¥ (~pppp) results in a simple prefactor,
((u-e)*) g =Bu?, that is equal for all models. In the re-
sults of Secs. IV and V, we will take =1, which holds if
all aggregates are lined up and p|le. For an isotropic dis-
tribution of aggregate orientations, =1. Henceforth,
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we will refer to A4,(w) as the nonlinear absorption
coefficient. To shorten the notation, we define the detun-
ing from the laser frequency to the o;th one-exciton fre-
quency and to the frequency of molecule »n as

B

1

2

(3) -

(_ y W, @, )_

X W0, — W, 7 > (

01,02

A, +iD)4, —iD) |Forboobontion 'y ip
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A, =0—Q, and A, =0—Q,, The
relevant third-order susceptibility is then within the vari-

ous theories given as follows.
(i) Exact theory [cf. Egs. (12)].

respectively.

1 1
A, +il

2A

92

—_ 2 #002.“'02,0304“0304,01”‘010 (A03+AU4+2iF)(A02+iF)

0304

(03>0y)

We note that the summations over o; and o, are nested
within those over o, and o,. Equation (28) has recently
been derived by Spano [38,42]

(ii) Independent molecules [cf. Egs. (14) and (15b)].

3 . = (3) .
Xin())l(_a))w’_w»w)"'z'}/n (_O),CO,_C(),C!))
n

__4 pppp 2
=" : 9)
8% E (A24+T?)A, +ilh)

(iii) Local-field approximation [cf. Egs. (21), (22), and
(29)].

3) o -
X1pAl — 050, —0,0)=

Apppp
8#°

XS [K, () PK o)A, +il),

(30a)
with
1
= _— . 0
K, (o) §n¢an¢um A il (30b)
(iv) Excitonic two-level systems [cf. Eq. (23)].
4 Kool soHoot 50
s — 030, —0,0)=— . (3D
L =Dy ey

We stress that to evaluate any one of the expressions
(28)—(31), it suffices to diagonalize the matrix H,,,.

From here, only a few further results can be derived by
analytical means; this will be done in Sec. IV. In general,
numerical techniques are needed, especially if we allow
for disorder. The role of disorder is particularly interest-
ing as it tends to localize the exciton eigenstates (the
coefficients ¢,,) on part of the chain [14,33]. This may
be viewed as a decreasing role of the intermolecular in-
teractions, so that we may expect the approximate
theories to improve with growing disorder. We have in-
vestigated this for the case of Gaussian diagonal disorder:
Q,=Q+D,, where D, is a random energy offset chosen
independently for each molecule from a Gaussian distri-
bution with standard deviation D:

(28)

P(D,)=exp(—D?2/2D?)/DV 27 . (32)

No interaction disorder was considered; all nearest-
neighbor interactions were taken to be V <0 (J aggre-
gate). In Sec. V we present the results of this study,
which has been conducted by standard Monte Carlo
simulation techniques: For every value of D, an ensemble
of aggregates was randomly generated, the matrix H,,,
for each aggregate was diagonalized, and its contribution
to the nonlinear absorption coefficient calculated accord-
ing to Egs. (27)-(31). Statistical errors in the ensemble-
averaged absorption coefficients were estimated by split-
ting the total ensemble into ten subensembles and calcu-
lating the standard deviation of the ten subaverages. The
number of aggregates within the total ensemble was
chosen such that the statistical errors were small enough
to make the comparison between the various theories
significant (see Sec. V). All calculations were performed
on a Convex C230 computer, with the use of vectorized
NAG library routines [43].

IV. OFF-RESONANCE RESPONSE
AND HOMOGENEOUS AGGREGATES

In this section, we discuss two regimes that can be han-
dled by analytical means. The first is the off-resonance
form of Y*(—w;0, —w,w). Let A=w—Q denote the de-
tuning of the laser frequency from the average molecular
transition frequency and let us assume that we are far
away from all resonances: |A|>>V|,D,I". (However, |A]
is still small enough to justify the RWA.) We then have
A,=~A,=A (all o0 and n). Substituting this into Eq. (28)
and using the sum rules (26a) and (26¢), we find

