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We propose an algebraic model for bent triatomic molecules and discuss its geometrical interpre-
tation. We solve the model analytically for the special case of bent symmetric triatomic molecules
in the mean-Beld approximation and study water as an example.
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I. INTRODUCTION

In this paper we continue the study, as started in our
previous paper [1] (which we shall refer to as I), of mean-
Geld techniques in the algebraic description of molecules.
Recently Iachello and co-workers have applied the vibron
model [2, 3] (as the algebraic approach is called) to lin-
ear triatomic [4], bent triatomic [5], linear four-atomic
[6], and even more complex molecules [7] by employ-
ing an expansion in Casimir invariants of the dynami-
cal group chains of the model that closely parallels the
Dunham expansion. Their work has demonstrated that
the vibron model, with fewer parameters, can give Gts
to the vibrational spectra and transition intensities of
polyatomic molecules comparable to or better than those
obtained through conventional potential approaches and
the Dunham expansion method. The vibron model has
also been used successfully to study electron scattering
from molecules [8, 9) and similar algebraic model has been
shown to be a fertile starting point for studies of nuclear
reaction problems [10]. Unfortunately, the model is for-
mulated in terms of bosonic degrees of freedom, which
are relatively easy to handle, but are not straightfor-
wardly related to the molecular geometry. The use of the
mean-field approximation (MFA) [11—13] together with
the harmonic expansion around the mean-Geld random-
phase approximation (RPA) can be used to gain geo-
metric insight into the structure of the vibron model.
In I, we expressed the vibrational excitations in terms
of the fluctuation bosons derived from the MFA of the
vibron model and thus showed the close relationship be-
tween the vibron model and the mechanical model for lin-
ear triatomic molecules and we also evaluated the bond
length of a diatomic molecule in terms of its vibron model
parameters. In this paper, we apply this approach to
bent triatomic molecules. The major problem we want
to address here is how to describe the bond geometry
in the algebraic language. Since the Hamiltonian used
by Iachello and co-workers for bent molecules is an ex-
pansion in Casimir invariants near the O(4) limit and
only supports linear condensates (we discuss this prob-
lem, which was Grst mentioned by Leviatan and Kirson
[13], in Appendix A, where we not only find the conden-
sate solution but also derive the energy spectrum in the
large-N limit), we propose a Hamiltonian that includes
Casimir invariants of the U(3) type. This Hamiltonian,
as we will show, can produce condensate states with the

correct bond geometries of bent molecules. Moreover,
this Hamiltonian leads naturally to three rotational zero
modes without fine tuning the interaction parameters.
We use the combination of the MFA plus RPA, discussed
in I, to obtain detailed information about the structure of
the Hamiltonian and calculate the three fundamental vi-
brational energies, the three moments of inertia, and the
intensities of dipole transitions from the ground state to
the fundamental vibrational states. While we do not seek
a detailed fit to the entire spectrum of a bent molecule,
we demonstrate how an essentially unique parametriza-
tion of our Hamiltonian and transition operator can be
obtained to serve as a starting point to search for more
accurate Hamiltonians.

This paper, employing essentially the same method in
the MFA as I, is rather technical. We therefore advise
readers not familiar with the MFA applied to the vibron
model to first study Ref. [1]. It is far more pedagogic and
we do not repeat that explanatory material here.

In Sec. II we first present a general framework for bent
molecules in the MFA. We then describe in Sec. III the
analytic solution of the MFA Hamiltonian for the special
case of symmetric bent molecules (2C2Y). In Sec. IV we
study the water molecule H20 in some detail. Finally
we discuss directions for further work. The Hamiltonian
used by Iachello and co-workers [3, 5] is studied in MFA
in Appendix A. Some complicated coeflicients in the an-
alytic solution of Sec. III are relegated to Appendix B.

II. VIBRON MODEL
FOR BENT TRIATOMIC MOLECULE

The vibron model was originally designed to describe
diatomic molecules. Orie uses an interacting boson model
[2] that contains the bound-state spectrum of the Morse
potential [which can be described by an O(4) dynamical
symmetry] as a limiting case. The simplest interacting
boson model with this property is generated by the group
U(4), and is usually realized in terms of four bosons s,
p~, p„,and p, . The total number of bosons is taken
to be a constant of the motion. In some sense only the
p bosons are independent, and they are in one-to-one
correspondence with the bond degrees of freedom of the
molecule. This point is particularly clear in the MFA
where the total boson number is large. We exploit that
fact to connect the p "direction" with the bond angles in
the bent molecule.
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In the case of a polyatomic molecule, the vibron model
[2,3] can be constructed by associating a U(4) group with
each independent bond of the molecule. In particular, for
a triatomic molecule XYZ, which we want to study here,
we choose a convenient set of two independent bonds, for
example, XY and YZ, and assign a U(4) group to each
bond. Let us designate these two groups as Ui(4) and
U2(4). Each U;(4) (i = 1 or 2) group is realized in terms
of four bosons s, and p, . The vibron model Hamiltonian
has the group structure Ui(4) x U2(4) and conserves the
boson number operator (N, ) of each U(4) group. [An
alternative approach [13, 14] is to associate a U(4) group
with each Jacobi coordinate, instead of with each bond.
This approach has both advantages and disadvantages,
but we will not pursue it here. ]

