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Excitation of alkali-metal-like ions by electron impact
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DifFerential and total cross sections for the dipole excitation of valence electrons in alkali-metal-
like ions by electron impact well above the threshold energy are calculated in the generalized Born
approximation and in a semiclassical approximation. The angular distribution is peaked at an angle
which is essentially de6ned by energy-momentum-matching conditions on the classical Coulomb
trajectory; around this angle, the semiclassical description is in excellent agreement with the quantal
description. Deviations from the mean-field electron screening are weak and manifest themselves
only in backward scattering. Semiclassical total cross sections are practically equal to the Coulomb-
Born predictions. This near equality is explained within the WKB approximation. The practical
equivalence between the semiclassical, WKB, and Coulomb-Born approximations applies also for
other multipoles in a wide range of energy, energy transfer, and ionic charge.

PACS number(s): 34.80.Kw

I. INTRODUCTION

With the recent availability of intense beams, it has
become feasible to measure total and differential cross
sections for excitation of multiply charged ions by elec-
tron impact. Apart from measurements on singly charged
ions, absolute total excitation cross sections for mul-
tiply charged ions have been limited to a few sys-
tems: (Hg +, Al +, Cs+, Si +, N4+) [1], Ba + [2], and
Ti + [3]. To our knowledge, differential cross sec-
tions have been measured so far only for Si —+ Si,

2 2'
Sl~ Pi 3, and for Si~ D3 5 transitions in the

singly charged alkali-metal-like ions Mg+, Zn+, and Cd+
[4] and for the Si~ Pi s transition in the multiply

2 2&2

charged sodiumlike Ar + [5]. It is worth noting that,
in all these differential-cross-section experiments, mea-
surements were restricted to forward scattering, and that
the incident energy was a few times the transition en-
ergy. The theoretical predictions of these differential ex-
citation cross sections have so far been limited to the
singly charged ions and have been worked out within ei-
ther the close-coupling approximation (CCA) [6—8] or the
distorted-wave Born approximation (DWBA) [9. The
validity of the DWBA for total and diff'erential excita-
tion cross sections in the case of multiply charged ions has
been thoroughly investigated by Pindzola and co-workers
[10, ll] who made comparisons with CCA predictions.
Relativistic effects on total excitation cross sections, also
investigated in the DWBA, have been found to be quite
sizable for highly charged ions [12].

In the present paper, we calculate the differential cross
section for the excitation of the lowest dipole transition
in alkali-metal-like ions by electron impact. Consistent
with the experiment of Huber et al. [5], we consider the
excitation of Ar + at a 100 eV incident energy, that is,
about six times the threshold energy. Other alkali-metal-
like ions at the same relative energy are also considered.

The calculations are first carried out in the generalized
Born approximation with continuum wave functions be-
ing given by either a pure Coulomb potential as in the
Coulomb-Born approximation (CBA) or by a more realis-
tic atomic potential as in the DWBA. The CBA serves as
a reference for a semiclassical calculation. In this semi-
classical approximation it is assumed that the electron
projectile follows a classical Coulomb trajectory and the
excitation process is treated in the first order of time-
dependent perturbation theory. This is similar to the
semiclassical theory of the Coulomb excitation of atomic
nuclei [13].

II. THEORY'

A. Distorted-wave Born approximation

The excitation of neutral atoms by electron impact has
been investigated thoroughly with elaborate models such
as the close-coupling approximation. The excitation of
positive ions usually demands less theoretical sophisti-
cation simply because of the dominant contribution of
the long-range potential. A rather simple and power-
ful method is given by the DWBA where the coupling
between various excitation channels is neglected. In this
first-order perturbation theory approach, the initial state
is made of the product of the projectile wave function in
some model potential and the target wave function ob-
tained to some desired approximation. The final state is
described in the same manner. For the sake of clarity
and in keeping with the experiment [5], we consider here
the lowest excitations of alkali-metal-like ions. The ex-
citation goes through the valence electron from the n 8
ground state to a ng lg excited state. Using atomic units
5 = m = e = 4meo ——1, the excitation cross section for
the transition is expressed as
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do 1 py
dO 47t.2 p,

where the coordinates r and r' are for the scattering elec-
tron and the valence electron, respectively. The initial
and final electron wave functions 4, and 4f have mo-
menta p, and py, respectively. Assuming that the closed
shell is a spectator, the target ground state is described
by the valence electron wave function 4 while the ex-
cited valence state is described by C b. Let us introduce
the transition potential deG. ned as

VT(ab;r) = (Cb(r'), C (r')).
lr —r'I (2)