GV — e o — ~NA Bppp
Teie T =N s At Y
Note the proportionality to N, even though the one-
exciton (y{*’) and two-exciton (y{}’) contributions sepa-
rately scale like N% a delicate cancellation occurs be-
tween these two terms [9-11]. From Egs. (29) and (30) it
is easily found that the same off-resonance expressions
hold for the independent-molecule model and in the
LFA. It should be stressed that this holds for every ag-
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gregate separately and is not a consequence of the disor-
der average. By contrast, the ETLS model [Eq. (31)] does
not give the correct off-resonance behavior: the factor
Nu* in Eq. (33) should for this model by replaced by
S, o, 14, which varies between Nu* in the limit of very
strong disorder (D >>|¥]) and aN?u* in the case of van-
ishing disorder (a is a constant of the order unity). The
delicate cancellation between one- and two-exciton con-
tributions can, of course, no longer occur in this model.

We now turn to the more interesting resonance region,
for which analytical results can only be obtained in the
case of homogeneous aggregates: D =0, or Q, = for all
n, with nearest-neighbor interactions V. We will discuss
this in some detail, because it serves as a general refer-
ence case when studying disordered aggregates. H,,, is
now diagonalized by

Bk ok, —H

Sk,

172 1+(—)k'
N+1 k

— kZ
cot,)—8,, 1H

2091
172
Pin = ﬁ z Tl , (342)
with eigenfrequencies
Q,=Q+2V cos NTT+1 ] , (34b)
and wave numbers k =1,2, ..., N. The eigenvectors @y,

are standing waves which are delocalized over the entire
chain. The important transition dipoles are
172
1—(—)*
2

Hox —H

cot(k) , (35a)

N +1

and, after some tedious but

gonometric algebra,

straightforward tri-

3 cot(k,)

+%[8kl*kz*k,O_Skl*‘k2+k,0][COt(Kl)+COt(K2)]

30k, 4k, + k28 + 1) 8k, —k 0} [cOtlK)) —cot(ky)] |

where k;=mk;,/2(N +1). From Egs. (35) and the sum
rules (26), it is found that the |k =1) one-exciton state
contains almost the entire oscillator strength (dipole
squared) from the one-exciton manifold to the ground
state [0.81(N+ 1)u? for N >>1]. This well-known fact is
responsible for exciton superradiance [4,14]. Among the
allowed transitions from the |k =1) one-exciton state to
the two-exciton manifold, the transition to the
|k, =2,k,=1) state is dominant, with an oscillator
strength of 1.27(N +1)u? (70% of the total) for N >>1.
Consequently, in the absence of other damping mecha-
nisms, the lk1 =2,k,=1) state will superradiate into the
one-exciton manifold.

Substituting the above expressions for the eigenfre-
quencies and the transition dipoles into Egs. (28)-(31),
the nonlinear absorption coefficients for homogeneous ag-
gregates can directly be plotted. In Figs. 4(a) and 4(b),
the results are given for a J aggregate of 40 molecules
with a damping rate of I'=0.01|¥] in the frequency re-
gion close to the resonance ; _,. The comparison be-
tween the exact theory and the LFA [Fig. 4(a)], reveals
the same features that have already been discovered by
Spano and Mukamel for the case of homogeneous cyclic
aggregates [11]. We will briefly highlight the most im-
portant points and add some discussion. The exact
theory shows a strong bleaching of the kK =1 one-exciton
transition (negative contribution to the absorption),
whereas positive contributions to the absorption derive
from two-photon absorption (TPA), which is caused by
transitions from the ground state via the one-exciton
manifold into the two-exciton manifold. TPA is resonant

(35b)

at 20=Q; +Q,., with k +k’ odd. (The TPA in Fig. 4 is
mainly due to k =1,k’=2). The magnitude of the one-
exciton bleaching scales as N 2. because the relevant di-
poles scale like VN . This scaling marks cooperative (“gi-
ant”) on-resonance third-order response. We reiterate
that off resonance this collectivity is lost [Eq. (33)]. Also,
it has been shown that the on-resonance N2 scaling is
strictly limited to aggregate sizes smaller than an optical
wave-length; [9,11]; a similar size restriction exists for the
superradiant behavior of exciton states [5,22].