Almost a decade ago, Iachello and co-workers [3]
put forth a general algebraic formulation for triatomic
molecules. The Hamiltonian was constructed as an ex-
pansion in powers of the following Casimir and Majorana
operators

Ci = C2(01(4)) —Ni(N1 + 2),

C2 C2(O2(4)) N2(N2 + 2))

c12 = c2(o12(4)) + alc2(oi2(4))
l

—(Ni + N2)(Ni + N2 + 2),

M12 = (sip2 s2pi)(slp2 —s2pl) + (pi x p2)(pl x p2),t t t t

where O, (4)(i = 1 or 2) is the O(4) subgroup of U, (4)
generated by the angular momentum operators L;
—ipt x p, and the dipole operators D; = (stp, +pts, ), the
diagonal group 012(4) is generated by L = Li + L2 and
D = Di+D2. The Casimir operator of O(4) is expressed
in terms of its generators as C2(O(4)) = L L+ D D.
The operator C2(012(4)) = L D is the second Casimir
invariant of the diagonal O(4) group. It is a pseudoscalar.
Therefore it cannot appear linearly in a Hamiltonian. Its
absolute value can, as used in Refs. [3, 5], but this is then

I

no longer a two-body operator. For linear molecules the
parameter a in C12 is taken to be 0. For bent molecules
a has to be taken to be equal to 2. The Majorana op-
erator M12 is a Casimir invariant of the diagonal U12(4)
group. Note that these operators preserve not only the
total boson number, but also the number of bosons of
each type.

The simplest Hamiltonian in terms of these operators
is a linear combination of them

A1C1 A2C2 A12C12 + ~M12 (2)

For realistic application, higher-order terms are included
[4, 5]. Such an expansion is similar to the familiar Dun-
ham expansion and has been demonstrated to give equiv-
alent or better Gts to molecular vibrational spectra than
the Dunham expansion [4, 5]. However, as we show in Ap-
pendix A, the underlying geometry of this type of Hamil-
tonians in the MFA corresponds to linear molecules, even
for the Hamiltonian with a = 2 [3, 5], which is intended
for a bent molecule.

In this work, we want to construct a geometrically
correct vibron model Hamiltonian for bent triatomic
molecules. Since the existence of a bent condensate
requires three rotational zero modes, the Hamiltonian
should be chosen such that it satisfies this condition. We
go one step further and require that we produce a con-
densate state with the correct bond angle. A convenient
way to do this is to include the Casimir and Majorana
operators of U(3) subgroups: Ui(3), U2(3), and U12(3).
They are effectively represented by n„&,n„2,n„~n„2,and

(pi xp2) (pi xp2). In contrast to [5] we wish to study the
moments of inertia as well here and thus we also include
rotational terms involving only the angular momentum
operators: Li, L2, and Li L2.

Since we are only interested in the MFA or the har-
monic approximation of the vibron model, we limit
the expansion in terms of the generators of the group
Ui(4) x U2(4) here to quadratic order. Prom the consid-
erations outlined above, we take the Hamiltonian for a
bent triatomic molecule to be

H = Ai (Li Li + Di Di) + A2(L2 L2 + D2 D2) + A12(L1 L2 + Di D2)

+A(siP2 —s2P1) (siP2 —s2P1) + P, (P1 x P2) (Pi x P2)
+bin„i+ h2n„2 + h»n»n» + BiLi + B2L2 + B»L1 L2.

As discussed in I, in order to study the MFA of this
Hamiltonian, we first construct its ground-state conden-
sate. Since the boson number of each U(4) group is con-
served, the condensate state takes the product form

1
(s, +r, . p, ),1+r2 (5)

lNi » N2 r2) = (b.'1) '(b'.2)
' l0)Ni!N2!

(4)

where N, is the boson number for the U, (4) group (i = 1
or 2) and b, i and b,2 are the condensate bosons for the
two U(4) groups. The condensate boson of each type is
given by

with the variational parameters r, chosen such that the
condensate state gives the minimum expectation value of
the Hamiltonian in the large-N limit.

The condensate bosons allow us to study the geometry
of a bent molecule since the vectors r~, r2 are assumed
to give the directions of the two bonds carrying the U(4)
groups. We take the angle between the two bonds of
the molecule to be equal to the angle between r~ and r2.
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Due to the rotational invariance of the Hamiltonian, its expectation value in the condensate state only depends on
the lengths of r& and r2 and the angle 8 between them. In the large-N limit the energy of the condensate is given by

2 2rl 2 r2 2 rq r2E( „„0)=42, ,N, +42, ,N, +4&

4 4 2 2

(6)

The variational parameters rq, r2 and 8 can be deter-
mined from the extremum conditions

BE(rl, r2 8) BE(rl r2 ~)
Br, ' 08

The condensate is now used as a starting point to con-
struct the harmonic vibrations of the molecule. The RPA
induces correlations in the ground-state wave functions
[16], but these have no effect on energy differences, and
hence we do not consider them further. Vibrational exci-
tations and rotational zero modes are described by fluc-
tuation bosons that are orthogonal to the condensate
bosons. Let us choose the coordinates so that the x-
z plane coincides with the molecular plane and that r,.
makes an angle P, with the positive z axis with Pq = —

2

and P2 = z, see Fig. 1. The molecular bond angle is
8. In this coordinate system, the condensate bosons are
given by

1
b,, = (s, + r, cos P~p, , + r, sinP~p, ).1+ rz

The fluctuation bosons should be orthogonal to the con-
densate bosons, as well as to each other. A convenient
choice is

1
( r, s, + cos P~p, , +—sin P,p,,),1+ r~

b,p = —sin P,p,, + cos P,p, z,

b.~ = Pig.