The transition potential contains the structural infor-
mation of the target. In the present work, it has been
calculated with Hartree-Fock wave functions. Correla-
tion eKects such as the core polarization may be in-
cluded; however, they do not contribute significantly [14]
in multiply charged ions and will not be considered in the
present work. For very highly charged ions it would be
appropriate to use relativistic self-consistent wave func-
tions [12]. Results on relativistic effects on differential
cross sections will be discussed elsewhere [14]. As usual,
the Coulomb interaction is expanded as

1 . 4~ r~(

bi = arg I'(t + 1 + iq), (10)

II'(l+1+ n)l „,,i+,
2(2t + 1)!

x e '"'M(t + 1 —irl, 2t + 2, +2ipr)

with the asymptotic behavior:

7r
E~ipr j sin pr —i ——gin(2nr) + n~)2

with g being the Sommerfeld parameter g = ——. Inp'
the DWBA, one simply adds to the Coulomb potential
the screening potential due to the electrons. The radial
continuum wave function is calculated in the chosen dis-
torting potential and the total phase shift is obtained by
properly adjusting the continuum radial wave function
to the Coulomb asymptotic behavior of Eq. (12). This
total phase shift is thus the sum of the above Coulomb
phase shift and a short range contribution. By assign-
ing the initial momentum p, to be along the z axis, the
differential cross section can be written as

tIiy(r) = ) 47r( —) 'i"e ' 'f YI, ~, (pf)
lf,mf

1
x Yi, , (r) Fi, (pyr)

@fr

In the CBA the distorting potential is simply Z/—r, Z
being the ionic charge, leading to the well-known analyt-
ical expressions for the Coulomb phase shift and radial
function:

and the bound state wave function as

O(')= ", Y (')X .P„i(r')

leading to

VT(ab; r) = Vi, (ab;r)Yi, , (r).
v'4~

2ll, +1
The multipole component Vp is given by

dcT 1671 ) ) (i i ) . i[6, +b, !
dA p3pf

XYif mi, (pf—)+I,i~+i, if i

( t )
f+ Iflbt,

I
tf lb t,

0 00 t
—mbmb0

1
V

r)
Pb(r')r'~P (r')dr'

OO

Pb(r'), q, P (r')dr'r' +' (6)
lb Fi, (pfr)Vi, (ab; r)Fi, (p,r)dr.

(14)

This allows us to write the differential cross section as

where the scattering states are eigenstates of the distort-
ing potential. Generally the outgoing (initial) and in-

coming (final) states can be expanded as

4, (r) = ) 47r( —) 'i'e'~" Yi, , (p;)
li)m,.

1
x YI, , (r) Fi, (p, r), .

I'r

The total cross section is in turn expressed as

&tot = 3 ) (2l'+1)(2ff +1) I 0 0 0
16~ 1 (lf lbt, l

p3pf 2lb + 1

-2
lbX Rl, l (16)

The expression for the DWBA amplitude given in Eq.
(1) does not account for the indistinguishability between
the projectile electron and the electron in the target. In
actual calculations one has to include the exchange ef-
fects by multiplying the Coulomb potential operator by
(1 —P) where P is the exchange operator. We shall show
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in the next section that these exchange contributions are
negligible at the energies of interest for the present prob-
lem.

B. Semiclassical approximation

The present semiclassical model for the excitation of
multiply charged ions by electron impact is very similar
to that of the Coulomb excitation of nuclei by positively
charged heavy ions as worked out by Alder et aL [13].
The projectile is assumed to follow a classical Coulomb
trajectory and the excitation of the target is described
in the framework of first-order time dependent theory.
This perturbation is assumed not to affect the projectile
trajectory. Thus the differential excitation cross section
in the semiclassical approximation (SCA) is written as

FIG. 1. Classical picture of the electron orbit in the
Coulomb field of the positive ion. The position of the electron
and the defiection angle are denoted by r(t) and 0, respec-
tively.

do

dO

Go—I'ab
dA - R

(17)
After some algebraic manipulations one obtains

do

dA R

=1 ~ 1
4 'sin (8/2)

with the Rutherford cross section:

(18)
b b = —. Yi, , —,0 'Z,—q'(e, ()

1 g4a m a,

with

(24)

and a, = Z/2E be—ing the characteristic length of the
scattering problem. The probability P~b of excitation
from the ground state a to the excited state b is given by

Z ~'(e, g) = ig(~ sinh(v)+v)

Pa& = ) Ibabl

mb

with

(19)
[cosh(v) + e + ice —1 sinh(v)]~'

X
[e cosh(v) + 1]

xVi, (ab;r)dv, (25)

where the dimensionless quantity ( is defined as
+OO

~ab = —.
—OO

(20) ( = nf —n*. (26)

+

2th+ 1 i Vi, (ab; r (t) )Yt, m, , (r(t) )e' 'dt.