The nonlinear absorption spectrum according to the
LFA does not at all resemble the exact spectrum. Its
shape is strongly dispersive, for which we do not have an
intuitive physical explanation. With regard to this point,
it should be realized that the LFA prescribes a scheme to
calculate nonlinear response, but it does not explicitly
make approximations for eigenstates and (or) eigenfre-
quencies. In contrast to the other theories discussed here,
it is therefore impossible to point out physical states that
cause the observed bleaching and extra absorption effects
in the LFA. We further note that the peaks in the LFA
scale like N [it is essentially a sum over contributions
from separate molecules, see Eq. (30a)]. Nevertheless, the
LFA has higher peak values than the exact theory [Fig.
4(a)]. This can be explained from the fact that in Eq.
(30a), four resonant denominators may coincide, whereas
the exact result only has a triple resonance at o =Q, _,.

In contrast to the LFA, the ETLS model does make
direct assumptions about the states in the system and its
nonlinear absorption spectrum can be understood much
better. The bleaching peak is reasonably well reproduced
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FIG. 4. (a) Nonlinear absorption spectrum for homogeneous
linear J aggregates of N =40 molecules with ['=0.01|V]. Q,_,
denotes the frequency of the homogeneous k =1 one-exciton.
The solid line ( ) gives the exact result and the dashed

curve (— — —) represents the local-field approximation. (b) As
in (a); : exact result; — - —: excitonic two-level system
approximation; and — - - - —: independent molecules. Note that

the latter spectrum has been multiplied by a factor of 5 and is
redshifted over Q—Q, —, in order to make it visible.

by this model, whereas the TPA is, of course, completely
missed [Fig. 4(b)]. As the TPA peak only has a relatively
small spectral content (it has a single resonance only), the
overall impression of the ETLS model is reasonably good.
The deviations in the bleaching peak from the exact solu-
tion result from the neglect of processes in which two
different one-excitons play a role [0 70, in the first term
of Eq. (28)]; as long as the separations between the one-
exciton levels are large compared to I', these contribu-
tions are small. In the ETLS model, the bleaching max-
imum correctly scales as N2. Finally, the independent-
molecule model, of course, only exhibits bleaching. This
spectrum has the simple form

4ut r
A =t N | (36)
nl,mol(w) 8ﬁ3 (A2+F2)2

which scales like N for all frequencies and, as the exact
spectrum, has a full width at half maximum (FWHM) of
approximately 1.29T. In Fig. 4(b), this spectrum has
been shifted over Q, _,—; this shift is also applied in
the figures discussed in the next section. In contrast to
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all other models, the independent-molecule model cannot
reproduce the spectral shift associated with the interac-
tions.

