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The Schrodinger equation for three charged particles in the continuum is considered in the region

p -+ oo, r /p —+ 0, where r is the distance between the particles P and p, and p denotes the
distance between the center of mass of the pair (P, p) and particle n, o. g P g p. The asymptotic
Schrodinger equation valid in this domain is found to have at least two types of solutions. The first,
exact one which is of the familiar product form, however, does not connect to the known asymptotic
expression for the solution of the original Schrodinger equation in the region where all interparticle
distances r&, r2, and r3 go to infinity. Therefore a second type of asymptotic wave function is derived
which satisfies the asymptotic Schrodinger equation to leading order. It has a surprisingly simple
form, being the product of asymptotic Coulomb distortion factors for the relative motion of the
particles within each of the pairs (n, P) and (o;, p), and an ordinary two-particle scattering state for
the third pair (P, p) but belonging to an effective two-particle relative momentum which depends
on the relative coordinate p . This constitutes a genuine three-body e8'ect. Based on this result,
we present an expression for the asymptotic wave function which is the asymptotic solution of the
three-charged-particle Schrodinger equation in all asymptotic regions: where all three interparticle
distances are large where it goes over into the standard asymptotic wave function, as well as if only
any two interparticle distances, say rp and r~, are large and the third one satisfies the condition
T~/po ~ 0.

PACS number(s): 34.10.+x, 25.10.+s, 34.80.Dp, 03.65.Nk

I. INTRODUCTION

One of the intriguing problems in three-body physics
concerns the incorporation in a useful manner of long-
ranged Coulomb forces into the theoretical description
of three-body processes. In recent years, though, there
has been considerable progress in the theoretical formu-
lation of three-body equations which render feasible the
calculation of reactions involving charged particles. But
none of them can at present be made use of without ap-
proximations, the reliability of which is often difficult to
estimate. This is, in particular, true when three charged
particles are in the continuum.

A much less involved task consists of deriving approxi-
mate but analytic forms for the scattering wave functions
of the system of interest which are valid in some, in gen-
eral asymptotic, domain. Not only is their knowledge
required as the boundary condition to be imposed on the
acceptable solutions of the Schrodinger equation, but for
many practical applications it may be sufficient to substi-
tute for the exact three-charged-particle scattering wave
function a suitable asymptotic approximation in order to
obtain physically reasonable, and in particular calcula-
ble, expressions for reaction amplitudes.

The investigation of the asymptotic behavior of the
three-charged-particle wave function when all three par-
ticles are in the continuum has a long history. Red-
mond [1], as cited in Rosenberg [2], and Peterkop [3]
have proposed an asymptotic wave function as a product
of three-body plane ~aves times a Coulomb distortion
factor for each of the three pairs of particles, which is
valid provided all three interparticle distances tend to

infinity, in the so-called nonsingular regions, i.e. , except
for directions where one or more of the interparticle rel-
ative coordinates is parallel to the corresponding canon-
ically conjugated momentum. An extension of this re-
sult which remains sensible even in the singular direc-
tions has been stated by Merkuriev [4]; see also Brauner,
Briggs, and Klar [5]. However, when using these asymp-
totic three-particle wave functions to evaluate approxi-
mate ionization amplitudes the integrations involved of-
ten extend over domains which are outside the range of
validity of the aforementioned expressions. For such pur-
poses it would be advantageous to have at one's disposal
a three-particle wave function which is the solution of the
Schrodinger equation also when two particles are still rel-
atively close to each other while the third one is already
very far from their center of mass. (In an ionization am-
plitude such a limitation in the variation of an interpar-
ticle distance is provided by the wave function of the pair
bound in the initial state. )

The derivation of an asymptotic solution of the three-
charged-particle Schrodinger equation in regions of the
configuration space where the distance between two of
the particles is much smaller than the distance of their
center of mass from the third, the remaining particle con-
stitutes a long-standing and important problem in atomic
and nuclear physics, the solution of which will be pre-
sented in this paper. We mention that an asymptotic
wave function valid in this domain has been proposed
in [6], however, only for partial waves, for monopole and
monopole-plus-dipole electron-electron interactions. Fur-
thermore, a forrnal scheme which would yield the desired
asymptotic solution of the Schrodinger equation was sug-
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gested in [7] but no concrete realization leading to an
analytical wave function was attempted.

The problem is stated and discussed in a more detailed
manner in Sec. II. In Sec. III we develop our method
of solution at the example of a simplified model of two
noninteracting charged particles moving in the Coulomb
field of an infinitely massive charged core. The results
obtained there are used in Sec. IV to find the asymptotic
solution of the Schrodinger equation for three arbitrarily
interacting charged particles in the region where the dis-
tance between one of the particles and the center of mass
of the other two is much larger than the interparticle dis-
tance within this pair, with the exception of the singular
directions. Moreover, generalizations of the asymptotic
solution are proposed which are simultaneously valid in
all asymptotic domains, i.e. , where all three interparticle
distances tend to infinity arbitrarily as well as where the
ratio of the distance between any two particles to the dis-
tance between their center of mass and the third particle
goes to zero. Section V contains a summary of the results
and a discussion of some of the physical implications of
the derived wave functions. In the Appendix we finally
describe a procedure of how the latter can be smoothly
continued into the singular directions.

We use units such that h = c = 1. Furthermore, unit
vectors will be denoted by a hat, i.e. , a—:a/a.

cyclic permutation of (1, 2, 3), and e~~ = 0.
The Schrodinger equation describing this system is

(E —T, —Tp —V)@v+~ (r, p ) = 0, (2)

with

V=) V(r ),
v=1

V(r ) =V (r )+V (r ),
Vc( )

p w

rA

(3)

I IG. 1. Graphical representation of the Jacobi coordi-
nates used.

II. STATEMENT OF THE PROBLEM

In order to elucidate the problem more clearly let us
consider a system of three particles of mass m and
charge e~, o. = 1, 2, 3, in the continuum. We use Ja-
cobi variables: r for the relative coordinate, and k
for the relative momentum, between particles P and

the reduced mass being p, = mpm&/(mp + m~);
p~ for the relative coordinate between the center of
mass of the pair (P, p) and particle o. , with q~ denot-
ing the canonically conjugated relative momentum (cf.
Fig. 1). The corresponding reduced mass is denoted
by M = m, (mp + m~)/(mi + ms + ms). Here and
in the following the conventional notation for two-body
quantities, A~ = Ap~, with o. g P g p, is being used.
Frequently we will need the relations between the coordi-
nates, respectively momenta for a channel P g o. and the
corresponding o,-channel variables. They are given by

)&q&
&~p ( ~p~Mp m, )

For convenience we have introduced the antisymmetric
symbol e p = —ep, with e p = 1 for (n, P) being a

Here, Vc" (g~) is the Coulomb (short-range, henceforth
called nuclear) interaction between the particles p and p.
T, is the kinetic-energy operator for the relative motion
of the pair of particles P and p, and Tz the one for the
motion of particle o. relative to the center of mass of the
pair (P, p). They are defined as

(4)

Together with the other two pair coordinates rp and

r~, the meaning of which can also be inferred from Fig.
1, we can define various asymptotic regimes.