The geometrical meaning of these fluctuation bosons was

X

explored in I where we found that b, boson describes
stretching of each bond and b,p and 6;& describes its ro-
tations. Linear combinations of b~ p and b2p correspond
to bending as well as rotations around the y axis of the
whole molecule.

The MFA Hamiltonian which gives the large-N har-
monic spectra can be obtained in a straightforward way
with the aid of the condensate and fluctuation bosons.
We first express s, and p, bosons in terms of the conden-
sate and fluctuation bosons and rewrite the Hamiltonian.
We then make the substitution

b,,b,c ~ N; —b,. b, —b,pb, p
—b,. 5 (12)

III. VIBRON MODEL FOR XzY
ANALYTICAL SOLUTION

It is much easier to analyze the MFA Hamiltonian ex-
pressed in terms of the fluctuation bosons than the origi-
nal Hamiltonian since the fluctuation bosons become just
a set of coupled harmonic oscillators in the mean-field
limit. Normal mode frequencies can be found by a sim-
ple diagonalization of the RPA matrices, which can be
read off from the MFA Hamiltonian, as we showed in
I. To further simplify the discussion, we specialize this
section to study bent X2Y molecules for which we can
obtain analytical solutions in the MFA with the aid of
the Cz„symmetry of these molecules [15]. We choose
the identical XY' bonds to be the carriers of the U(4)
groups and because of the point group symmetry we can
set A~ ——A2 ——A, hq ——h2 ——h, Bq ——B2 ——B,Nq ——

N2 ——N, and r~ ——r2 ——r in the following.

as often as possible. After this, we use the Bogoliubov
prescription

bt, =UN;, b,, =V%,, i =1,2,

and neglect the terms with three or more fluctuation
bosons. Terms linear in fluctuation bosons vanish due
to the extremum condition. Terms that are quadratic in
fluctuation bosons constitute the MFA Hamiltonian and
constant terms give the expectation value of the Hamil-
tonian in the condensate state. This procedure is the
large-boson number form of the RPA, and correctly re-
produces the zero modes.

FIG. 1. A schematic depiction of the coordinates used in
this work. The molecular plane coincides with the 2:-z plane,
and the bond vectors make an angle +8/2 with the z axis.

A. Energy spectra

For bent X2Y' molecules, the extremum conditions (7)
become
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and

+2hr + h12r + pr sin 8 = 0 (14)

[4A + 2A12 cos 8 + A(l —cos 8)](1 —r ) parameters r and 8. As we can see, if h = h12 = 0,
there is a solution with 8 = 0 (or vr) and r = 1 which
corresponds to a linear molecule. Therefore, the U(3)
terms (h g 0, hl2 g 0) are essential for bent geometry.

The MFA Hamiltonian for a bent X2Y molecule is

sin 8(—2A12 + A + pr eos 8) = 0.

From these equations, we can solve for the condensate
I

1

~HMFA = H1, 1 + H2, p + H0, 2)

where

(16)

Hl, l = [2A(l —r ) —4r cos8A12+ (2r cos8+ 1 —r )A
(1 + T2)2

+p(r cos 8+ r cos28) + 2hr + h12r + 2Br (1+r )](blpblp+ b2pb2p)

A12(r +cos8) —Aeos8 —pr cos 8+ r B12 (blpb2p+ blpb2p)

1
(1+r')'- 16r A—+ 2(l —r ) A —Sr cos8A12+ (1+4r cos8 —2r + r )A

+r (1 —r )sin 8p, +2hr (2 —r )+h12r (1 —r ) (bl bl +b2 b2 )

+ 2 2 (1 —r ) cos8A12 —(cos8+ 2r +r cos8)A+ r sin 8@+h12r (bl b2~+ b2 bl~)1+r2 2-

+ 2 s 2
2r A12+r A——r cos8p (blpbl~+bl~blp —b2pb2~ —b2~b2p)

2 2

j+T2 3/2

+ 2 2 2 (1 —T )A12 A —T eos 8p (blpb2o. +.b2~blp b2pblcy bl~b2p)
sin 8

1+r»
2 —8T2 T' T 4T COS 6

A(1 2)2 + 2(A+ B) 2 + (2h+ h12)
(1 2)2 A12(1 2)2

1 —r2+2r cos8 r (1+r cos8)
(1 + T2)2 + (1 + T2)2 ( 1 Y

'7 27 'Y)(b b1 + b b2 )

r2 cos8 1 1 T2cos8+ (A12 + B12) 2 + A12 2 ~ 2 P 2 (blgb2P + b2ybly)1+T2 1+T2 1+T2 1+r2

and
2 2

H2, 0 + H0, 2 — A 2 B
2 (blp) + blp + (b2p) + b2p

1-T T t 2 2 t 2 2

+ 2 A12(cos8 —r ) + pr sin 8 —B12r (blpb2p + blpb2p)