V. NUMERICAL SIMULATIONS:
RESULTS AND DISCUSSION

In this section we present and discuss the results of our
numerical simulations of the nonlinear absorption spec-
trum for molecular chains with Gaussian diagonal disor-
der [Eq. (32)]. All simulations were performed on J ag-
gregates (V' <0) of 40 molecules with a damping rate
I'=0.01/¥]. In Fig. 5 the nonlinear absorption spectra
according to the exact and approximate theories are
shown for very low disorder: D =0.05|V|. The average
was obtained from a total ensemble of 25000 aggregate
realizations; the statistical errors in the data are in the or-
der of 2—5%. For this low value of the disorder, the
main features of the spectrum are still well understood
from perturbative arguments with respect to the disorder
contribution in the Hamiltonian, #3,D,B Zﬁn. In
lowest order, we use the zeroth order, completely delocal-
ized, eigenstates of the homogeneous aggregate [i.e., the
@in of Eq. (34a)] and the eigenfrequencies to first order in
the disorder. The perturbative eigenfrequencies
(Qf =, Qs =2, - - . , Q=) have a joint stochastic distribu-
tion imposed by the disorder in the molecular frequen-
cies. The disorder-averaged spectra are now obtained by
convoluting the homogeneous forms of the spectra with
this joint distribution. It can easily be shown that to first
order in the Gaussian diagonal disorder, the distribution
of every single eigenfrequency ; (irrespective of all oth-
er eigenfrequencies) in the linear aggregate is a Gaussian
with mean Q, and a k-independent FWHM of
Wy =(81n2)"/2[3/2(N +1)]'/?D [for circular aggregates
one finds (81n2)!/2D /V'N ] [23]. For the linear absorp-
tion spectrum, Im{x'""(—w;w)),, which is a sum over
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FIG. 5. Simulated nonlinear absorption spectra for J aggre-
gates of 40 molecules with I'=0.01| V| and Gaussian diagonal
disorder of magnitude D =0.05|V], according to the various
models discussed in the text. Curves are labeled as in Figs. 4(a)
and 4(b). The markers indicate the individual data points ob-
tained in the simulation.
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single one-exciton contributions [cf. Eq. (11)], this direct-
ly implies a FWHM that is considerably lower than the
value (81n2)'’D~2.35D that holds for the
independent-molecule spectrum. This phenomenon is
known as motional narrowing or exchange narrowing:
the intermolecular interactions cause a dramatic narrow-
ing of the linear absorption spectrum, as is, e.g., clearly
observed for J aggregates [1,2]. For nonlinear spectra,
the situation is more complicated, because the perturbed
eigenenergies of different quantum number are mutually
correlated, as they all derive from a common underlying
molecular disorder. This correlation plays an important
role in, e.g., the TPA peaks, which necessarily involve
two different eigenfrequencies: wrpy=(Q} +Q}.)/2. If
all Q; would be distributed independently of each other,
every TPA peak would be a Gaussian function centered
at (Q; +Q,.)/2, with a FWHM of Wy /V2. An approxi-
mate analysis (for N >>1) that does account for the sto-
chastic correlations between the two perturbed eigenfre-
quencies gives a slightly larger, but still narrowed, value
for this FWHM, namely (81n2)'/2[5/4(N +1)]'/?D. In
contrast to the TPA peak, the much larger exciton
bleaching peak is mainly determined by only one eigen-
frequency, and is thus well described in terms of the usual
motional narrowing picture. This is clearly visible in Fig.
5: The bleaching peak is broader than in the case of the
homogeneous aggregate (Fig. 4), but it is not nearly as
broad as the independent-molecule spectrum (which is al-
most Gaussian with a FWHM of 2.35D). We now define
a delocalization range (coherence size) for the exciton
states by

(37

where W is the FWHM of the bleaching feature in the ex-
act spectrum. Based on this, we find N4, =32, which
clearly demonstrates that the eigenstates are indeed
strongly delocalized over the chain at this low disorder
value. We have confirmed this further by calculating the
inverse participation ratio (or degree of localization)
[14,44], which gives a delocalization range of approxi-
mately 30 molecules. It should be noted that the nar-
rowed (k =1,k’=2) TPA is hardly visible anymore: it is
almost completely canceled by the distribution of much
larger bleaching features. We further observe that the ex-
act spectrum, as well as the other ones, are redshifted rel-
ative to the homogeneous spectrum; this disorder-
induced redshift is a well-known phenomenon [14,44],
which can be understood from the second-order pertur-
bative energy of the k =1 exciton state. Figure 5 clearly
shows that the ETLS model has improved relative to the
homogeneous case. Its shape now closely resembles the
exact solution and at the peak the difference in absorp-
tion is 15%. By contrast, the LFA did not improve its
performance. Its shape is still strongly dispersive, al-
though it has obtained a clear asymmetry and predicts a
net absorption in this frequency region, where the other
theories give a net bleaching. The small feature in the
LFA at o—Q; -,=~5.5T is due to the kK =3 one-exciton
state.
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In Fig. 6 we show the results for D =0.1|V], also ob-
tained from an ensemble of 25000 aggregates. The sta-
tistical errors are smaller than 5% in the main features,
except for the LFA, where the errors are roughly 10% in
the main feature and increase to 30% in the far wings.
Maintaining high accuracy in the simulation of the LFA
gets increasingly difficult for higher values of D /T". The
reason is that in the disorder average a large number of
dispersive features with width ~T" and scattered over a
frequency range of the order D cancel each other to a
large extent. Consequently, the average spectrum in the
LFA requires sampling small differences of large num-
bers. This makes the simulation of the LFA more
difficult than the exact theory, even though for the latter
more elaborate and nested summations are needed. Also
for D=0.1|V|, we observe a clear motional narrowing
effect, with N4, =27. Furthermore, the redshifts have in-
creased relative to Fig. 5 and the TPA is completely in-
visible now. The performance of the ETLS model is com-
parable to the case D =0.05|V]: its peak value now devi-
ates from the exact solution by 20%. Relative to Fig. 5,
the LFA has obtained an even more pronounced asym-
metry towards net absorption.