(1) Ao .. all three interparticle distances tend to infinity
in an arbitrary manner, i.e. , rj —+ oo, r2 —+ oo, and
73 —+ oo, but not r /p —+ Oforv = 1, 2, or 3.

(2) A~, for a = 1, 2, or 3: the distance between particle
o. and the center of mass of the pair (P, p) tends to in-

finity, i,e. , p —+ oo, while the distance between particles
P and p satisfies the constraint r /p —+ 0.

I et us make two remarks. First, we point out that none
of the regions A~, O&, or 03 is disjoint from Ao. Hence,
any acceptable solution of Eq. (2) in 0 should connect
smoothly to the asymptotic solution in 00. Second, we
note that the condition p~ ~ oo in A~ implies that the
two interparticle distances rp and r~ go to infinity as
well [cf. Eq. (1)]. But the converse is not true: there
exists the possibility that rp and r~ go to infinity but p
remains finite. Since in this case r goes to infinity as
well this region is contained in Ao.
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We are interested in solutions of Eq. (2) in regions
where all three or only two of the interparticle distances
r become large. If the potentials were of short range
the leading term of the solution of Eq. (2) would be a
product of a plane wave describing the free motion of
particle o relative to the center of mass of the pair (P, p)
times a plane wave in 00, or a scattering state in 0
for the internal motion of the latter pair. However, since
the Coulombian part of V does not decrease fast enough
to be negligible even for infinite separation of some or
all three particles we must find wave functions such that
they satisfy Eq. (2) in leading order. Solutions with this
property will be called asymptotic. [We remark that this
has to be distinguished from the notion of the asymptotic
behavior of the wave function: for three charged particles
in the continuum this has been described in [3, 4, 8] as
a sum of "Coulomb-distorted plane waves, " see Eq. (5),
plus single- and double-scattering terms plus an outgoing
spherical wave. ]

As mentioned above the asymptotic solution of Eq. (2)
in the region 00 is well known. Except for the so-called
singular directions, which are defined by the property
that at least one of the relative momenta k is parallel
to the corresponding relative coordinate r, it is given as

'Lk~ 'I'~+xg~ 'p~ igv 1n(kvrv kv rv)

Here, rq, rq, and rs are considered to be expressed in
terms of the independent set of variables r~ and p~. We
remark that in Ao the form (5) is equivalent, in the sense
of being an asymptotic solution of Eq. (2), to [4, 5]

L

U=1
N F( —ig, 1;i(k r —k r )).

H'= lim H
p~ ~oo) T~/p~ ~0

=T, +Tp + U (r ) +v+(p ),

where

(8)

v (p ) = »m (Up(rp)+U~(r~))
p ~oo, r /p —+0

e (ep + e~)
Pn

is the Coulomb potential between the charge e of par-
ticle o. and the total charge (ep + e~) of the particles P
and p concentrated in their center of mass. Because of
this property v+(p ) will be termed the "center-of-mass
Coulomb potential for channel o;." Note that since in
Eq. (9) the limit of p becoming large implies the same
for rp and r~, we could neglect the nuclear interactions
between particles n and p, and n and P, completely and,
because of r~/p~ —+ 0, terms r~/p~ in the correspond-
ing Coulombian parts.

We have introduced the usual notation

N = e "-~ I'(1+iran ),
k

F(a, b; x) is the confluent hypergeornetric function, and
I'() the gamma function. But it is clear, however, that

I

neither @o'~+l(r~, p~) nor @o' (r~, p~) are asymp-
totic solutions of (2) in any of the domains Aq, Oq, or
03.

The conventional procedure to find asymptotic solu-
tions in O~, o. = 1, 2, or 3, consists of investigating the
asymptotic form of the Schrodinger equation (2) valid in
this region. For this purpose we define an asymptotic
Hamiltonian H ' via

It is a simple task to find solutions of the asymptotic
Schrodinger equation

(F —H ') C '„'~+l (r, p ) = 0 (10)

belonging to the three-body energy E = k /2p +
q~ /2M, since H~' is a sum of two commuting subsys-
tem Hamiltonians

(
—H„)QI, (r )=0,

and of the effective two-body Hamiltonian H '
(12)

2
(+) p = 0.

Solutions of the latter equation are the "center-of-mass
Coulomb scattering states"

with

(p ) = e'~- ~-N F( —ig, 1;i(q p —q p )),

(14)

e (ep+ e~)M N = e " I'(1+ig j.
q

H'=H '+H,
H ' = (Tp. + v~(p )),
H, =(T, +U(r )).

We introduce the eigenfunctions of the two-body Hamil-
tonian H, (we use the same symbols for operators acting
in the two- and in the three-particle space) via
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It is a well-known fact that the exact solution III. ANALYTICALLY SOLVABLE MODEL

(16)

of the asymptotic Schrodinger equation (10) generally
does not, when r becomes large, connect smoothly to
the asymptotic solution (5) valid in As. In fact, this is
most easily seen by taking into account that for large r
in Eq. (12) the nuclear part of the interaction V can be
neglected so that also this equation reduces to a Coulomb
Schrodinger equation for which the solution takes a form
similar to Eq. (14). Replacing the hypergeometrie func-
tions there and in Eq. (14) by their leading asymptotic
terms [cf. Eq. (31)j the above assertion can be readily
verified.

Furthermore, the question arises whether the solution
(16) of the asymptotic Schrodinger equation (10) is the
limit in A~ of the solution @k~+l (r~, p ) of the origi-
nal Schrodinger equation (2), i.e. , whether we also have,
similarly to Eq. (8), the relation

~12 = ~1 —~2
m1r1 + m2r2P=

m12
(18)

In order to explain the basic ideas in a most trans-
parent manner we first discuss the simple model of two
particles 1 and 2 which do not interact among themselves
but move in the field of an infinitely heavy particle 3. It
has the great virtue of being analytically solvable. The
solution strategy developed here will be used as guide
line for the investigation of the general case in Sec. IV.

Let e~ denote the charge of particle j, and m~ its mass,
j = 1, 2. The charge of particle 3 is e3. The variables
most appropriate are the single-particle coordinates r1
and r2, with particle 3 being fixed at the origin, and the
corresponding momenta k1 and k2. Besides we use the
relative coordinate rqq between particles 1 and 2, and
the coordinate p of the center of mass of the pair (1,2),
defined as

C„(r,p )
=' lim @„(r,p ).as(+) (+)

p ~oo r /p:0 (17)
The inverse relations expressing r1 and r2 by r12 and p
are

In fact, we will show explicitly in a somewhat simplified
model that this is not generally the case.

Realization of these facts motivates us to investigate
whether the asymptotic Schrodinger equation also has
another type of solution which then, of course, cannot
have the structure (16); but instead it should possess
the property (17) of being the leading term in A~ of the
solution of the original Schrodinger equation (2), and it
should allow a continuous matching to the asymptotic
solution (5) in As.

