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A simple way to obtain a completely general distorted-wave excitation program in the convenient fac-
torized form of Bar-Shalom, Klapisch, and Oreg [Phys. Rev. A 38, 1773 (1988)] is described. Procedures
for improving numerical accuracy are also discussed, and results obtained by these procedures are com-

pared with other work.
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I. INTRODUCTION

In earlier work [1,2] we and our co-workers developed
a rapid relativistic distorted-wave approach for calculat-
ing cross sections or, equivalently, collision strengths for
excitation of highly charged ions by electron impact. The
approach is very well suited for calculating collision
strengths for a large portion of an isoelectronic sequence
simultaneously, say, all members with

Z 22N , (1)

where Z is the nuclear charge number and N is the num-
ber of bound electrons per ion. The method has been ex-
tended to ionization [3,4] and it has been applied to
large-scale calculations of atomic data in Refs. [5-10].
The approach uses the same relativistic Hartree-Fock-
Slater or Dirac-Fock-Slater (DFS) potential determined
using a mean configuration in solving the Dirac equation
for all orbitals, bound and free. Hence, all orbitals are
automatically orthogonal.

The purpose of the present article is to describe recent
work we have done to improve the approach by (1) mak-
ing the most efficient version of our scattering program
completely general with the use of a simple procedure
and (2) making modifications that should improve the ac-
curacy and extend the range of validity beyond Eq. (1).
The following section deals with the first of these im-
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provements and Sec. III describes the second. In Sec. IV
some numerical results by these procedures are compared
with those by our earlier procedures and recent relativis-
tic distorted-wave results of Qian, Kim, and Desclaux
[11]. In the final section a brief summary and conclusions
are given.

II. GENERAL FACTORIZATION PROGRAM

The most efficient form of our collisional excitation
code [2] uses the factorization method of Bar-Shalom,
Klapisch, and Oreg [12], but the code was not initially
completely general. Here we describe how it has now
been made general in a simple way, which could be ap-
plied to essentially any other distorted-wave program as
well. In doing this we will make frequent use of equa-
tions given in Ref. [4]. Hereafter, Eq. (X) of Ref. [4] will
be called Eq. (I-X). In that paper the factorization
method was first applied to excitation. Then the result
was extended to ionization, for which the very simple,
convenient result given by Eq. (I-35) was obtained. For
excitation, the results are given by Egs. (I-28)-(I-32),
which we repeat for convenience, except that results are
given for the collision strength € in place of the cross
section Q and a typographical error is corrected by re-
placing an S, with S}. Specifically, the expression for Q
equivalent to Eq. (I-28) is

’
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Here n,l,j, and n,l,,j,; indicate initial orbitals of the active electron in the pure jj-coupled states S and S, that con-
tribute to the initial level U. An analogous statement applies for corresponding primed quantities contributing to the

final level U’'. Thus we can write

U= %b(U,S)IS), U= %b(U',S')]S’> ’

(3)

where the b’s are the mixing coefficients. The Q” in Eq. (2) contain the radial scattering matrix elements and have the
summation over initial and final orbital and total angular momenta of the free electron performed within them. In par-

ticular,
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where € and €’ are the initial and final free-electron energies and
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in which (j,||C*||j,) is given by Eq. (I-11) and the direct
and exchange radial matrix elements D* and E* are given
by Egs. (I-2) and (I-3). The determination of the Q% is the
lengthy part of the calculation, but as noted in Ref. [2]
and used in the large-scale calculations of Refs. [5-10]
the Q* are smoothly varying functions of Z. Hence, in
the consideration of a given class of transitions results for
a large portion of an isoelectronic sequence, say, all Z
satisfying Eq. (1), can be obtained after making detailed
calculations for only a few values of Z by fitting to a
power series in Z, as given, for example, by Eq. (22) of
Ref. [5] or Eq. (20) of Ref. [9].