Figures 7 and 8 show the results for D =0.5|¥] and
[V, respectively. The ensembles contained 50000 aggre-
gates, except for the LFA, where separate simulations
were done on 1000000 and 2000000 aggregates. The
reason is the slow statistical convergence of the LFA
average discussed above. This problem makes straight-
forward simulations of the LFA in the region D > | V| im-
possible in practice. The statistical errors are of the same
order as for D =0.1|V]|. If we compare the exact spectra
in Figs. 7 and 8 with the independent-molecule results,
we observe that motional narrowing is weakened consid-
erably, because the excitons undergo stronger localization
due to the disorder [14,33]. Based on the widths of the
spectra, we find N4, =10 for D =0.5|V]| and N, ~6 for
D =|V] (the inverse participation ratio gives a delocaliza-
tion range of roughly four molecules in the latter case).
We note that, as is observed for linear absorption spectra
[14,44], the exact line shape maintains a Gaussian charac-
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FIG. 6. As Fig. 5, with D=0.1|V].
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ter on the red side of the peak, whereas it becomes
Lorentzian on the blue (intraband) side. This effect grows
as the disorder grows and results, within a
(oversimplified) perturbative view, from mixing of the
homogeneous k states, which causes the k1 one-
excitons to “steal” oscillator strength from the superradi-
ant kK =1 one-exciton (the bottom of the one-exciton band
for ¥ <0). In Figs. 7 and 8 it is clearly seen that the
ETLS model approaches the exact solution; the peak
differences are no more than 6% and 4%, respectively.
This rapid approach of the ETLS model towards the ex-
act theory can be understood from the localization of the
transformation coefficients ¢,, on small parts of the
chain, with a length that is near the absorption peak
characterized by N4,. The smaller Ny, gets, the smaller
the chance will be that two eigenvectors o, and o, with
energies in the region of the lower exciton band edge
have appreciable amplitude on the same part of the
chain. It then follows immediately from Eq. (24) that
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FIG. 8. As Fig. 5, with D=1.0|V].
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where the choice of sign depends on the relative position
(right or left) of the two eigenvectors on the chain and is,
of course, physically irrelevant. Thus the two-excitons
that contribute to the absorption (those in the region of
the absorption band) are direct products of two one-
excitons, so that their nonlinear response is by definition
captured within the ETLS model. We note that the argu-
ment leading to Eq. (38) holds long before the eigenstates
are completely localized on single molecules (which does
not happen until D >>|V}), so that the ETLS offers a non-
trivial way to account for interactions in nonlinear
response. This is also obvious from Figs. 7 and 8: the
independent-molecule model does not at all capture the
line shape and the magnitude of the nonlinear absorption
at D <|V]; collective effects are still important in this dis-
order region. Finally, we observe that also for D =0.5| V]
and | V|, the LFA does not approach the exact solution.
Even though the absolute magnitude of the peak value is
now in the order of the exact solution, the sign is oppo-
site: net absorption versus net bleaching.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have investigated the performance of
three approximate schemes to account for intermolecular
interactions in the nonlinear optical response of molecu-
lar assemblies. We have done this by comparing the ap-
proximate and exact nonlinear absorption spectra of
linear molecular aggregates. Special attention has been
paid to the role of energetic disorder, because disorder
tends to lessen the importance of interactions, so that the
approximations may a priori be expected to improve with
growing disorder.

The independent-molecule approximation, in which in-
teractions are completely neglected, misses all collective
effects of the optical response. It has mainly been intro-
duced as a zeroth-order reference point and to demon-
strate motional narrowing effects in the other theories.