+ 2 s/2 A12(1 —r ) + Ar —pr eos8 (blpb2a+blpb2~ —b2pbla —b2pbl~)
sin

1+T2 3/2

, , A(1 —r')'+ hr' (b', )'+ b', + (b', )'+ b',1+r2 2-

+ 2 2 A12(1 —r ) cos8+A2r (cos8 —1) + pr sm 8+ h12r (bl~b2~+bl~b2~)1+r2 2

T2
+ A, —(A+B), (b'„)'+b'„+(b,', )'+b', ,1+T' 1+T'. - "

r cos8 1 t t+ —(A12 + B12) 2 + A12 2 bl~b2~ + blgb2P1+T2 1+T2

We have divided the Hamiltonian HMF~ by the constant
scaling factor N for convenience. If we deflne a fluc-
tuation boson number operator Nf = Q,. 12(b, b, +
b,pb, p + b,~b,~), it is easy to see that Hl, l conserves the
fluctuation boson number while H2 p+ Ho 2 do not. Note

that although these expressions are long, all terms are
quadratic in the fluctuation bosons and hence the full
expression simply describes a set of coupled oscillators.

The solution of the MFA Hamiltonian given by Eqs.
(16)—(1S) is standard and it is well known [16] that such
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Here Ot are normal-mode boson operators with ener-
gies u, and L, are Hermitian collective zero-mode op-
erators with I, the corresponding moments of inertia.
Approximate forms for the moments of inertia have been
given in the nuclear physics literature [16] (the Ingiis and
Thouless-Valatin forms). These expressions can be de-
rived from the RPA ones under suitable approximations
[16]

The corresponding RPA ground state is the vacuum for
0, , i.e. , 0, ~0)Rp&

——0 for all i For. bent XzY molecules,
there are three normal modes and three zero modes. The
normal modes are vibrational motions in the molecular
plane. They are constructed from the corresponding lo-
cal modes that are shown in Fig. 2: symmetric stretching,
antisymmetric stretching, and bending. They transform
under the point group Cq„asthe representations Aq, Bq
and A~, respectively [15]. The zero modes correspond to
rotations of the whole molecule generated by the compo-
nents of the angular momentum operator

L = Ll+L2. (20)

The rotations generated by L~ and I, rotate the
molecule about axes in its plane, while that generated
by L„rotates it about the axis perpendicular to that
plane. Like the antisymmetric stretching mode, I

„

trans-
forms as B2. The MFA Hamiltonian can thus be decom-
posed into three disjoint pieces for (i) symmetric stretch-
ing and bending; (ii) antisymmetric stretching and rota-
tion around y axis; and (iii) rotations around x and z
axes.

a quadratic boson Hamiltonian can always be reduced to
the following form with intrinsic normal modes separated
from collective zero modes:

L2
H =) ~OtO, +) 1

b, = (bg + bz ),
2

(21)

for the local antisymmetric stretching mode,

1
b = (bg —bg ),

2

and for the local bending mode,

1
bb = (bgp —bzp).

2

(22)

(23)

The zero-mode operators are given by the angular mo-
mentum operators. Using the Bogoliubov prescription
(13) for condensate bosons and taking the leading terms
in large N, we can express them as a linear combination
of the fluctuation bosons

r~N 8
cos

2
(big by~ + bzp bz~),1+ rz

ryN
Iy ———i v'1+ r' (bgp —

b~p + bzp —b ),2P ) (24)

L, =i sin —(bq~ —b, —bz~ + bz ).
ryN . 8

1+re

Our objective is to rewrite the MFA Hamiltonian in terms
of these new boson operators and zero-mode operators.
For convenience we introduce the scaled operator

l„= -- (b, p + b,p
—b,p

—b,p)2

Prom the geometrical meaning of the fluctuation
bosons, we can easily construct new boson operators for
the vibrational motions that have definite C2„symme-
tries. We have, for the local-mode symmetric stretching,

~ 0 0 ~ instead of L„andwe also introduce the canonically con-
jugate angle

&w
= —(b~p + bzp + bop + bzp).2 (26)

~ 0 0 ~

Expressing the fluctuation boson operators in terms of
these new boson and zero-mode operators, we find that
indeed the MFA Hamiltonian becomes a sum of three
disjoint pieces as we expected:

1
~MFA = ~l + +2 + ~3) (27)

~ 0 ~

where

Hl = Abbbt bb + A„b,b, + Abs (b~b, + b bb)8

+Bbb(b', + b,")+ B„(b',+ btz)

+Bb (bbb + bibb'), (28)

FIG. 2. The geometric content of the local modes: A de-
picts the symmetric stretching mode, B the antisymmetric
stretching mode, and Bnally C the bending mode.