Of course, as seen by Egs. (4) and (5) the Q* depend on
the initial and final free-electron energies € and €’ and the
difference between these differs with each transition. The
procedure we follow is to calculate values for the Q* for a
fixed set of scattered or final electron energies in units of
an effective Z? rydbergs [see, for example, Eq. (3) of Ref.
[9]] beginning near zero and going out sufficiently far for
accurate determination of collision rates for all tempera-
tures of major interest. For each of these final energies
we calculate results for three impact-electron energies
spanning the range of transition energies for the class of
transitions being considered. Then we obtain the results
for the exact energy for each transition by Lagrange in-
terpolation, which is generally accurate to within about
1%.

The B* in Eq. (2) depend only on the properties of the

J

ion and require very little computing time to evaluate.
The problem is in determining the completely general ex-
pression for the f* coefficients [see Eq. (7) below]. The
purpose of the present section is to indicate how this can
be easily done. We can write, as in Egs. (I-31) and (I-32),

BMU,SS;U',S'S})=FNUS,U'S")FMUS,,U'S}), (6)
where
FMUS,U'S")=b(U,S)fS,S)b(U",S’) . (7)

Expressions for the f* coefficients were obtained in Ref.
[4] for the case that the final orbital n,l,j, is higher than
that of the initial orbital and the orbitals of any spectator
electrons [see Eq. (I-33) and the discussion following it].
Also, results were obtained as needed for the special cases
considered in Refs. [S—10]. However, we now show that
the f* are really identical to coefficients evaluated in
complete generality in the well-known and widely used
and tested multiconfiguration Dirac-Fock (MCDF) rela-
tivistic atomic-structure program of Grant and co-
workers [13-15], hereafter called the Grant code. In do-
ing this we will outline the derivation of the factorization
results for the collision strengths and to simplify this we
will initially neglect exchange. The final result with ex-
change included is then obtained by simply making the
substitution

A+ D7D o bs 5u i IS GICH ) —PMGads a0 ®)

where P* is given by Eq. (5). In writing Eq. (8) we have used the abbreviations j, =n,l,j,, j=tlj, etc.
With exchange neglected the collision strength is expressed in terms of the direct component of the reactance matrix

by
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where J is the total angular momentum of the system. As in Ref. [4], we use S=f3,J, and S’ =p,J/, where J, and J, are
the initial and final total angular momenta of the target ion, while 3, and 3 are the additional quantum numbers re-
quired to specify the pure jj-coupled states S and S’, respectively. Then using the usual expansion
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in which r < (r>) is the lesser (greater) of r; and ;, one can write

RA4ABJelil;B el j'T)=2 (a,J,JTICH1)-CM2)|a\J;I'j'T YD, j;ibi’) » (11)
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where the active bound electron and the free electron are indicated by 1 and 2, respectively. Here |a,J,ljJ) and
la,J;1'j'J ) differ from |B,J,eljJ ) and |B,J/t'l'j'J ), respectively, only in that the radial functions have been separated
out from the latter. Now, using Eq. (C91) of Messiah [16] we obtain

(a,J,ljJ|g’~(1).gk(2)|a;J’:l,j,J>=(_1)J+j+Jt [
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but we can write
(aJ|ICH ;) =d}, (8,8 ICMja ) (13)

which is essentially a special case of Eq. (7) of Ref. [17] or
Eq. (60) of Ref. [15]. These d* coefficients are related to
the so-called T coefficients in the Grant code by
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Thus, collecting results and applying them to Eq. (9), one
can neglect the phase factor of Eq. (12) because J +j +J,
involves ‘“good” quantum numbers and is an integer.
Also, one can perform the summation over J using the
well-known formula [16]
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The result can be written in a form like Eq. (2):
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where Q*(j,j.;3a1da1) is given by Egs. (4) and (5) with E'
set to zero and B is given by Eq. (6) with