The second approximation that we have evaluated is
the well-known local-field approximation, in which the
assembly’s optical susceptibilities are given by the molec-
ular (hyper)polarizabilities, multiplied by local-field fac-
tors. It is shown quite generally in this paper that the
evaluation of the local-field factors only involves the rela-
tively easy calculation of the assembly’s one-exciton
eigenstates; knowledge of the multiexciton states is not
required in this approximation. The linear response pre-
dicted by the LFA is exact for all frequencies, while also
the off-resonance nonlinear response is correctly de-
scribed. The latter point is related to the fact that the
LFA is very useful to account for the effect of a back-
ground index of refraction. However, the LFA fails com-
pletely in describing the on-resonance nonlinear absorp-
tion. For homogeneous (cyclic) aggregates, this had been
noted in the literature already [11]; the surprising result
of the present study is that the performance of the LFA
does not at all improve in the presence of energetic disor-
der (D) ranging up to the nearest-neighbor intermolecular
interactions (¥). Because the LFA does not make direct
assumptions about the eigenstates of the assembly, it is
very hard to give a physical explanation for its poor per-
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formance. Recently, Cnossen, Drabe, and Wiersma [31]
have shown that the LFA explains the second-harmonic
generation (SHG) of Langmuir-Blodgett monolayers very
well. They suggested that the reason for this success was
the presence of strong disorder in their system. Unfor-
tunately, it is impossible to study the LFA in the large-
disorder region (D >>|V]) by straightforward numerical
simulations, like we used in this paper, because of slow
statistical convergence. Based on the trend in our non-
linear absorption spectra with increasing disorder, how-
ever, we do not expect that the LFA approaches the ex-
act result until the response is completely dominated by
single-molecule effects and the local-field factors have be-
come trivial (unity, in case the background index of re-
fraction is neglected). Instead, we believe that the success
of the LFA in treating SHG is related to the fact that in
this technique the susceptibility that determines the sig-
nal, )((2)( —2w;0,w), has a single resonance only (the laser
frequency is off resonance, while twice the laser frequency
is close to resonance), whereas the nonlinear absorption
coefficient has a strong triple resonance. Our model sys-
tem does not allow for SHG, but calculations of its
third-harmonic generation, where three times the laser
frequency is taken close to resonance (3w~ (), show that
the LFA is close to exact for this technique [45]. There-
fore our more general conclusion is that the LFA correct-
ly describes experiments that have single resonances with
the one-exciton band (note that linear optics is included
in this class), but fails at describing multiple resonances
or resonances with higher exciton manifolds.

In the excitonic two-level system model, the response
of the N interacting molecules in the assembly is approxi-
mated by the response of N noninteracting two-level sys-
tems with frequencies and dipoles characterized by the
assembly’s one-exciton transitions. Like the LFA, this
approximation only requires knowledge of the one-
exciton states and it correctly predicts the linear
response; in general, however, it does not recover the ex-
act off-resonance nonlinear response. More importantly,
our calculations clearly show that this approximation
may very well describe the nonlinear response near multi-
ple resonances. In general, one should expect that the
ETLS model is accurate on resonance if the typical sepa-
ration between one-exciton levels is large compared to
their broadening I'. For homogeneous aggregates, this
limits the aggregate size for which this model is useful, as
the exciton levels get denser for growing N. For instance,
the minimum separation between two allowed transitions
on a homogeneous chain is given by
8=Q; _3— Q- =~87*V|/N? for N>>1. For disor-
dered aggregates, however, it is more appropriate to use
the effective separation 8.4~ 87*|V|/N2,, with Ny, <N
the exciton delocalization range, so that the ETLS model
is in practice much less limited by the aggregate size.
Our simulations clearly show that with growing disorder
the ETLS nonlinear absorption spectrum rapidly ap-
proaches the exact spectrum; this happens long before
the disorder is high enough to effectively isolate the mole-
cules from each other and can entirely be understood
from the localization of the one-exciton states on seg-
ments of the chain. As a further illustration, we notice
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that the above arguments a posteriori justify the use of a
simple two-level model (i.e., the ETLS model) to interpret
the ratio of fluorescence and Raman yields from J aggre-
gates of pseudo-isocyanine [13]. For these aggregates
Ny ~50and |V|=~600 cm™! [14], giving a 84 in the or-
der of 10 cm™!, which is indeed much larger than the
broadening imposed by the exciton lifetime of 70 ps. We
conclude that the ETLS model in practice offers a useful
way to describe multiply resonant nonlinear optical
response of molecular assemblies.