Hg A~~bi b~+B~~(b~+ b~~ ) +iD, ly (b~ b~) Duly,

(29)
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A(1 —r2) —Br2
(bi, —b»)' + (b2, —b2~)'1+r2

Ai2(l —r cos 8) —Bi2r cos 8
1+r2

x (bi~ —bi~) (b2~ —b2~). (3o)

Ob = X116b + X12~s Y11bb Y125s)

H1 mixes the local symmetric stretching mode and bend-
ing mode, H2 mixes the local antisymmetric stretching
mode and rotations about the y axis, and Hs contains
only rotations about the x and z axes. The expressions
for the coefficients appearing in (28) and (29) are rather
lengthy, and can be found in Appendix B. It should be
pointed out that in arriving at (30), we have used the
extremum conditions. It is also interesting to note the
fact that the contribution of the angle P&, conjugate to
l„,vanishes because l„corresponds to a zero mode.

The solution of the MFA Hamiltonian (16) is now
straightforward. We start with Hi given by (28) which
can be diagonalized to give the uncoupled symmetric
stretching and bending normal modes, generated by the
operators Ot and Obt.

~8
2

(+i + +2) +
2

V'(&i —&2) + 4fif2 (37)
2=1 1

A word of caution is in order here. In order for the solu-
tion given by (36) and (37) to be physically acceptable,
we must require that the matrices (A —B) and (Q+B) be
both positive definite. This corresponds to requiring that
locally both the mass parameter and second derivative of
potential energy be positive definite.

The solution of H2 given by (29) involves making a
shift of the b boson along the zero-mode motion,

and

g =b +xty (38)

H2 = A«gtg+ B«(gt + g ) —Dl„,
where

(40)

(39)

It is easy to see that g obeys boson commutation re-
lations. We can decouple g and l„by taking x
iDO/(2B —A«) and we get

D = Di, —Do/(2B —A ). (41)

AX„+BY„=~„X„,
BX„+AY„=—(u„Y„,

(32)

Os = X21tjb + X22~s Y21bb —Y22bs

The row vectors in the X and Y matrices satisfy the RPA
equations [16]

In the form of (40) H2 can be reduced to a normal-mode
form by a Bogoliubov transformation

g = cosh QO~ + sinh QO~,

(42)
gt = cosh @0~~ + sinh QO .

and obey the normalization condition

) (x„,x;—Y„,Y,) =s„. (33)

We find from the requirement that 0 and the zero
mode be decoupled that sinh 2Q = 2B~ /u, c—osh 2Q =

4 N 2A /u . We also use L„=i+„,l„and obtain

The RPA matrices A and B are given by

A
(Ab, A„)' ( Bba 2B88 p

'

Since these are two by two matrices, we can solve (32)
and (33) analytically. If we introduce the notation

L
H2 = cu, OtO (43)

The normal-mode frequency for the asymmetric stretch-
ing mode is

1
——Abb —4Bbb + Abs Bbs) = QA2 —4B2, (44)

fi = (Abb —2Bbb)(Ab, + Bb,)
+(A„+2B„)(Ab,—Bba), (35)

and the moment of inertia around y axis is

2r2Nh2
Iy ———

(1+ r2)D (45)

f2 = (A b+b2Bbb)(Ab~ —Bb, )
+(A„—2B„)(Ab,+ Bba),

we find that the normal-mode bending frequency wb is
given by

En order for H2 to have a physical solution, we must
require Aaa 4Baa ) 0

The final term in (27), Hs, involves only rotations and
we can readily show that this can be brought to the form

2=1 1
(41 + +2) Q(+i +2) + 4flf2& (36)2 2

and that the normal-mode symmetric stretching fre-
quency ~s is

I L,
2I 2I,

The moments of inertia are given by

(46)
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and

2r2 cos2 -NhI
[2A(1 —rz) —2Brz + Ai2(1 —r cos 8) —Bizr cos 8]

Iz =— 2r2 sin ~ Nh2

[2A(1 —r2) —2Br~ —Aiq(l —r2 cos 8) + Bi2r cos 8]

(47)

(48)

Thus we have seen that in MFA the Hamiltonian we
have taken including the Casimir operators of the U(3)
subgroups naturally describes a bent symmetric molecule
with the expected bending mode, two stretching modes,
and three zero modes.

N(= (vp + vi)

1 —r2 2Ar2N
n = (VP + Wi) 1,—Vi 1,),r2 ]. +r2 2

(54)

B. Transitions

T = Ty+T2, (49)

where Tq and Tq are the dipole operators for the two
bonds and as in I, they are given by

Transition intensities provide additional information
about the structure of molecules. As discussed in I,
since wave functions of the molecules are needed in cal-
culating transition intensities and since in MFA they are
only accurate to the order ~, we have to limit the use

of the MFA to transitions with few quanta. For bent
X2Y molecules, the most important vibrational transi-
tions are usually dipole transitions. Since we wish to
study the constraint imposed by the transition measure-
ments on the parameters in the Hamiltonian, we use a
simple dipole operator and calculate in the MFA only
transitions from the ground state to three fundamental
vibrational excitations. We take the dipole operator of
the bent X2Y' to be the sum

Since T„involves only zero-mode operators and does not
contribute to transitions from the ground state to any
normal-mode excitations, we will not consider it. It is
interesting to note that although there are three param-
eters for the dipole operator in (49) and (50), its mean-
field limit involves only ( and g, which are two indepen-
dent combinations of these parameters. The transition
intensities are given by