FMUS,U'S")=b(U,S)d%,.(S,S)b(U",S") . (17)

Although the techniques used by Bar-Shalom, Klapisch,
and Oreg [12] may not be completely clear to some
readers, the essential key in applying the factorization
method with inclusion of exchange is to arrange the an-
gular part of R ° so that it also contains a 6; factor of the
form

J, C J;
I
as, for example, in Egs. (I-21) and (I-22). Then the sum-
mation over J can still be performed using the analog of
Eq. (15). This leads to a large reduction in the angular
part of the calculation and the result is then given by the
right-hand side of Eq. (16) with Q*? replaced by Q* given
by Egs. (4) and (5). Thus, comparing this with Egs. (2),
(6), and (7), one sees that

fMS,8")=d}.(S,8") . (19)
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These d coefficients are defined in Ref. [17] and are very
readily obtained in complete generality using the MCT
module of the Grant code. We note that the subscript
aa’ was omitted from f* because it is nonvanishing only
when a single orbit, which we will call @ and a’, differs in
S and S’ due to the orthogonality properties of the orbital
functions.

In order to avoid any phase-factor errors resulting
from use of different conventions it is advisable to use the
same angular package for both the atomic-structure and
scattering programs. This is insured in our own codes be-
cause the angular package from the Grant code was used
in our Dirac-Fock-Slater atomic-structure program, as
well as in evaluating the coefficients of Eq. (19). Also, as
described in the next section, we now have an option in
our scattering program to use the atomic structure data
obtained from the Grant code.

III. MODIFICATIONS FOR IMPROVED
ACCURACY

We now consider ways in which the accuracy of our
procedures for relativistic calculations have been im-
proved. First we note that the relativistic DFS atomic-
structure program of Ref. [1] was modified to use a non-
point nuclear charge and to include the generalized Breit
interaction and other QED corrections. This was dis-
cussed in Ref. [18] and in Ref. [9], where it was applied in
calculations of collision strengths for excitation of F-like
ions. However, as noted in Ref. [9], even with these
modifications the program of Ref. [1] introduces some
slight numerical error in treating transitions involving s
orbitals in ions with very large Z. This appears to have
essentially a negligible effect on line strengths and col-
lision strengths, but introduces a significant error in tran-
sition energies for An =0 transitions at high Z. For this
reason energies obtained from the Grant code [13-15]
were used for these transitions in Ref. [9]. The error ap-
pears to arise from using a linear grid for small r rather
than a logarithmic grid. The Grant code is quite fast and
efficient, especially the latest version, GRASP [15], using
the ‘““‘average level” option. Also, the principal comput-
ing time in obtaining collision strengths tends to go into
the scattering part of the calculation rather than the
structure part. Hence, instead of going through the work
of modifying the program of Ref. [1] to use a logarithmic
grid we choose to include an option in our collisional-
excitation program to use atomic-structure data from the
Grant code. This program is generally accepted as being
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very accurate for highly charged ions. Use of it has the
additional, more significant advantage that the results ob-
tained for low Z are also probably more accurate because
in this regime, where the electron-electron contribution
to the potential is more important, use of the MCDF po-
tential in generating the orbitals is expected to be more
accurate than use of the DFS potential. However, to use
the Grant code it was necessary to transform the results
from the logarithmic grid generated by it to a linear grid
for the use in the collision program, where a linear grid is
needed for accuracy for the very large r contribution. A
well-tested subroutine for accomplishing this was provid-
ed to us by Moores [19]. Of course, in using the Grant
code in treating many members of an isoelectronic se-
quence simultaneously we calculate things such as the an-
gular algebra that are the same for each ion only once.
Also, when using the MCDF atomic-structure data from
the Grant code we use a new option for the form for the
central potential used in solving the Dirac equation for
the impact and scattered electrons, as compared to our
earlier work [5—-10], where the same DFS potential was
used in determining the orbitals for all electrons, bound
and free. The potential used for the bound electrons is
different from that used for the free electrons anyway
when one changes to the MCDF potential for the bound
electrons. Hence, it was decided to also use a new form
for the potential for the free electrons that would be more
precisely appropriate for them. In order to clarify this
we repeat with slight change in notation Egs. (4)—(6) of
Ref. [9] giving the Dirac-Fock-Slater potential Vyypg(7):