In the present paper we proffer an explicit wave func-
tion which possesses all the desired properties. The
goal is achieved by deriving a new analytical expres-
sion for an asymptotic solution of Eq. (10) which sat-
isfies this asymptotic equation up to terms of the or-
der O(p, r /p2). Moreover, it can be continued
into the asymptotic regime Oo where it coincides with
the result (5) (in fact, it can even be continued into
Ap, P g n). Hence this wave function is the leading
term in the asymptotic expansion of the full wave func-
tion 4'k+ (r, p~) in A~ (in the model mentioned before
this will be verified explicitly). As was to be expected
the new asymptotic solution, although being an eigen-
function of H ' in leading order, cannot be represented
as the product of eigenfunctions of H ' and H, , of the
type (16). But an alternative splitting of H~' into a sum
of two operators can be devised such that it can, indeed,
be written as a product of eigenfunctions of these new

component Harniltonians. Such a representation serves
to elucidate the inherent three-body nature of a system
of three charged particles subjected to the long-ranged
mutual Coulomb forces. Since the analytical form of our
asymptotic wave function is fairly simple it should be well
suited for use in practical calculations.

r, = p+ A, r~2, A, = —(—1)'pq2/m, , j = 1, 2. (19)

Here we have introduced the total mass m12 ——m1+ m2,
and the reduced mass p, q2 = mqm2/mq2, of particles 1
and 2. The momenta canonically conjugated to r12 and p
are the relative momentum k12 between particles 1 and 2,
and the total momentum q of the pair (1,2), respectively,

m2k1 —m1k2
k12 ——

m12
q = k1+ k2. (20)

Such a system is described by the Schrodinger equation

(Z —H)@„+„(r&,r2) = ( E —T„—T„—V&(r, )

—V2(rs))ek+k (ry, r2) = 0,(+)

(21)

H =H1+H2, H~ = T,, + V~(r~),

the e~act solution presents itself as a product of solutions
of the corresponding one-particle Schrodinger equations

where T,, = —4,, /2m~ is the kinetic-energy operator
of particle j, and V~ is the interaction potential between
particle j and the heavy particle 3, j = 1, 2. Since the
total Hamiltonian H is the sum of two commuting one-
particle Hamiltonians,
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k2
(23)

&( )„—& (;)= ' (26)

by means of

(rl r2) 4 k (rl) tt», (r2)(+) (+) (+) (24)

Consequently, the solutions of Eq. (23) reduce to the well-
known Coulomb scattering wave functions

belonging to the energy E = k&/2m' + kz/2m2.
Since the exact three-body wave function 4k+ k (rq, r2)1 2

for our system is explicitly known we can, of course, verify
that its leading term in

with

e'"' "N~F( —irh, 1;i(k~r~ —k~ r~)),
(27)

Ao . Tg OG) T2 -' OO) Tyg : oo) (25) eje3mj
'gj =

kj
N~ = e "&/ I'(1+ irb. ) (28)

is, indeed, given by the specialization of the general result

(6), respectively (5), to the present case. In fact, in AQ

the nuclear potentials V~ (r~) have died out so that we
can approximate Vj by its Coulombic part

gj being the Sommerfeld parameter of particle j. Keep-
ing in mind the identity kq rq +k2 r2 ——kq2 rq2+ q p,
the desired result follows immediately [cf. Eq. (6)]:

I

4k+k (rq, r2) @o'+ (rq, r2) = e'""'"'+' NqN2F( —iraq, 1; i(kyar] —ky ry))F( —irI2, 1; i(k2r2 —kz r2)).
T1 ) T2 ~OO

(29)

Furthermore, in the nonsingular region, i.e. , for k~ r~ g 1, j = 1,2, the asymptotic expansion of the hypergeometric
function can be used,

N, F( ir1, , 1;i(—k, r, —k, r, )) = e'"""'"'"' '"' 1+&
~

& „"2 jr' 3 'r3
ei(A:j Tj—kj.&j ) 1

ig, in(2k, r,i-
((k, r, —k, r, ) p

(30)

where f+ is the amplitude for Coulomb scattering of particle j off particle 3. Inspection clearly shows that the leading

term is the first term on the right-hand side (rhs) that is we have

1&
N, F( — „1; (a, , - k, ,)) = ""'"&" " -" "l+O

"2 "2

Hence, Eq. (29) reduces to

(31)

@k,k, (r~ r2) ' 0
(+},»(+)

eiky2 ry2+ig P irony 1D(A;1T] —k1 r1) igg 1n(k2T2 —kg. r2)e e )
(32)

which is, in fact, the specialization of Eq. (5) to the present case.
The Schrodinger equation (21) can be rewritten in terms of the Jacobi variables rq2 and p,

Tp +1(p + ~lr12 ) +2(p + ~2r12))@k ~ (r]2 p ) = 0,(+) (33)

where

&12 +&12/2812) Tp ———4p/2mg2,
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and the energy eigenvalue is E = k~z/2pq2+ q /2mzz. Equations (33) and (21) are, of course, completely equivalent,
i.e. , we have 4'k &, (rq, rq) = @& ~(rq2, p).(+) = (+)

We are interested in the asymptotic solution of Eqs. (21) or (33) in the domain

' oo) T12/p : 0. (35)

As already mentioned, the first requirement (35) implies that both r& ~ oo and rz —+ oo. Consequently, the rhs
of (29) is the leading term in an asymptotic expansion of 4'&+ (r~s, p) also in Aqz, provided we ensure that the
additional condition r»/p —+ 0 is taken into account. The simplest possibility consists of approximating, according
to Eq. (19), rq and r2 by p. Hence, the leading term in Aq2 of the exact wave function (24) is

@as(+l (r p )
. @(I ( p)

phoo, rig/p~O

= e'"" "'+'~ ~NqN2F( —iraq, 1; i(kqp —kq p))F( —ig2, 1; i(A'2p k2 ' p))
(+)=:y~„(ri2) Xk+„,(p), (36)

with

and

pk„(»2) = e'"""'

H" = lim H = T„,+ Tp + v (p).
P—+oO, r12,/P+0

(4o)

The center-of-mass Coulomb potential which acts be-
tween the total charge of particles 1 and 2 and the charge
of particle 3 is given by

v (p)= (ey + eg)es
(41)

The decomposition (ll) of H ' into a sum of two com-
muting sub-Hamiltonians becomes simply

H'=H'+H„„ H" = (Tp+ v (p)j,
(42)

Consequently,

@~8(+)( )
e4+12 ~1~+~% P

klan q ~ 12) P
xNF( —ig, 1;i(qp —q p))

=: v k„(».) 0&+,,'(p)

(p) = e' NjN2F( —irjg, 1;i(kgp —ky p))
x F( —xrl2, 1; ~(kqp —k2 p )). (3S)

Here k1 and k2 are to be substituted by the appropriate
linear combinations of k12 and q. We draw attention to
the fact that in order to arrive at the result (36) we have
neglected terms of the order O(r»/p) only in the hyper-
geometric functions; the plane wave survives unaltered.

On the other hand, the appropriate asymptotic
Schrodinger equation in 012 and its solution are obtained
by specializing Eqs. (8) to (16) to the present case corre-
sponding to V12 = 0. That is,

(Z —H")C„',(,",(r», p) = 0,
with

is the exact solution of Eq. (39), with the corresponding
Sommerfeld parameter g = (eq + e2)esmq2/q, and N
defined in terms of g in the same way as N in terms of
r) [cf. Eq. (15)].

I et us emphasize the following important points. As
has been mentioned above the approximation leading
from the exact solution (24) of the Schrodinger equa-
tion (21) to the approximate wave function (36) is the
same as that which leads from the original Schrodinger
equation (33) to the asymptotic Schrodinger equation
(39). It consists of taking in the wave function (24),
respectively in the Schrodinger operator in (33), the lim-
its p —+ oo, r»/p —+ 0. Nevertheless, by comparing
Eqs. (36) with (43) the following conclusions can imrne-
diately be drawn.