8vr3
1(p) (.) =

3q,~l(~ITI0) I', (55)

where (0) is the ground state and (v) = (vivzvs) is the
excited vibrational state. We only consider the three
fundamental vibrational states for (v). In terms of the
normal-mode operators obtained in Sec. IIIA, we can
write them as

is) =Ot io),
ia) =0 i0),

T, = AD, +pi(D, e ""*'+e """*D;), i = 1, 2.
We can calculate easily the transition matrix elements

of the dipole operator between the ground-state and
normal-mode states in the MFA by using (52) and (53).
We find for the symmetric stretching mode

(siT i0) = 0, (57)

8
(si T~ i0) = i7~2cos —(X22+ Yz~)

2
4rN 8T = (7p + 7i) cos —,1+r2 2' (51) +(csin —(Xzi + Yzi),

for the antisymmetric stretching mode,

(58)

~2N
with p~ ——p&e &+ ' . The transition dipole operator is

8
(ai T i0) = —~2g sin —(sinh Q + cosh Q),

(aiT, io) =0,
(59)

(60)Tx = ( cos (blp + bip + b2p + b2p)2

—q isn-(b ~i+b, —b2 —bz ), (52) and finally for the bending mode,

(bl T. lo) = 0, (61)8
T, = ( sin —(bip+ bi&

—bzp —
bz&)2

+icos —(bi +b, +b, + b, ),

8
(bl T. 10) = pecos —(Xia+ Yia)

2
8+(csin —(Xii + Yi.i)2

(53)

(62)
where

This is a very special form of the general dipole operator
expansion in terms of the generators of Ui(4) x U2(4)
suggested in [5]. We not only neglect the coupling ef-
fect for each T, but also choose T to be symmetric as is
appropriate for symmetric molecules (contrast Ref. [5]).

In the MFA, we obtain for the static dipole moment
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FIG. 3. The result of fitting the harmonic energies and
moments of inertia to the Hamiltonian of Eq. (16). We show
only h&2 as a function of the dimensionless parameter r.

IV. APPLICATION: WATER MOLECULE

We want to demonstrate the usefulness of the Hamil-
tonian (3) suggested in Sec. II for bent molecules and of
its treatment in MFA by studying the water molecule.
Specifically we want to construct a Hamiltonian that re-
produces the harmonic vibrational energies, the moments
of inertia for the rotational motion of the molecule, as
well as its transition properties using the analytical so-
lution we obtained in the preceding section. We do not
intend to seek a detailed fit to the entire energy spec-
trum of the water molecule. Such a description not only
requires the exact diagonalization of the Hamiltonian but
also needs higher-order terms in the expansion of the
Hamiltonian in the Uq (4) x Us(4) generators. An approx-
imate treatment is useful because it provides a starting
point for such a more complex calculation, because it
gives geometric insight to the vibron model approach ap-
plied to water, and because it yields a dynamically sound
but relatively simple starting point for the discussion of
processes like electron scattering.

We associate the two U(4) groups with the identical
HO bonds. The number of bosons for each U(4) group is
fixed by counting the number of vibrational levels in the
diatomic molecule HO, as explained in [5]. That gives
N = 39. There are eight parameters in the Hamiltonian
(3) for a symmetric bent molecule: A, Aq2, A, p, h, hqz, B,
and Bq2. One of them can be eliminated since the Hamil-
tonian is constrained to reproduce the bond angle be-
tween the two bonds. The experimental value of this an-
gle is 8 = 105 . We are thus left with seven independent
parameters.

We start with constructing Hamiltonians that yield the

vibrational normal modes and the moments of inertia
of the water molecule, all of which have been measured
experimentally. Since there are three normal modes and
three moments of inertia, we expect these Hamiltonians
to map out one or several one-dimensional paths in the
seven-dimensional parameter space. I et us use hi2 as
a function of r to parametrize these paths. Indeed we
have found such paths in the range 0.2 ( r ( 0.6 and
2.0 & r & 2.6, as shown in Fig. 3. We have not attempted
to locate all possible solutions, however.

Not all Hamiltonians lying on these paths are physi-
cally acceptable. Transition intensities contain informa-
tion about the wave function of the water molecule and
therefore impose stringent constraints on the Hamiltoni-
ans. There are four experimental quantities we can study
in the MFA. They are the static dipole moment and the
transition intensities to three fundamental modes. As we
see from the result in Sec. III 8, our choice of the dipole
operator involves only two more parameters in the MFA.
Thus the four new quantities overconstrain the fit and it
is not obvious that any of the Hamiltonians we obtain
by using the spectrum information yield a wave func-
tion which reproduces all four dipole quantities, particu-
larly in view of the strong cancellation in the symmetric
stretching transition seen in the experiment. We proceed
with the selection of Hamiltonian parameters by calculat-
ing the dipole transition intensities using the parameter
values on the paths we have found above. The calcula-
tion shows that a Hamiltonian that gives reasonable fits
to the static dipole moment and the transition intensi-
ties exists and its parameters are given in Table I. The
corresponding parameters for the MFA of the dipole op-
erator are given in Table II. The quality of the fit can
be seen in Table III where we compare our results for
excitation energies, moments of inertia, and transition
rates with experiment and with those of [5]. Note that
these authors did not calculate moments of inertia. As we
can see, we overestimate the transition intensity for the
symmetric stretching mode. This is because the cancella-
tions implied by this weak transition are sensitive to the
I/~N corrections which are missing from our mean-field
treatment.