VDps(r):Vlr)+Vg(Fs(r), (20)
where
V'(r) AZ_r(_rl+VC(,,, 21)
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Here w,, is the occupation number of subshell
n'k'=n'l'j’, the summation is over all occupied sub-
shells, r ., is the greater of r and r,, and P,.. and Q,.. are
the so-called large and small components of the radial
function of an electron in the n’k’ subshell. We note that
this potential differs slightly from that used in the earlier
work of Refs. [5—8] in that the point nuclear charge Z
used in those references was replaced in Ref. [9] with a
finite nuclear charge Z (r), which differs from Z only for
extremely small r, where the Fermi charge distribution
(see Chen et al. [20]) was used. This is also the option
usually used in applications of the Grant code.

In the new option the exchange potential given by Eq.
(22) is replaced with a form based on the semiclassical ex-
change approximation of Riley and Truhlar [21]. In par-

ticular, we use the form of Peek and Mann [22] for the
potential. This was used by Mann in the extensive
semirelativistic calculations made in Refs. [23-25]. We
will hereafter refer to it as the Mann potential V,,(r). It
is given by

Vu(r)=V'(r)+Vii(r), (25)

which differs in form from Eq. (20) only in that the ex-
change contribution given by Eq. (22) is replaced with

Vixr)=—LiERy)—=V'[(1+p)?—1], (26)
where
S, E— 27)

C PAERy)— V']

and E(Ry) is the free-electron kinetic energy in rydbergs.

As in our earlier work [5-10], ¥, and bound-electron
charge density p given by Egs. (23) and (24) are still deter-
mined using a mean configuration. In general this can be
chosen differently for the impact and scattered electrons,

but in the application to An =0 transitions in Be-like ions

discussed in the next section we used the mean
configuration

2 0.66~..0.67,,0.67

151,227,221/ 23> (28)

in evaluating Egs. (23) and (24) for both impact and scat-
tered electrons, so the potential used in calculating their
orbitals differed only by the different appropriate free-
electron energies used in Egs. (26) and (27) in the two
cases.

Also, since the orbitals of the free electrons are no
longer orthogonal to those of the bound electrons it was
necessary with the new option to replace the factor
rk /rAt U with #A /Pt —8,,V.(r) /2N in the exchange
scattering term given by Eq. (10) of Ref. [2]. This is the
analog of Mann’s [23] Eq. (14), except that a typographi-
cal error was made in the latter equation in that 2N
should replace N, as seen from Mann’s [23] Eq. (11).

Of course, in using Eq. (25) the orbitals used in evaluat-
ing Eqgs. (23) and (24) are those calculated with the Grant
code using the MCDF potential rather than the orbitals
evaluated using the Vpps potential. However, numerical
test cases discussed in the next section indicate this has
little effect in most cases as compared with the effect due
to use of the different form for the central potential for
the free electrons given by Eq. (25) instead of Eq. (20). In
fact, even that has an essentially negligible effect except
for ions at the very low-Z end of the range given by Eq.
(1).