(i) The solution (43) of the asymptotic Schrodinger
equation does not coincide with the asymptotic form (36)
of the solution of the original Schrodinger equation, al-
though each of them can be written as a product of func-
tions depending either on rq2 or on p only, and hence is
not the leading term in 012 of the solution of the original
Schrodinger equation (except for p ~ oo for the special
cases where the particle velocities kq/mq and k2/m2 are
equal, or in the singular directions where the three vec-
tors p, kq, and k2 are parallel).

(ii) The solution (43) of the asymptotic Schrodinger
equation valid in 012 does not smoothly match with
the asymptotic form (32) of the solution of the origi-
nal Schrodinger equation in Ao, although this should be
expected because of the fact that Aq2 P Ao g 0.

(iii) The leading term (36) in an expansion in Aqq of
the solution of the original Schrodinger equation is not
a solution of the asymptotic Schrodinger equation, i.e. ,
in our terminology it is not an asymptotic solution of
Eq. (39).

While the first two assertions can trivially be verified
by inspection, let us demonstrate explicitly the last one.
That is, we would like to show that the asymptotic ex-
pression 4' '(+l(rqz, p), as defined in (36), of the solu-
tion of the Schrodinger equation (21) does not satisfy
the asymptotic Schrodinger equation (39). In fact, appli-
cation of (E —H~') onto 4' '(+&(r», p) yields



2010 E. O. ALT AND A. M. MUKHAMEDZHANOV 47

(& —H ')@ '+ (r12, p) = e'""'"'+'~ N1N2 —1 (p)F1F2+F1
~
F2+F2

~ ~
F1

2m12) (, 2m12)
1+ F)(q wp)F)+ s')(q vr)F)+ (vpF)) (vpF))),m12 m12 ml2

(44)

where we have adopted the shorthand notation F~—:F( —ig~, 1;i(k~p —k~ p)). From the Schrodinger eq io

satisf1ed by Q& k (p) = N~e'"& pF( —irJ~, 1;i(k~p —kz p)),

F( —i') 1;i(k~p —k~ p)) = O,
iII'~ 4p e~ e3

2m~ 2m' p

follows

(46)

Substituting these expressions for Ap F1 and Ap F2 in the rhs of Eq (44) w«nd

2
F1 (k1 V'p) F2

m

(47)

~as)@as(+)( )
ikqs rqs+iq pN N I, 1 1 + 2 2) 3

( )
P ml2 12

1+ F2(k vp))s) + (vpE)) (vpT))) g 0.
m12 m12

Hence we end up with the result that the rhs of (47) does not necessarily vanish. This proves our assertion that
@as(+)(r12 p) is not (in fact, not even asymptotic) a solution of the asymptotic Schrodinger equation (39).

The rhs of (47) can be worked out further if we take into account that in the domai»12) «»j P7 1) for'2 = 1»
i.e. in the nonsingular region, the leading term of N~ F1 is given .by Eq. (31), with rz replaced by p,

i~~ "(I 'p "~"p) + g
~

—
~

.
(1')

p~ oo &p)

inserting these asymptotic expressions for F1 and F2 in (36) leads to

(48)

@as(~)( )
ik)s rqs+ig p ir)1 in(klp —k) p) its In(ksp —ks p) + ~

~

(1&
r12 P

= ()pk (r12) Xk„,(P ) + oas(+) (49)

where

»(+) r i ig P iq1 1n(k1P —k1 P} iraq ln(A:2P —k2 P}e

is the leading term for p —+ oo of gk (p), Eq. (38). The same expression can, of course, be obtained directly by
replacing in Eq. (32) r1 and r2 by p. On using the approximation (48) for N~F~ in Eq. (47) we can evaluate the
right-hand side further to yield

(@ I1 )@ (r12 P) i2k (r12) Xk g (P ) (el + e2)e3
a,(+) 1 (m1e1 + m2e2) es

m12

1 (p —k2) k1
klg2

m12 1 —P k2
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We draw attention to the fact that the nonzero terms
which are explicitly shown on the rhs of Eq. (51) are
of the same order O(p ) as the center-of-mass Coulomb
potential occurring in H ' and, thus, cannot be neglected
as compared to the left-hand side (lhs). In contrast, the
terms of the order O(p 1) in Eq. (48) contribute in the
order O(p 2) only. Hence the result (51) shows once
more directly for the leading asymptotic term (49) in
012 of the exact solution of (33) that it does not sat-
isfy the asymptotic Schrodinger equation (39), i.e. , it is
not an asymptotic solution. Incidentally, we note that
@as(+)(r12,p) dOeS nOt SmOOthly COnneCt tO the aSymp-
totic solution (32) in Ao either.

Consequently, in order that asymptotically in 012 the
solution of the Schrodinger equation (33) be also a so-
lution of the asymptotic Schrodinger equation (39), one
must go beyond the leading order in the expansion of

(r12, p). In other words, we must find an asymp-(+)

totic wave function 4'k'„+ (r12, p ) which, being more ac-

curate than @as(+)(r12,p), does satisfy the asymptotic
Schrodinger equation (39), at least up to terms of the
order O(p ) and O(r12/p ), i.e. ,

=O (52)

iqj 1n(kjrj —kj rj) &igj 1n(kj p —kj p) ia (p) r1g/p-e» e ) (53)

The development leading to Eq. (51) makes it clear that
it cannot sufBce to retain in the expansions of the Hamil-
tonian and of the wave function separately the terms con-
tributing to the desired order. Rather, we must also in-
clude in the wave-function expansion such terms which,
after application of H ', yield contributions of the same
order. As will be seen this demand necessitates keeping
terms linear in r12/p Iterms p produce, when re-

tained in @k'+ (ri2, p), in the asymptotic Schrodinger
equation (39) contributions p 2, which can be ne-
glectedj.

We point out that in order that the notation be more
concise, in the following we will not make a distinction
between O(1/p ) and O(1/p2, r12/p2), and henceforth we
will use the former symbol everywhere.