V. CONCLUSION

In this paper we have shown that considerable simpli-
fication and geometric insight arises from a mean-field
approximation to the algebraic or vibron treatment of
bent triatomic molecules. The MFA is valid for large bo-
son number, which is the case for these molecules. The
MFA makes it particularly easy to see what terms must
be added to the molecular Hamiltonian to give a bent
molecule in the intrinsic frame. The low-lying vibrational

TABLE I. Parameters (in units of cm ) for the Hamiltonian (16), obtained by fitting the
MFA to the spectrum and transitions of water. They yield a bent condensate with r = 2.441 and
8 = 105'.

—443.9 246.6 498.5
P

3.514 —532.3 988.1 392.1 —314.4
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TABLE II. Parameters (in units of A) for the dipole oper-
ator, obtained by fitting the MFA to the transitions of water.

0.0038 0.0027
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APPENDIX A: GEOMETRY AND MFA
GF THE HAMILTQNIAN EQ. (2)

A formalism that may give a unified description of both
linear and bent triatomic molecules in the algebraic vi-
bron model was suggested in [3]. The idea is based on a
group theoretical solution for the eigenvalues of a simple
Hamiltonian, that displays all the properties associated
with both linear and bent molecules, depending on the
value of a single parameter. The case with exact dynam-
ical symmetry is A = 0 in Eq. (2):

H = —Ai Ci —AzCz —AizCiz. (Al)

energies, moments of inertia, and vibrational transition
rates can then be used to 6x the Hamiltonian parameters.

There are many directions that one can take from this
work. One can take the MFA Hamiltonian with its har-
monic treatment of excitations as an attempt at a more
exact treatment. This is far easier than trying to deter-
mine the parameters in a full treatment directly. Alter-
nately one can use the MFA Hamiltonian in a calculation
of electron-molecule scattering where the fine details of
the energies are not nearly so important as the overall
molecular dynamics [18]. We plan just such a calculation
of electron-water scattering. Finally, and perhaps most
importantly, the MFA with its simplicity and geomet-
ric base permits extension to more complex polyatomic
molecules for which full treatment by conventional or al-
gebraic methods is often far too difficult.

Here the operators Ci, Cz, and Ci2 are defined in (1). It
was shown in [3] by calculating the low-lying vibrational
excitations from group theory that for any parameter a g
2 in the operator Cq2 one has four normal modes typical
of a linear molecule. For a = 2 one of the modes becomes
a zero mode, so that we see three normal modes that
seem to indicate that this case describes a bent molecule.
It was found [3] that if a = 2, the three normal mode
frequencies are ~,i = 4(Ai + 4Ai2)Ni + 4AizN2, ~,z =
4(A2+ 4Aiz)Nz +4AizNi, and ~g = 4Aiz(Ni + N2). To
illustrate how the zero mode appears, and why this is not
a satisfactory solution, we study the Hamiltonian (Al) in
MFA.

It is easy to show that the expectation value of the
operators

Cz(Oi2(4)) = L.D (A2)

in the condensate given by (3) vanishes, since this ex-
pectation value is proportional to the imaginary part of
the condensate parameters. For linear molecules we have
been able to prove that the condensate is an eigenstate of
this operator, with eigenvalue zero, while to leading or-
der in N any condensate is an eigenstate of this operator
with eigenvalue zero. Remember that the absolute value
of an operator is deGned through its spectral decomposi-
tion, as having the same eigenvectors as the original op-
erator, replacing the eigenvalues by their absolute value.
Any condensate state thus has no contribution from C2,
and thus ~L D~ does not contribute to the energy surface.
Therefore, ven though this term was introduced for bent
molecules, the Hamiltonian (Al) with any a, and in par-
ticular a = 2, has an identical energy surface E(ri, r2, 8)
as that with a = 0. The analysis we presented in Sec.
IV A of I for the solution of ground-state condensates of
linear molecules can be readily carried over for the case
of bent molecules. Since in realistic application one finds
the relation Aiz ) 0, the condensate has 0 = 0 even
when a = 2. (We also find ri = r2 = 1.) The geometries
of the condensates of the realistic Hamiltonians used in
[5] [see its Eq. (3.11)] are also linear, as can be shown
straightforwardly.

With ry = r2 ——1, 8 = 0 for the condensate, we can
rewrite C2 in terms of the condensate bosons and fluc-
tuation bosons. Applying the Bogoliubov prescription

TABLE III. Comparison of fits to the spectrum and transitions of water.

Physical
quantity

Cdb

~s
4)g,

Iy
I
Dp

I(ooo)

~(ohio)

I(ooo) (ioo)
I(ooo) (oo~)

cm
cm
CIIl

g cm
g cIn
g CIIl

eA
cm/molecule
cm/molecule
cm/molecule

Expt. [17]

1595
3657
3756

1.928[—40]
3.017[—40)
1.009[—40]

0.38
1040
49.5
720

Present
work

1595
3657
3756

1.928[—40]
3.017[—40)
1.009[—40]

0.38
1059
292
709

Iachello
and Oss [5]

1595
3657
3756

1040
51.8
732.5
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(12-13), we find in the leading order

C2 ~ N2(bipblp bipblp) + Nl(b2pb2p b2~b2p)

+QN1N2( b, p—b2 + b2 bip

b2pb—i~+ bi~b2p) .