We finally note that from Figs. 4-8 it is seen that the
resonant nonlinear optical response of aggregates rapidly
decreases with growing disorder. The interesting prob-
lem of the scaling of the nonlinear optical response with
the aggregate size (V) in the presence of disorder is ana-
lyzed in another paper [45].
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APPENDIX: DERIVATION
OF THE LOCAL-FIELD FACTORS

In this appendix we derive the local-field expressions
for the first- and third-order susceptibilities of general
molecular assemblies. The starting point is Eq. (19) of
the main text, in which we expanded the expectation
value of each molecular dipole in terms of the self-
consistent local field. We rewrite the ith amplitude of the
molecular transition dipoles as

(Bo)i=HnPui » (Ala)
where p,; is the amplitude of the component of
P.(=(Bl(+B,1) (A1b)

that oscillates with frequency w; [compare Eq. (3)]. In
terms of these variables, the amplitudes of the assembly’s
total dipole are

P,=3u,p, - (A2)
n

The advantage of writing the variables like this is that the
vector nature is separated from the dynamic quantity p,,;.
We substitute Eq. (Ala) into Egs. (19) and (16a) and as-
sume that each p,; can be expanded in terms of the exter-
nal field amplitudes, as is done in Eq. (4) for the total di-
pole. This expansion is now solved iteratively by equat-
ing terms of the same order in the external fields that
occur in the left- and right-hand sides of Eq. (19). The
first-order terms yield as equation

(D —

Babni =7 (—050) [E;— 3 T(r,,) pm.pi ],

m(+#n)
(A3)
where p/!) denotes the first-order contribution to p,,;. We
rewrite the linear molecular polarizability to separate the
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tensor nature

Bl
()¢ _—_ .. —_rnn A4
Yn (—0;0) D, () ’ (A4)
so that Eq. (A3) can be recast into the form
u,E,
zMnm pmz“ ”h : . (AS)

This represents an inhomogeneous set of N coupled linear

equations with the electric field as source. The sym-
metric N X N matrix M(w) is defined through

M, (0)=D,()5,,, +V,,(1—56,,.), (A6a)
with

AV, =pu, T(r,,. ) n, , (A6b)

the matrix element of the dipole-dipole interaction be-
tween molecule m and n. It is noteworthy that Eq. (A6a)
is not restricted to dipolar interactions; it may be derived
for arbitrary interactions by using an equation-of-motion
approach in which factorizations like Eq. (17) are in-
ferred for products of two-molecule operators. Now sup-
pose that we know the eigenvalues, A,(w), and normal-

ized eigenvectors, £,,(w), of the matrix M(w). Equation
(A5) is then easily solved as
Eoml@)ER (w;)
()= 20m Bil5on Gl b A7
Prmi GEn irw) P E (A7)

Substituting Eq. (A7) into Eq. (A2) and making some
rearrangements, we find for the linear susceptibility in the

1

zMnm (wi )pn?>_D

m .un _]kl

(1)

3) . : (1) (1)
(_wi’wj’wk’wl):Eloc,j(rn )Eloc,k(r )Elocl( ),

local-field approximation

XiPA(—0;0) ZL )y N —w;0) , (A8)

where L, () is the local-field tensor:
D, ()

Ay(w)

Ln(a))E z ”’m”’n

o,m n

Eom(@)E5, 0 (A9)

L,(w) has rank two and in Eq. (A8) its second index is
contracted with the first index of the tensor y'!. If we
restrict to the RWA for the linear polarizability [Eq.
(15a)], we have D, (w)=Q, —w—iI. It then follows im-
mediately that the matrix M(®) is diagonalized by exact-
ly the same transformation ¢,, (independent of w) that
diagonalizes the one-exciton problem in Sec. II of the

main text. The eigenvalues are then A (0)=Q,—w—iT
and we obtain for the local-field tensor
L= Kty e @70 TIT (A10)
n(@ (,2,,, 2 PP o g T

We thus see that the local-field factor is totally deter-
mined by the solution to the one-exciton problem only.
This even holds if we do not restrict our analysis to the
RWA, as we will show at the end of this appendix. We
also note that the LFA is exact in the case of linear op-
tics, as follows from combining Egs. (A8), (A10), (15a),
and (10), and comparing the result with Eq. (11).

We now move to the third-order response. Comparing
terms of third order in the external field that occur to the
left- and right-hand sides of Eq. (19), we find

(A11)

where the first-order local electric field contains the external electric field and the first-order contributions from the oth-

er dipoles (vide infra).