To find the improved representation of 4'k+ (r12, p)
in 012, but staying away from the singular direction, i.e. ,

for k~ rz g 1, j = 1, 2, we start again from the expres-
sion (32) on which we still have to impose the condition
r12/p: 0. This is accomplished by substituting there,
as before, ri and r2 from Eq. (19). Expanding each of
the Coulomb distortion factors in the limit r12/p —+ 0 but
non& keeping terms r12/p, we find for j = 1, 2,

with

(54)

If, instead of Eq. (48), the result (53) is inserted in (32),
the following asymptotic expression for 4k+ (r12, p) is
obtained:

&i[k12+a(p)/p] r12+ig p

X e~"' 'n "' "'p
x e~"' 'n("' p

with

(56)

provided also k~ p g 1, j = 1, 2. That is, an additional
phase factor has appeared in Eq. (55) as compared to the
expression (49). It will turn out to be crucial in attaining
an improved asymptotic behavior. Other terms in the
expansion in Eq. (53) will contribute in next to leading
order only and are, therefore, omitted. Introducing a
local relative momentum

k»(p): = k»+ a(P)ip, (57)

Eq. (55) ean be written as the product of a plane wave
pk„(~) (r12), with this p-dependent momentum,

( )(»2) —e'"»«)'»

and Xk",,+,'(p)

g (r12 P ) = ykys(p) (r12)Xk g (P ). (59)

The reason why we have to retain in Eq. (55) the addi-
tional phase factor exp (ia(p) r12/p) becomes clear when
we will act on 4k' +

(r12, p) by (E H'): Tz oper—ating
on it produces terms at least of the order O(p ) which
can be neglected; but application of T,» onto this phase
factor yields a term proportional to p which is of the
same order as those kept in the procedure leading from
the original Schrodinger equation (21) to its asymptotic
form (39) and, thus, must not be omitted in a consistent
treatment. Its eKect is to just cancel the nonvanishing
terms on the rhs of Eq. (51). In fact,

1 (p —ki) k2
k2g1

1 —p k1m12

(& —H")@k'„,(r12 P) Pk (p)(r12)Xk„, (p) —
I

—(el+as as(+) as(+) 1 & (miei + m2e2)e3

1 (p —k2) ki
k1g2

m12 ] p. k2

a(p) k» t' I l
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~,(+) 1 (miei + mqeq)es= vk, .(p) (»~)xk„, (p) —(ei + eg)es
~

P fA12

(mgei+ mien)es ( 1 l+
miq (p~)

(60)

To arrive at the second equality use has been made of the
relations ki ai(p) = —eiespig and ka aa(p) = eaespiz,
which follow directly from definition (54).

Thus we have proven that, up to order O(p ~),
4k' + (riq, p) as given by Eq. (55) is simultaneously the
generalized leading term in the expansion of the solution
of the original Schrodinger equation (21) as well as an
asymptotic solution of the asymptotic Schrodinger equa-
tion (39), in the domain Aiq. But inspection clearly

reveals that @k (riq, p) cannot be represented as aas{+)

product of eigenfunctions of the type (43) of the sub-
Hamiltonians H ' and H„», of H~' [cf. Eq. (42)j.

Here we face a rather unfamiliar situation: the asymp-
totic Schrodinger equation (39) has at least two types of

solutions. The first one is exact, and can be written as

(»~ p) = &k .(»~) 4, (p)
x z.r12+~g.p~

xF( —ill, 1; i(qp —q p)), (61)

where pk„(riq) and Q& (p) are the exact (two-body){+)

eigenfunctions of the (commuting) two-body Hamiltoni-
ans H, » ——T,» and Hz~' ——{T~+ v+(p)), respectively.
But wave functions of this type dier completely from
the asymptotic form in 012 of the exact solution of the
original Schrodinger equation ( 21). On the other hand,
an alternative but now only asymptotic solution of the
asymptotic Schrodinger equation (39) is provided by

(r12 p) =
V k (p)(ri&) X~+„', (p)

~1~2F( ii)1~ 1 i(Alp ki ' p))+( i'92) 1j i(~2p k2 p)) (62)

which is simultaneously, up to the same order O(p ~),
also the generalized leading term of the solution of the
original Schrodinger equation (33). But it has to be
kept in mind that each of the functions pk»(z)(riq) and

(p) which Cz'(+ is composed of is, in contrast to
those appearing in 41'+, essentially a three-body wave
function. Actually, the modified plane wave pg„(~) (riq)
is seen to be eifectively a two-body wave function. This
follows also from the (free) Schrodinger equation satisfied
by it, namely

ki~(p) ~r gg Pk {p} &12
2P12

2 Tr1g pk1g (p) ~12 = 0) 63ki~(p)
2P12

with the p-dependent energy ki~(p) j2piq. Thus, in
Eq. (63) p appears as a parameter only. This will be-
come important in Sec. IV when a nonvanishing interac-
tion between particles 1 and 2 will be admitted.

We emphasize that such a situation can occur only
for Coulomb-type interactions. For potentials decreasing
faster than the Coulomb potential the asymptotic solu-
tion of Eq. (21) assumes indeed the typical form of the so-
lution of the asymptotic Schrodinger equation, similar to
Eq. (61), as a product of eigenfunctions of H, » and H~',
because in this case H&' ——T& to leading order and its

E

k, ~ a(p) . kig 1+ ——H„, W„„(p)(r„)= O
2@12 +12 p p

(64)

Let us define a quantity V(p) as

a(p) kig 1

@12 P
(65)

I

eigenfunction is the undistorted plane wave exp{iq p).
But the Coulomb potential decreases so slowly that it
modifies the wave function even at asymptotic distances.
Hence, in order to satisfy the asymptotic Schrodinger
equation one must retain in the asymptotic expansion
of the exact wave function all terms which, when acted
upon by {E—H '},give contributions of the same order
O(p i) as the center-of-mass Coulomb potential v+(p)
occurring in H '. But these terms definitively prevent
the asymptotic solution to assume the factorized form
(61).

The representation (59) of @k',+) as a product of two
three-body wave functions is non-unique. However, we
will demonstrate that a decomposition of H ' can be
found such that both pi, „(p)(rig) and yq'+ (p) are)
in fact, eigenfunctions of the corresponding component
Hamiltonians, up to terms of the order O(p ).

Recalling that we are interested in the asymptotic so-
lution only we can rewrite Eq. (63) as
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Note that V(p) can be interpreted as a noncentral po-
tential acting between the center of mass of particles 1
and 2, and particle 3. It possesses a Coulomb-type radial
behavior and is, in addition, proportional to the relative
velocity kiq/piq = vi —vq of the particles 1 and 2. Thus,

V(p) describes the action of a three-body force.
Instead of the decomposition (42) we now introduce a

new splitting of H ' by adding and subtracting V(p),

H, .(P) =H
~ +V(P) = &.„+V(p) (68)

Equation (64) then shows that pi, „~zl(riq) is the eigen-
function of H, »(p) up to terms of the order O(p ~).
Furthermore, by reshuf8ing the terms in Eqs. (51) or (60)
we deduce that

H- = H + H„,(p), (66)
—H- X"' '(p) =OI —

I

q', „+ &1)
p kygcl (p2p

(69)

with

()— () (67)

that is, y&' + (p) is an asymptotic eigenfunction of H~'.
Herewith, the asymptotic Schrodinger equation for

@i,
' +

(p, riq) can be manipulated to yield

2

iE —H )Pk (p)(Pl«) X««(P ) V«(P)(l'12)( «p )X««(P )

+X&' (P) —H.„(p) V ~„&&l(»~)+O I
—,

I

as{+) k]. (1 l
k12 q 2P 12

12

(70)

In the first equality we have restricted the action of T~
onto the wave function y&' +

(p ) since its application on
pi, „~zi(rig), cf. (58), gives contributions proportional
to p ~. This proves our assertion that Eq. (66) indeed
provides a splitting of H ' into two components H~' and

H, »(p) such that 4&'+ (riq, p) can be represented as
a product of eigenfunctions of these Hamiltonians up to
terms of the order O()o ). We note in parentheses that
in Eq. (66) the three-body Hamiltonian H~' is written
as a sum of operators which are themselves three-body
quantities, in contrast to the decomposition (42). It is,
therefore, a pHori to be expected that their eigenfunc-
tions will, in general, be three-body wave functions.