IV. COMPARISONS OF NUMERICAL RESULTS

In Ref. [26] the procedures we have described here
were used in calculating collision strengths for all 45
transitions among the 10 levels of the 152252, 1525 2p, and
1s22p? configurations in each of the 85 Be-like ions with
Z in the range

8=Z=92. (29)

Here we discuss numerous test calculations we have
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made for Be-like ions to assess the effect of these new
modifications in our calculational procedures. A sample
of the results is given in Table I for Z =8, where the
effect of using the MCDF potential for the bound elec-
trons and the Mann form, Eq. (25), for the potential for
the free electrons is greatest for ions with Z in the range
given by Eq. (29). Although the test calculations were
done for all 45 An =0 transitions, in the interests of brev-
ity the results are given only for the transitions from the
ground level to the other nine levels. These are quite typ-
ical, but the discrepancies between the various sets of cal-
culations, especially the G /M and D /D entries to be dis-
cussed in the following paragraphs, tend to be larger than
average for these transitions.

In this table three sets of collision strengths are given
for three scattered, or final, electron energies E r in eV for
each of the nine transitions. The first set, labeled G /M,
are results by the new procedure of using the Grant code
for obtaining the atomic-structure data and the Mann
form, Eq. (25), for the potential for the free electrons.
The second set, labeled D /M, are results by the same

procedure except that DFS bound orbitals were used
everywhere in place of MCDF bound orbitals. The third
set, labeled D /D, are results by our previous procedure
of using the same DFS potential for all electrons, bound
and free. We also did test calculations in which the only
change made was use of mixing coefficients by our DFS
program instead of the Grant program. This was found
to have almost no effect. In this connection we note that
the mixing included in all cases was all mixing among the
states in a complex, that is, having the same set of n
values, parity and total ion angular momentum, called J,
or J, in Sec. II.

By comparing G/M and D /M entries in Table I one
sees that use of the DFS orbitals in place of MCDF orbit-
als by the Grant code has very little effect in most cases.
However, by comparing the D /D entries with the other
entries one sees that use of the Mann form for the poten-
tial for the free electrons in place of the DFS potential
does often have a significant effect for such a low-Z ion.
Nevertheless the maximum effect of using the procedures
discussed here as represented by the G /M values com-

TABLE 1. Comparison of collision strengths for excitation from the ground level of Be-like oxygen
by three procedures labeled G /M, D /M, and D /D, which are defined in the text. Numbers in square
brackets are powers of 10 by which adjacent entries should be multiplied. Results are given as a func-
tion of final, or scattered, electron energy E, (eV). Upper entries for the transition energies AE (eV) are
MCDF values by the Grant code, while the lower entries are DFS values by the code of Ref. [1] with

modification discussed in the text.

Upper level AE (eV) E, (eV) G/M D/M D/D
252p 3P, 10.29 10 2.743[ —2] 2.795[ —2] 2.610[ —2]
10.27 75 1.514[ —2] 1.511[ —2] 1.362[ —2]
100 1.689] —3] 1.662[ —3] 1.568[ —3]
2s2p 3P, 10.31 10 8.227[ —2] 8.385[ —2] 7.830[ —2]
10.29 75 4.541[ —2] 4.534[ —2] 4.089[ —2]
500 5.075[ —3] 5.008[ —3] 4.736[ —3]
2s2p 3P, 10.36 10 1.370[ —1] 1.397[ —1] 1.305[—1]
10.33 75 7.558[ —2] 7.550[ —2] 6.810[ —2]
500 8.414[ —3] 8.298[ —3] 7.833[—3]
2s2p P, 21.28 10 3.028[0] 3.017[0] 3.093[0]
21.10 75 4.066[0] 4.079[0] 4.120[0]
500 6.504[0] 6.454[0] 6.506[0]
2p? 3P, 26.77 10 1.631[ —3] 1.615[ —3] 1.369[ —3]
26.88 75 6.393[ —4] 6.259[ —4] 5.209] —4]
500 3.178[ —5] 2.972[—5] 2.681[ —5]
2p? 3P, 26.79 10 4.873[ —3] 4.833[—3] 4.098[ —3]
26.70 75 1.904[ —3] 1.872[ —3] 1.559[ —3]
500 8.857[ —5] 8.785[ —5] 7.919[ —5]
2p? 3P, 26.83 10 8.084[ —3] 8.023[ —3] 6.809] —3]
26.74 75 3.152[ —3] 3.108[ —3] 2.590[ —3]
500 1.486[ —4] 1.483[ —4] 1.340[ —4]
2p* 'D, 30.09 10 1.626] —2] 1.641[ —2] 1.667[ —2]
29.97 75 2.288[ —2] 2.312[—2] 2.342[ —2]
500 3.342[—2] 3.371[ —2] 3.336[ —2]
2p% 1S, 37.57 10 2.535[—3] 2.862[ —3] 2.878[ —3]
37.36 75 2.468] —3] 2.778[ —3] 2.785[ —3]
500 2.410[ —3] 2.706] —3] 2.681[ —3]
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pared to the previous procedures represented by the D /D
values is that the latter are 16% lower than the former
for the weak transitions to the 2p? 3P levels. These corre-
spond to double electron jumps and occur only through
configuration mixing.