(21)
dA 4 '

sin (e/2)
(27)

The semiclassical differential cross section is finally ex-
pressed as

In order to perform the time integration along the
Rutherford trajectory it is convenient to define a new in-
ertial frame as described in textbooks [15]. In this frame
(see Fig. 1) the Cartesian coordinates of the projectile
are parametrized as

otot = 2wac «&).lb. bI .

and the total cross section as

(28)

x = a, ( cosh(v) + e),
y = a,ge~ —1 sinh(v),
z=0,
r = a, (e cosh(v) + 1),
t = ~(esinh(v) + v),

(22)

C. WEB approximation

We shall now recall the link between the quantal de-
scription and the semiclassical one as demonstrated in
Ref. [13] for the nuclear case. The WKB approximation
of the radial wave function of Eq. (11) is given by

where the eccentricity is defined as e = —„.„&e&2&. In
order to symmetrize the classical description and to fulfill
the requirement of detailed balance, that is, the ratio of
the cross sections for transitions a —+ b and b ~ a is
equal to the ratio pf /p, , we define a mean trajectory by
introducing an effective length a, as

where

dr f(r) ~

(29)

(30)

a, =— (23)
and
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pg t(t + 1)
r r2 (31)

The turning point ro is the solution to the equation
f(ro) = 0. Note that, in the present case of an attrac-
tive Coulomb potential, the classically forbidden region
where r & ro is encountered only for large l values, thus
supporting the WKB approximation. Substituting the
WKB wave function Eq. (29) into Eq. (15) one finds

[f'(&)ff(&)] '
(p'pf)

x (cos(V; —
V y) —cos( p, + V f))

x Vi, (ab; r)dr. (32)

p=t, —Lf,
l;+l y

2 )

P = QP'Pf)
g 7

pr = [g2 + t(t + 1)]~ cosh v + rI,

[q +l (l+1)I ~
rl

(34)

The resulting WKB approximation for the matrix ele-
ment can then be written as

l, lf 4p
i$(e sinh(v)+v)

[cosh(v) + e+ iv'c2 —1 sinh(v)]~
X

[e cosh(v) + 1]&—i

x Vi, (ab; r)dv, (35)

where the integral is just identical, with p, = mb, to the
integral Eq. (25) derived in the semiclassical approxima-
tion. In order to work out the total cross section, we
replace the partial wave summation of Eq. (16) by an
integral over the angle 0 defined along the Rutherford
trajectory as

The second cosine function, of which the argument is the
sum of the phases, oscillates rapidly and can therefore be
safely neglected. After a few manipulations, the differ-
ence p, —

&pf can be approximated as

e+ cosh v
&p, —pf = ((e sinh v + v) + p, arccos

e cosh v+ 1

(33)

where we have made the following substitutions:

III. RESULTS AND DISCUSSIONS

In the following we present cross sections calculated
for various multipole excitations of alkali-metal-like ions
obtained in the DWBA, the CBA, and the SCA.

A. Dipole excitations

For multiply charged ions, the dipole transition po-
tential defined in Eq. (2) is dominated by the 1/r2 part
that extends well outside the electron density and whose
strength is actually given by the ns np dip-ole strength.
As an illustration, the radial dependence of this poten-
tial is shown in Fig. 2. We therefore do not expect the
angular distribution to be very sensitive to the detailed
electronic structure but rather to exhibit features that
are characteristic of the long-range Coulomb scattering
problem.

Differential cross sections for the first ns-np dipole ex-
citation of lithiumlike ions Be+, Ne +, Ni +, so ium-
like ions (Mg+, Ar +, Kr ), potassiumlike ions (Ca+,
Fe +, Ru +), and rubidiumlike ions (Sr+, Ru +, Sm +)
have all been calculated at the same ratio, x, of incident
energy over transition energy equal to 5.76. This value of
2: corresponds to the excitation of the 3s-3p transition in
Ar + by a 100-eV electron for which experimental data
are available [5]. In Figs. 3(a)—3(d) we compare the
predictions of the DWBA and the CBA. The potential
that is used in the DWBA is the Hartree-Fock potential
obtained by solving the self-consistent equations for the
target electrons. The entrance channel and exit channel
potentials are obtained with the target in its ground state
and excited state, respectively. In all cases the exchange
contributions which involve only the valence electron and
the projectile are taken into account. For the least favor-
able case of singly charged ions these contributions are
small and significant only at backward angles as demon-
strated in Fig. 4. As previously reported [5], an excellent
agreement with the experimental data on Ar + is found.
No other experimental data are available except for Mg+,

l = —g cot(e/2)

and we use the approximation

2

(2l, + 1)(2tg + 1) ] 0f 0 0 ~

(36)

I

—.8
A, = 1 I c(/[2

= (2l + 1) Yj,„(—,0) . (37)

One then finds that the total WKB cross section is just
equal to the semiclassical cross section given by (28).