Summarizing the results obtained in this section
we have found that the generalized leading term
4&™+ (rig, p) in an asymptotic expansion in Aiq of the
solution of the original Schrodinger equation (21) is,
indeed, also an asymptotic solution of the asymptotic
Schrodinger equation (39), satisfying it up to terms of the
order O(p ). The part yz'~+ (p), as given by Eq. (50),
can be interpreted as an effective wave function for the
motion of the center of mass of the unbound system of
particles 1 and 2 and coincides, up to terms of the or-
der O(p ), with y&+ (p), Eq. (38). We stress that

y&'~+i(p), as well as y&~+i (p), depends not only on the
momentum q of the center of mass of the pair (1,2) but
on the particle momenta kq and k~ separately. This is a
manifestation of the fact that particles 1 and 2 are un-
bound and, thus, can be influenced individually by the
long-ranged Coulomb force exerted by particle 3. Corre-

spondingly, &pi,„&~l(riq) which, because of our assump-
tion Vjg = 0, satisfies the free Schrodinger equation (63)
in which p acts as a parameter, can be considered the
wave function of the relative motion of particles 1 and
2. The presence of the third particle results in changing
the internal relative momentum: instead of kq~ the local
momentum k&z(p) occurs which only for p —+ oo coin-
cides with the former. This constitutes another efFect of
the infinite range of the Coulomb forces present.

It is to be noted that in the energy eigenvalue
k&z(p)/2piq in the Schrodinger equation (63) which de-
termines pi, „~zi(riq) there exists no other parameter
compared to which terms p could a priori be consid-
ered small. Even for such large values of p that all terms
which are of the order O(p ) and O(riq/p) as compared
to those kept in the derivation of the asymptotic three-
particle wave function could be neglected, there exist rel-
ative momenta kiq the magnitude of which are compara-
ble to ~a(p)/)o~. Consequently, the most noticeable efFects
from the use of the local instead of the asymptotic rela-
tive momentum can be expected to show up for small kiq.
In fact, the "strength" of this modification of the relative
momentum kiq is determined by ~a(p) ~. For kiq ~ 0, i.e. ,
when the velocities of particles 1 and 2 become approxi-
mately equal, and therefore also approximately equal to
the velocity v of the center of mass of the pair (1,2),
vi --vq = v, we find ~a(p)~ ~ei/mi —eq/mq~/v. Hence,
the strongest long-ranged influence of particle 3 onto the
motion of particles 1 and 2, for k~~ —+ 0, as represented by
the occurrence of the local momentum in their relative-
motion wave function, is proportional to the charge-over-
mass ratio difference, and inversely proportional to the
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velocity, of particles 1 and 2. As will be shown in Sec. IV
these conclusions remain valid even in the general case of
interacting particles 1 and 2.

The results obtained above have important conse-

quences also for the spectral decomposition of the re-
solvent G '(+)(E) = (E+iO —H~') of the asymptotic
Hamiltonian H '. Formally we can write for its kernel,
using the eigenfunctions (43) of H ',

G"'+'(»2, p; r ~2, p '; E) = d g]z d q yg„(r y2) @, (P ) 0/, (P ) Pk (r»)
(2~)s (2~)s E+i0 —k2~2/2py2 —q2/2myg

Here and in the following dots indicate contributions from the discrete spectrum of the corresponding Hamiltonian if'

ere is any. Indeed, since H is the asymptotic form of the original Schrodinger operator 0 in the region O&2 the
same should hold true, of course, for the relation between the spectral decompositions of the resolvents G"(+ and
G(+) (E) —(E+ i() —H).—~. But this is not the case for the spectral decomposition (71) of G '(+) since, as was shown

before, the wave functions pk„(r&2) Q&+ (p) do not represent the leading term in the asymptotic expansion i»]g
of the exact wave function. Hence Eq. (71) is not valid as asymptotic form in Oq2 of the spectral decomposition of
G(+) (E)

Actually, for the kernel of G(+) (E) we have

G("(»2, p;ri2, p';E) = d kq2 d q @k„~(r&2 P ) @k g(r&2 P)
(27r)s (2vr)s E+ iO —k~2/2pg2 —q2/2mgg

(72)

where @& (r~2, p) is the solution (24) of the Schrodinger equation with Hamiltonian H. In the limit p, p —+

oo, r ~2/p' ~ 0 and rq2/p ~ 0, the leading term of Eq. (72) is

G-'+'(r p r p E)—
(2vr)s (2n)s E+iO —k)~/2p» —q /2my2

(73)

Here, 4&' (rq2, p) is that eigenfunction of H ' which is at the same time also the generalized leading term of the

eigenfunction of H in Aqq. Hence when G '(+) is considered to be the limit of G(+) in Aqq the form (73) for the
spectral decomposition should be used, instead of Eq. (71).

The spectral representation (73) can be rewritten by inserting the explicit form (59) for 4k' +
(r~2, p) as

Gas(+) (z, p. r p . E)
d'I » d'q &k„(, )(r i2)&k",,+,'*(p') &k'„'+,'(p)vk»(p)(r»)
(2~) (2~) E+ i0 —k»/2p, ~~ —q /2m~2

Since yz ~(p) depends on both momenta kq2 and q,
which is a manifestation of the three-body nature of the
underlying problem, it is obvious that G '~+~ in the form
(74) cannot be represented as a folding integral of the
resolvents corresponding to the component Hamiltonians
H„,(p ) and Hg' in the conventional manner.

We finally remark that when the integration is per-
formed in Eq. (73) over kq2 and q in the neighborhood
of the singular directions (kz. rz ~ l, or kz —+ 0, j = 1, 2)
he expression (59) for @k'+ (rqz, p) is not applicable

and, hence, the wave function should be modified there.
Of course, this induces modifications also in the repre-
sentation (74). To study this problem, e.g. , the general

1

prescription proposed in [7] could be employed. An al-
ternative proposal is discussed in the Appendix.

IV. GENERAL CASE OF THREE
INTERACTING CHARGED PARTICLES

We now generalize the results obtained in Sec. III to
the case of three charged particles, all of which inter-
act. via Coulomb-type pair potentials. As mentioned in
Sec. II Jacobi variables (cf. Fig. 1) are now most appro-
priate.

Our goal is to find the leading term of the solution of
the Schrodinger equation (2) in the region 0
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0: p : oo, r~/p~ (75)

Such a function (i) must satisfy the asymptotic
Schrodinger equation (10), valid in this region, at
least asymptotically; (ii) should simultaneously match
smoothly to the known asymptotic wave function (5) in

Ao, since the regions 0 and Ao have nonzero overlap;
and (iii) if the interaction between particles P and p is
switched off it should reduce to the generalized leading
term (55) of the exact solution, as derived in Sec. III.

The well-known class Ck'+ (r, p ) of solutions of
Eq. (10), already mentioned in Sec. II [cf. Eq. (16)], is
certainly not a suitable candidate. Because, as pointed
out there, it does not possess the matching property
with (5). In addition, in the model problem discussed
in Sec. III it has been proven to differ completely from
the known generalized leading term in 0 of the exact
solution.