In Table II the present G /M and D /D results are also
compared with the relativistic distorted-wave results of
Qian, Kim, and Desclaux [11] (labeled QKD) for the 2s?
1S9—2s2p 3P, transitions in Be-like ions with Z =10, 26,
and 54. The atomic-structure data used in the calcula-
tions in Ref. [11] were obtained with an improved version
of the MCDF code of Desclaux [27], which is similar to
the Grant code. As expected, the agreement between
G /M and QKD collision strengths is seen to be very
good, usually within 1-2% with the exception of the re-
sults for the highest energies. Specifically, for the 2s?
1Sy—2s2p 3P, transition in Be-like neon the QKD result
exceeds the G/M value by 18% for an impact-electron
energy E; of 10* eV (the highest energy QKD con-
sidered). However, the collision strength is extremely
small and unimportant for this energy and the agreement
is very good (within 1%) for E; <1000 eV. For the other
high-energy cases the QKD results are typically 4% or
5% lower than the G /M values. This is largely a conse-
quence of the fact that in Ref. [11] the collision strength
appears to be defined differently than we do. In particu-
lar, in the usual relation between cross section and col-
lision strength,

ma}

k izg i

o= Q, (30)

they appear to use for k? [see Eq. (4) of Ref. [11]] the

nonrelativistic expression for the kinetic energy of the in-
cident electron 1mv? (Ry), while we use the relativistic
relation

2
k2=[E,(Ry)] 1+%—[E,-(Ry)] , 31)

where a is the fine-structure constant and E;(Ry) is the
relativistic kinetic energy of the incident electron in ryd-
bergs.

Also as expected from the discussion of Table I, one
sees that the D /D values in Table II are close to the
G /M values except for the weak spin change transition
252 1S,-2s2p P, when Z =10, which is dominated by
the exchange contribution and where the D /D values are
about 7% below the G /M values for low energy.

V. SUMMARY AND CONCLUSIONS

There are essentially two parts to the paper. In the
first part we have shown how a relativistic distorted-wave
program that uses the factorization method of Bar-
Shalom, Klapisch, and Oreg [12] can be very easily made
completely general by identifying a key parameter we call
fMS,8’) with the d}.(S,S’) coefficients evaluated in gen-
eral in the MCT module of the well-known relativistic
atomic-structure program of Grant and co-workers
[13—15]. These coefficients, or their LS-coupling analogs,
enter in the general calculation of matrix elements of
one-particle operators, such as occurs in determining ra-
diative oscillator strengths, and should be present in most
general atomic-structure programs. Thus the analogous
procedure could be used as well to put a nonrelativistic or

TABLE II. Comparison of collision strengths for excitation from the ground level in Be-like neon,
iron, and xenon by various procedures and workers. Notation is as in Table I except that the QKD en-
tries are those of Qian, Kim, and Desclaux [11]; results are given as a function of incident electron ener-
gy E; (eV); and the third entries for the transition energies AE (eV) are the QKD values.