0

r(a. u)

FIG. 2. Radial part of the dipole transition potential for
the 3s-3p transition of Ar +.
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one since the Rutherford cross section in the forward di-
rection falls very rapidly with angle. By noting that along
an isoelectronic sequence, the ns-np transition energy
scales linearly as (Z + 1), we expect the parameter ( to
vary approximatively as v Z. The subsequent expected
variation of 8, with the ionic charge is in fair agreement
with the theoretical calculations. It is worth noting that
the ratio ( i~&) depends almost only on the ionic charge
so that angular distributions for isoionic systems should
peak at about the same angle. This behavior is well con-
firmed by our calculations and can be seen by comparing
Figs. 3(a)—3(d). For dipole transitions in highly charged
ions, with a change of the principal quantum number, the
parameter ( is independent of the charge and so should
approximately be the angular distribution. This is well
verified by DWBA calculations on He-like ions [18].

It is worth emphasizing the excellent agreement of the
SCA and the CBA in their respective predictions of dif-
ferential cross sections, as was expected from the discus-
sion of the preceding section. The agreement is observed
over a wide range of the relative incident energy, x, as
shown in Figs. 6(a) and 6(b) for x = 2 and x = 10. The
lower value of x = 2 is only of theoretical interest since
the CBA itself is at its limit of validity. The S A can,
however, be extended to any distorting potential i quir-
ing a numerical integration over a classical trajectory in
this new potential.

Along a given isoelectronic sequence the deviations of
the DWBA predictions from the CBA ones decrease with
increasing Z but become signifiant only at angles well
above the most probable angle. As the electronic struc-
ture gets more comple~, the backward inelastic scatter-
ing is characterized by quantal oscillations due to the
interference between the long-range Coulomb phase and
the short-range electron screening phase. However, these
screening corrections do not affect sensitively the total
cross section as shown in Table I.

As can be seen from Table I, the total cross section ob-
tained in the SCA never difFers by more than 0.5% from
the one calculated in the Coulomb-Born approximation
without exchange. This excellent agreement has been
checked over a broad range of 2: values [14]. Moreover,
this SCA total cross section is an excellent approximation
within a few percent of the DWBA prediction, discrep-
ancies being significant only for singly charged ions.

Being aware of the experimental difhculties in measur-
ing precisely absolute excitation cross sections of multiply
charged ions by electron impact, we show in Figs. 7(a)—
7(d) the ratio of the ns-np differential cross section over
the elastic cross section. The latter has been derived from
a calculation of the scattering phase shifts in the Hartree-
Fock approximation. The short-range phase shift brings
deviations from the pure Rutherford elastic cross section
only at angles higher than the most probable inelastic
angle. We believe that the Hartree-Fock approximation
is excellent and have checked that polarization effects are
negligible in the present case, which is characterized by
an incoming electron energy equal to 5.76 times the exci-
tation threshold. In all cases the ratio increases abruptly
from 0' to a first maximum at an angle located above the
most probable excitation angle of Figs. 3(a)—3(d). Then
the ratio goes through a minimum and increases again at
backward angles. Such a behavior will soon be checked
experimentally on Ar7+ [19].

B. Other multipole excitations

For excitations of multipolarity I larger than 1 the sit-
uation is rather similar to the dipole case. The asymp-
totic transition potential of Eq. (6) is characterized by
a I/r + tail. CBA and SCA calculations of total cross
sections for the first quadrupole transition ns-nd in Ar7+
are in full agreement with each other as shown in Table

TABLE I. Calculated total cross sections (atomic uniti) for the first dipole excitation (ns-np)
of lithiumlike ions, sodiumlike ions, potassiumlike ions, and rubidiumlike ions. The relative incident
energy is equal to 5.76 times the transition energy calculated in the Hartree-Fock approximation,
Various approximations are given: distorted-wave Born approximation with exchange (DWBA)
and without exchange (DWBA"), Coulomb-Born approximation with exchange (CBA) and without
exchange (CBA*), semiclassical approximation with Coulomb trajectories (SCA).