The left-hand side of Eq. (A 11) follows from combining the first right-hand side term of Eq. (19)

with its left-hand side and describes free propagation of the third-order polarization; the right-hand side of Eq. (A11)
gives the source term for the third-order polarization in terms of the first-order local fields and derives from the second

right-hand side term in Eq. (19).

Jkid

Finally, we have to work out the local fields:

”’n'E{gc),j(rn):p'n'Ej— 2 ﬁVnmpr(nlj)'
m (#n)

Using the first-order solutions Eq. (A7), substituting V,,,,

=M,,.(o;)

With the notation developed above, Eq. (A11) is easily solved and the ith frequency
component of the assembly’s third-order dipole is obtained as

3’—2L () S*y I —0;0;,0,0,) B (1, B, (1, EQ (r,) .

(A12)

(A13)

;)—D,(®;)8,,,, and using the fact that we know the

diagonalization of the matrix M(w; ), this may be rearranged to

tEiol ()=

where L’ is a local-field factor defined as

=p, L, (0,)E; ,

y’n”’m

D
L;(a’)zz gan )§;m(a’)’—

ag,m o

(A14)

(A15)
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Note that L’ differs from L [Eq. (A9)] in its tensor character and in the complex conjugation of the eigenvectors. Com-
bining Egs. (A12)-(A14), we find for the third-order susceptibility within the LFA

(3) (—

XIFA\ 7050, 0,0

)=3L,(a,)yX

If w; is replaced by —w;, L,(
its complex conjugate (analogous for k and ).
RWA, L' reduces to [cf. Eq. (A10)]

I‘n"’m a)an+ir
Lw)=3 PonPim —— o -
" am . anrIm o—Q,+iT

@;) should be replaced by
In the

(A17)

We further note that if the transition dipoles of the indi-
vidual molecules are equal in magnitude and have the
same orientation, the local-field tensors become simple
scalars that are obtained from Egs. (A10) and (A17) by
omitting the factors w,,u, /u2 and p,u,, /u%, respective-
ly. If, furthermore, the eigenvectors ¢, are real, L and
L' are equal, and we obtain Egs. (20) and (21) in the main
text.

To end this appendix, we briefly discuss the connection
between the LFA and the one-exciton problem in case we
do not make the RWA. It turns out that then the local-
field factors are also completely determined by the one-
excitons, provided that we do not apply the Heitler-
London approximation in the intermolecular interaction.
Relaxing the RWA, the molecular polarizability reads

(D — e )= 1

20,118,
—w (0) a5

; ) (A18)
Vn % Q2 —(0+iT)?

Furthermore, if we relax the HLA, the assembly’s Hamil-
tonian reads [25,26]

Ho—zm BB, +13'#%v,, (BI+B,) B +8B,),
n,m

(A19)

which dlﬁ'ers from Eq. (6) by the contributions propor-

tional to B Y. and B, ﬁ that connect states with

—w;0;,08,0;) L, (0

)L, (0 )L, (@) . (A16)

r

different numbers of excitations. Therefore the name
‘“‘one-excitons” should be redefined. As usual, we define
them as the eigenmodes of the Hamiltonian when the ex-
citon population in the assembly is neglected, so that
Bose commutatlon relations apply to the operators B
and B [25,26,35]. The dispersion relation for the eigen-
frequencxes o of these modes follow in a straightforward
way from the coupled Helsenberg equations of motion for
the operators B and B T (all n), and reads

det[M(w)]=0 (A20)

where the matrix M(w) has the same form as in Eq.
(A6a), with now

D,(0)=[Q2—(0+iT)]/2Q, (A21)

We note that this form for D,(w) indeed coincides with
the definition (A4), provided that we use the general form
Eq. (A18) for the linear polarizability. We thus see that
also if we do not apply the RWA, the local-field factors
are fully determined by the one-exciton problem, as long
as we do not make the HLA. We finally note that the
linear susceptibility is in general (i.e., without RWA and
without HLA) given by

M@= 3 L (@)E5,(0)

n,m,o

X (A22)

This follows from the above-mentioned equations of
motion for B and § in the Bose approximation in the
presence of an electrxc field. Substituting Egs. (A18) and
(A21) into Egs. (A8) and (A9), we observe that the exact
result Eq. (A22) equals the local-field result. This proves
that the linear susceptibility obtained within the LFA is
always exact, irrespective of the RWA.
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