+2(N1 + N2)

x [QN2b, p
—JN1 b2p

—i(QN2bi~ —QNibz~)].

(A6)

These boson operators also create the large-N eigenvec-
tors of C2(012), the other term in C12. The RPA eigen-
values of the Hamiltonian without the absolute value are

&1 ~ 4(A1 + A2)N1 + 4A12N2

s2 ~ 4(A1 + A2)N2 + 4A12N1 )B:A12(2 —a)(N1 + N2),

B+ . A12(2 + a) (N1 + N2),
B + B+ . 4A12(N1+ N2).

(A7)

(A8)

(A9)
(A10)
(Al 1)

The last energy (A10) is not independent, since it is
just a double excitation, but its significance will become
clear when we take the absolute value. The four inde-
pendent modes are still the modes of a linear triatomic
molecule. The erst two are the usual stretching modes.
The other two are no longer the degenerate bending

This can be easily diagonalized to give

C2 ——(N1 + N2)(B B —B+B+),

where the boson operators B+t and B~ are given by

1

+2(N1 + N2)

x[QN, b', p
—QN, b,'p+ i(QN, b'„—QN, b,', )]

(A5)

and

modes but rather a linear combination of bending modes
corresponding to left and right twists. The are not degen-
erate because the Hamiltonian violates parity invariance.
If we take the absolute value the only thing that changes
is the frequency for B+, which becomes equal to the one
for B (a ~ —a). Thus the bending modes are again
degenerate as parity has been restored. Notice that now,
however, the double excitation is no longer the sum of
what used to be its building blocks. It thus seems that
we have created Eve modes, a pair of which is degen-
erate. Actually one can show, through boson mapping
techniques [19],that we have only four operators and one
signature quantum number (+/ —). The bending mode
can be interpreted as the elementary excitation of a corn-
posite boson, whereas there are some complicated objects
giving the individual + and —excitations. Even for the
case of a = 2, where we have but three normal (nonzero
energy) modes we find that the generators of this extra
zero mode are quite complicated. For a true zero mode
associated with the breaking of rotational invariance due
to the molecular bend, this generator should be an an-
gular momentum, as in Sec. II. It is not here. Thus
the "zero mode" generated by taking a = 2 is of inter-
esting dynamical character, but does not correspond to
the geometrical zero modes of a bent molecule. Even
though the discussion in this appendix was limited to a
very simple Hamiltonian, realistic Hamiltonians for bent
molecules as used in (3.11) of [5] contain the same opera-
tors, as well as additional terms involving the Majorana
operator. ' lf we add the Majorana term to (Al), we find
that for a = 2, there should be two degenerate (nonzero

energy) harmonic modes for the B+~ bosons due to the
contribution from the Majorana operator. This makes it
even more dificult to interpret bent molecules in terms
of Hamiltonians constructed based on (2).

APPENDIX B:
MFA HAMILTONIAN COEFFICIENTS

The coeKcients in the MFA Hamiltonians (28) and
(29) are given by

(1+r ) Ai,b = 2A(1 —r ) —[(1+5r ) cos8+ r (1+r )]A12+ [1 —r + (1+3r ) cos8]A
+(2r cos 8+r cos28+r cos 8)@+2hr + h12r + (2B —B12)r (1+r ), (Bl)

(1+r ) A„=2(l —10r + r )A+ (1 —10r + r ) cos8A12

+(1 —cos8 —4r +4r cos8+r —r c s8o)A (+csin 8+2h+ h12)r (2 —r ), (B2)

(1+r ) A« ——2(l —10r + r )A —(1+Gr + r ) cos 8A12

+(1+4r cos8+ r + cos8+ r cos8)A —r sin 8p+ 2hr (2 —r ) —h12r,

Ag, = [(1 —3r )A12 —(1 —r )A —2r cos8p],
sin 8 2 2 2

(1 + r2)3/2

Bi,i, = [(1 —r )A —r B — A12(cos8——r ) — pr sin 8+ —B12r ]-1+ r2 2 (B5)
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2B„(1+r) = 2A(1 —r ) + 2hr + hq2r + Aq2(l —r ) cos8+2Ar (cos8 —1) + pr sin 8,

2B (1+r ) = 2A(1 —r ) + 2hr —hq2r —Aj2(1 —r ) cos 8 —2Ar (cos 8 —1) —pr sin 8,

(B6)

(B7)

Bb, =
&

[Aq2(1 —r ) + Ar —pr cos8],1+r2 s] (B8)

v2Do =
2 si2 [2r Ai2 —(1+2r )A+ pr cos8],1+r2 s~

2Dq(1+ r ) = 4Ar (1 —r ) —4Br (1+r ) + 2Aq2r (2cos8 —1 —r )
+A(l —r )(cos8 —1) + pr sin 8(1+2r ) —2hr —hq2r —2Bq2r (1+r ).
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