z Upper level AE (eV) E; (eV) G/M D/D QKD
10 2s2p 3P, 13.99 100 2.910[ —2] 2.714[ —2] 2.886[ —2]
13.95 500 6.502[ —3] 6.077[ —3] 6.500[ — 3]
14.07 5000 2.834[—4] 2.989[ —4] 3.200[ —4]
2s2p P, 28.31 100 2.388[0] 2.411[0] 2.344[0]
28.12 500 3.558[0] 3.590[0] 3.504[0]
28.29 5000 5.536[0] 5.597[0] 5.430[0]
26 2s2p °P, 47.18 500 1.152[ —2] 1.144[ —2] 1.172[ —2]
47.15 1000 1.212[ —2] 1.199[ —2] 1.225[ —2]
10000 1.548[ —2] 1.522[ —2] 1.519[ —2]
2s2p P, 95.06 500 3.626[ —1] 3.619[—1] 3.585[—1]
94.88 1000 4.106[ —1] 4.105[ —1] 4.097[—1]
10000 6.670[ —1] 6.690[ —1] 6.395[ —1]
54 252p 3P, 128.03 1000 2.010[ —2] 1.961[ —2] 1.953[—2]
128.67 5000 2.643[—2] 2.673[—2] 2.586[ —2]
128.11 10000 3.045[—2] 3.071[—2] 2.919[ —2]
2s2p 1P, 534.38 1000 5.964[ —2] 5.920[ —2] 5.884[ —2]
534.94 5000 7.668[ —2] 7.707[ —2] 7.484[ —2]
533.70 10000 9.044[ —2] 9.067[ —2] 8.583[—2]
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semirelativistic distorted-wave program into the factor-
ized form. This form is the most convenient and efficient
form for a distorted-wave program for excitation of ions
and can be very easily coded following the outline provid-
ed here. This form was designed originally by Bar-
Shalom, Klapisch, and Oreg [12] to reduce the angular
part of the calculation and the number of radial integrals
in treating complex transitions in a single ion, but was
recognized in Refs. [1,2] to be very convenient for large-
scale calculations for a given class of transitions for a
very large portion of an isoelectronic sequence simultane-
ously and has been used for that purpose in Refs.
[5-10,26].

In the second part of the paper, expected improved ac-
curacy in our relativistic distorted-wave approach has
been obtained by replacement of the atomic-structure
data by the Dirac-Fock-Slater code in Ref. [1] with that
of the well-known multiconfiguration Dirac-Fock pro-
gram of Grant and co-workers [13-15] and by replacing
the form for the potential for the free electrons by a more
appropriate form given by Egs. (25)-(27). Results ob-
tained with these modifications are compared with rela-
tivistic distorted-wave results of Qian, Kim, and Des-
claux [11]. When account is taken of the fact that the
collision strength is defined slightly differently in the
latter, very good agreement is obtained. The difference in
results by the current and earlier procedures is also very
slight except for the low-Z end of the range given by Eq.
(1). With the current procedure the range of validity is
probably extended to about Z = 1.5N in most cases. Ac-
tually, in saying this we mean that for this range of Z the

results are probably quite accurate, within a few percent,
for the ‘““direct” or nonresonance part of the collision
strength. The resonance contribution, which is expected
to be important for some of the fairly weak transitions,
especially for the lower-Z values, can later be calculated
by the relativistic version of the method used by Cowan
[28], in which the resonance or indirect contribution is
treated as a two-step process of electron capture followed
by autoionization. This can then be added to the results
by the present method to obtain the total contribution.
We expect to do this in future work.

It should also be pointed out that test calculations for
H-like, He-like, and Li-like ions made in Refs. [18,29] in-
dicate that the generalized Breit interaction should be in-
cluded in calculating the scattering matrix elements for
excitation from the 1s shell in ions with Z = 30. Hence,
we expect to modify our codes to include an option to
efficiently do this in future work.
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