A wave function with the above-mentioned properties
is not available at present. In order to construct it we
proceed through a generalization of the results derived in
Sec. III. For the time being the problem will be somewhat
simplified by restricting all three pair potentials to be
purely Coulombic, i.e. ,

isfy the requirement r /p~: 0, which necessitates a
completely different description of their relative motion
as compared to Ao. This is accounted for by introducing,
instead of the third Coulomb-distortion factor of Eq. (5),
an open function F~(r~; p ). Thus we are led to make
the following ansatz for the asymptotic solution of Eq. (2)
in 0:

~"" (r p )
—""-'-"'-F(r p )

~ e'np»(kp~p —~p ~p)

eig~ ln(k~r~ —k~ r~) (77)

j.
V~ F (r;p )=0

pm'
(78)

As indicated by the notation we cannot a priori exclude
that F (r; p ) may depend in some way on the variable
p, in addition to its expected dependence on the appro-
priate coordinate r . However, we will show that we can
construct E within the class of functions for which the
p~ dependence is such that

V(p~)—= V (p )=
Pn

n 7 p g'7, (76)

since this will enable us to write down explicit analytic
expressions. Later on this restriction will be lifted.

Let us look back at the development in Sec. III lead-
ing to Eqs. (55), respectively (59). There we had taken
advantage of the fact that the kinematic conditions in
Aq2 allowed us to start from the asymptotic wave func-
tion valid in Ao, Eq. (32). Imposing on it the restriction
r1q/p: 0 led to the desired wave function (55). The
same kinematic situation prevails also in the present gen-
eral case. In fact, the condition p —+ oo implies rp —+ oo
and r~ —+ oo [cf. Eq. (1)]. Consequently, with respect
to the relative motion of the particles o. and p, and o,

and P, the situation in 0 is identical to the one in Ao.
Therefore, the asymptotic wave function for the relative
motion within these two subsystems is described by the
same Coulomb-distortion factors as for the asymptotic
solution (5) in Ao, provided we stay away from the sin-
gular directions. Of course, in A~ the relative coordinate
r between the particles P and p is constrained to sat-

I

zqp ln(kprp —kp rp) imp 1n(kp p —e pkp p )

~,' '."(~.)'.r~. (79)

with

(p) ~ „~ p~ (cap p~ —kp)
a~ (p~) ———~p A ~

mp (1 —e pp . kp)
(80)

A similar result, with P interchanged with p, is obtained
for the second Coulomb-distortion term. Inserting these
asymptotic forms into Eq. (77) we get

Let us now proceed in complete analogy to Sec. III.
If we substitute in the first Coulomb-distortion factor
for the coordinate rp the linear combination of r and

p according to Eq. (1) we find, for e pp kp g 1, in
the limit r /p ~ 0, but including terms of the order
&(r-/p-) [«Eq. (»)]

@as(+)
( )

ik (p ) r +ig p F (
. ) its ln(kpp —s pks p ) i@~ ln(k~p s~k~ p ) + ~—f'11r, p =e ~ r;p e

aqua

2 (81)

k (p)=k
Pn

with

a-(P. ) = ). a."(P.).
v (gn)

(82)

Here again we have introduced a local momentum k (p )
as

As indicated by the notation k (p ) depends also on
the orientation of p~. Furthermore, we mention that the
same conventions as in Sec. III are adhered to, namely
to include collectively in the symbol O(p ~) also terms
of the order O(rn, /p~).

In the above we demanded that if the interaction
between particles P and p is switched off, the ansatz
4k'(+) (r~, p~) should, of course, coincide with the
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- c a.(p
P~ Pn

~(P.) (84)
po,

which has a Coulomb-type dependence on the distance
p~ between particle a and the center of mass of the
pair (P, p), but is noncentral and depends on the relative
velocity v = k /p of the particles within this pair.
Hence it is really a special type of three-body potential.

asymptotic wave function (55). This is, indeed, the
case for F~(r~; p~) = 1. Hence, a nontrivial function
F (r~; p~) g 1 summarizes all the effects of a nonzero
interaction in subsystem a, the influence of which has, in
general, not yet died out due to the condition r /p
OinA

The as yet undetermined function F~(r~; p~) is to be
chosen such that iIli,

' + (r~, p~) satisfies the Schrodinger
equation in A~. Let us introduce the auxiliary potential

Furthermore, we define the function yk'(+) (p ) as

,@s(+) (~ q iq~. p imp ln(kpp —~ pkp p )

X zg~ ln(k~p —~ ~k~-p )
) (85)

generalizing Eq. (50). Here it is understood that k)3 and
k~ are to be expressed as linear combinations of k~ and
q according to (1).

First one shows that )(z'+ (p ) is an asymptotic so-
lution of the equation [cf. Eq. (69)]

2

M
—Hp'. + V (p ) Xk".+,.'(p ) = &

(86)

In fact, using Eqs. (11) and (84) we derive

E

2
—&p' +& (P ).)1».» (P ).

p o'i P pi ~ ~Qp q + g imp ln(kpp —e @kg p ) iq~ ln(k~p —e ~k p )1
2kP

Pa

(87)

where use has been made of the definition (80). Thus y&'(+) (p ) is the eigenfunction of the modified Hamiltonian

H" = H" —V~(p ) = Tp. +U (p ) —V (p )

up to terms of the order O()0~ ). Note that since V~+(p ) is a three-body potential, Hp' is a three-body Hamiltonian,

and )(k' +
(p ) a three-body wave function.

This result suggests splitting the asymptotic Hamiltonian H ' according to

H"=H'+H (p )

with

H+(p )=H++V+(p ), H, =T, +V (r ). (90)

Taking into account Eq. (87), the application of the asymptotic Schrodinger operator onto @k'+ (r, p ) yields

2

{E H") '» '» '" p( p ) 1"~+-'(p-)-=»'" '» '' s' i» p ) —~") 1» (p )k q A

k2 'kas(+}( )
u Hc( ) esk (P )'r F (r;p )+Opo 2 ~ ~ ck 0,'& A p2

as(+)()(1Hc(p)eik(P)rF(rp)+QXk q P& I'o,
A
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In the first equality the operator Tz could be shifted
through the first two terms because when acting on them
it would yield terms of the order O(p ~), due to the def-
inition (82) of the local momentum and condition (78).
Thus, in order that ~II&'+ (r; p ) be a solution of the
asymptotic Schrodinger equation (10) up to terms of the
order O(p ) the function F~(r; p ) has to satisfy the
equation

(E (P

c (+)T~. —&n (r~) 0c i, (p )(r~) = o,
2p~

(95)

E

k2 (11—A, (p.) e"-( -) "-F.(r.; p. ) = O
~

Pa &pn

Since

(92)

we have the simple result that for r /p —+ 0,

e~(',).(,.) (r-) = ""-"-"-F-(- p-) + O
~

(96)

it is apparent that the dependence on p~, up to terms
of the order O(p ), of the operator acting in Eq. (92)
on e'" (i' )' F (r~; p ) can be completely absorbed by
replacing the two-body energy E'~ = k~/2@~ by a local
energy

~ ( )
k'(p )

2p-
(94)

calculated from the local subsystem momentum k (p~).
Hence if @&+&

( ) (r~) is the continuum solution of the
two-body Schrodinger equation for the subsystem a. for
a local energy E~(p ) = k2 (p )/2p, ~,

(
"'- ~„.(p.))=(,k'- -H~+"' '" ')

H, +o~ ', '~
4&')

(93)

Equation (95) generalizes the free effective Schrodinger
equation (63) for noninteracting particles P and
in a natural way. It is to be noted that in the
Schrodinger equation (95), and hence also in its solution

) (r~), the vector p~ enters only parametrically(+)

through the local momentum k (p ) = k +a (p )/p .
Consequently, F (r; p ), defined via Eq. (96), belongs
indeed to the class (78) of functions. We point to the
interesting result that, although H, (p ) is a three-body
operator, the leading term e'" (~ )' F (r; p~) of its
(three-body) eigenfunction is, in fact, given by the ef-

fective two-body wave function Q& k ( )(r~). In other
words, all genuine three-body contributions in the eigen-
functions of H, (p ) have the intuitively appealing prop-
erty to die out at least as fast as the inverse square of the
distance p between particle o. and the center of mass of
the pair (P, p).