Ion

Be+
Ne'+
Ni +

Mg+
Ar'+

25+

Ca+
Fe +

Ru

Sr+
Ru t

25+

DWBA

38.40
0,949
0.0318

53.92
2.571
0.126

130.9
8.446
0.518

158.5
12.59
0.984

DWBA*

40.64
0.987
0.0327

56.92
2.666
0.130

137.8
8 ~ 694
0.529

165.5
12.94
1.001

CBA

39.42
0.944
0.0313

53.27
2.501
0.123

129.9
8.082
0.496

162.7
12.27

0.927

CBA*

41.51
0.978

0,0321

56.22
2.569
0.125

136.3
8.294
0.503

170.3
12.55
0.941

SCA

41.81
0.986
0.0324

56.36
2.575
0.125

136.5
8.308
0.504

170.5
12.56
0.942
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II. For monopole transitions, the asymptotic transition
potential has only one term which decays exponentially.
This transition potential is thus of much shorter range
than other multipoles and acts only inside the ion. Con-
cerning the total excitation cross sections the arguments
developed in Sec. IIC are fully valid (only a few partial
waves contribute), and as expected and shown in Table
II the CBA and SCA predictions just agree within less
than 0.3%. However, the quantal and semiclassical angu-
lar distributions differ considerably at forward angles as
seen in Fig. 8. The CBA predicts two maxima, one be-
ing at 0' whereas the SCA yields only one which is close
to the second maximum of the former approximation and
well explained by the classical argument discussed above.

10

10

10

10

g 10'-

c 100
U
(D
U)

10

50 100 150

Ca'

10

10

10

10

10

50 100 150

Sr'

IV. CONCLUSION 10 10

In the paragraphs above, we have shown that total
cross sections for dipole excitation of alkali-metal-like
multiply charged ions by electron impact at energies well

10

50
I

100 150

10

50 100 150

Scattering angle (deg)

10'- FIG. 7. Ratio of DWBA di8'erential cross section for ex-
citation of the ns-np transition of alkali-metal-like ions by
electron impact over elastic cross section. The electron en-
ergy is equal to 5.76 times the transition energy. (a), (b), (c),
and (d) are for Li-like (2s-2p), Na-like (3s-3p), K-like (4s-4p),
and Rb-like (5s-5p) ions, respectively.

104-

10

50 100 150

0(deg)

above threshold are given to a very good accuracy by
a semiclassical model in which it is assumed that the
electron projectile moves on a classical Coulomb trajec-
tory. Such an approach could be extended to other mul-
ticharged ions since the structure information is entirely
contained in the transition potential. Once this poten-

010

. 008

.006

004

.01

.001
0

X=10

50 100 ]50

002

0
/

0 50 l00 150

0(deg)

FIG. 6. CBA (solid line) and SCA (dashed line) calcula-
tions of the differential cross section for excitation of the 3s-3p
transition of Ar + by electron impact at an energy equal to
2 times the transition energy (a) and 10 times the transition
energy (b).

0(deg)

FIG. 8. CBA (solid line) and SCA (dashed line) calcula-
tions of the differential cross section for excitation of the 3s-4s
transition of Ar"+ by electron impact at an energy equal to 3
times the transition energy.
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Excitation

38-4s
38"3G

CBA*

0.0177
0.114

SCA

0.0177
0.114

tial has been calculated within some atomic model—
with configuration interactions for instanc" it merely
remains to perform the time integration along the clas-
sical trajectory, thus avoiding the lengthy partial-wave
expansion that the DWBA requires and that, in this
Coulomb context, extends to large t values. This is par-
ticularly useful for differential cross sections which re-
quire one to go to very high angular momenta indeed.

TABLE II. Calculated total cross sections (atomic units)
for the (3s-4s) monopole and the (3s-3d) quadrupole
excitations of Ar +. The relative incident energy is
equal to 5.76 times the transition energy calculated in
the Hartree-Fock approximation. Various approximations
are given: Coulomb-Born approximation without exchange
(CBA') and semiclassical approximation with Coulomb tra-
jectories (SCA).

We showed that the semiclassical and Coulomb-Born ap-
proximations give very similar angular distributions. We
showed that the CBA is valid up to a large angle and
that electronic screening plays a role only at backward
angles. The strong Coulomb field which affects the pro-
jectile is responsible for a strong shift of the dipole angu-
lar distribution that peaks at an angle roughly estimated
by matching the collision time and the inverse-transition
frequency. It was also shown that this semiclassical ap-
proximation is valid for total cross sections of other mul-
tipole excitations. This is reminiscent of the equivalence
between the Born approximation and the semiclassical
approximation with straight-line trajectories. Note, how-
ever, that for a monopole transition, the angular distri-
butions cannot be properly described within the semi-
classical approximation.
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