As a matter of fact, since we have assumed for the
present discussion the interaction V~ between the parti-
cles P and p to be purely Coulombic the exact solution of
the Schrodinger equation (95) can immediately be writ-
ten down,

&ck( .)(r ) = e'" ' ~ (p )F( '& (p ) I''(" (P )" k (P ) 'r j) (97)

with

epe~p,
1~(p~) =

A, ( )
t (p ) —e i (P )l2 I'(] + ig (p )) (98)

That is, Q&( &)

( )(r ) is an ordinary two-particle Coulomb scattering wave function, except that the momentum k
has been replaced by the corresponding local momentum k (p ).

To summarize, we have found the remarkably simple result that the wave function

@„'(+)(r, p ) =Q~+„(p )(rn) Xi,.~.(p~)
-( -)'-+' -' -& (p )F( —q (p ), 1; [A' (p ) —k (P ) 1)

xejap 1n(kp p —~ pkp. P ) ~n»(&e (99)

where y&'(+) (p ) is an asymptotic solution of Eq. (86) and @&+i, ( ) (r ) satisfies the ordinary two-particle equation
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(95) but for a local energy E (p~), is a solution, up to terms of the order O(p ), of the asymptotic Schrodinger
equation (10), and hence also of the original Schrodinger equation (2) in 0 . Furthermore, if the interaction between
particles P and p is switched off it reduces to the explicitly derived generalized leading term (59) in the asymptotic
expansion of the exact solution of the three-body Schrodinger equation discussed in Sec. III. For these reasons we can
conclude that @k (r~, p~) is the leading term of the total three-charged-particle wave function in 0as(+)

For applications it is important to keep in mind that @k'+ (r~, p~) as given by Eq. (99) cannot yet be continued
into the region Ao. Such a generalized representation can, however, be written down without difficulties. In fact,
starting from Eq. (77) it is easily verified that

(r~, p ) = e' -'-+'~ p-N (p )F( —iq (p ), 1;i[A (p )r —k (p ) r ])
& &imp ln(kprp —kp rp) ig& ln(k&r~ —k& r&) (1oo)

coincides, due to Eqs. (79) and (82), in A~ with 4k'+ (r~, p~) up to terms of the order O(p 2). If, however, all

interparticle distances r, rp, and r~ are allowed to go to infinity arbitrarily (but not into the singular directions), i.e. , in
/

Ao, also p~ grows beyond any limit and, consequently, 4k' + (r~, p ) goes over into the leading term 40' + (r, p ),
i'

Eq. (5), of the asymptotic expansion of the three-particle wave function suggested in [1]. Hence, @k'(+ (r, p ) is

the leading term of the three-charged-particle wave function in 0 and Ao.

It is worth emphasizing that 4k (r~, p~) is not of the conventional form of solutions of the asymptotic Schrodinger

equation (10). Hence also in the general case the latter has at least two types of solutions. One is of the familiar form

[cf. Eq. (16)]

C,as(+)( p ) (y (+)(r p )
= 0~, k. (r ) @,, (P )

(+) -(+)

=e'k-'-+'q- N N F( —iq, 1;i(k r —k r )) F( —iq, 1;i(q p —q p )), (1o1)

(r, p )—= @„+(r, p )
.(+) as(+)

+C, k (p )( ~)+k g (P~) (102)

where QI+k (r~) and Q&~+ (p~) are the exact eigenfunc-

tions of the (commuting) two-body Hamiltonians H+
and Hp', respectively. Since we have assumed at present
that all particles interact via Coulomb forces only, also

(r~) is an ordinary Coulomb scattering wave func-

tion. Wave functions of the type (101) can, however,
not be smoothly joined to the asymptotic solution in Ao
of the original Schrodinger equation (2). Also from the
physical point of view the product form (101) is unsat-
isfactory: particle a could not exert any influence onto
the internal motion of particles P and p, in contrast to
what has to be expected even for p —+ oo because of the
infinite range of the Coulomb interactions involved.

Another type of asymptotic solutions of Eq. (10), valid

in the nonsingular directions, is provided by

The part yk'(+) (p ) depends, besides on the rnornentum
canonicafly conjugated to p~, also on k . This addi-

tional dependence on k is the manifestation of the fact
that the system of particles P and p is unbound. Its oc-

currence also prevents the interpretation of yk (p ) asas(+)

an ordinary two-body wave function describing the mo-
tion of the particle a relative to the center of mass of the

pair (p, p). The wave function g&+k ( ) (r ) depends on

r~, and parametrically also on the center-of-mass coordi-
nate p . It can be considered an effective wave function
describing the relative motion of the particles P and p.
The presence of the third particle o. results in changing
the relative momentum of P and p, the magnitude of the
change depending on p . It manifests itself through the
appearance of the local momentum k (p ), instead of
the genuine momentum k ~

These results have again important consequences for
the spectral decomposition of the resolvent G '(+)(E) of

H '. Using the wave functions of the type C'i' + (r, p )
we find for the kernel of Ga'(+) (E)

as(+)

(2~)s (2~)s &+ iO —k2~/2V —q~/2M
(103)
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(here and in the following the dots indicate contributions from the eventual discrete spectrum of the corresponding
IIamiltonian). If, however, G"(+)(E) is considered to be the limit of the resolvent of the total Hamiltonian H in II
the representation (103) is not valid; instead the spectral decomposition with wave functions of the type C '(+)(r, p )
should be used,

@I:,k-(~.')(' )».~. (p ) &k (p )~c,k ( )(r
(2vr) (2~) & + io —kz /2p q 2 /2M

(1o4)

As mentioned before wave functions of the type C'2'(+)(r, p ) are asymptotic solutions in g only. A suitable
generalization of (99) which is then an asymptotic solution [up to terms of the order O(p )] of the Schrodinger
equation (2) in all three regions 0, v = 1, 2, and 3, except for the singular directions, is provided by

~ I & ~

v=1
N (p.)F( —&q (p ), 1;i[k„(p )r —k (p ) r„]), (Io5)

where each function F(—ill (p ), 1; i[k„(p )r —k (p ) r ]) is the solution of the corresponding two-particle Coulomb
Schrodinger equation [cf. Eq. (95)]

k~

~
~v ~ r ~

~
v
~

v
i~ k v v I r v ~ I

v v 1
Ir

I

v v v ~ v v I v
k —T„.—V, (r, ) je*" ( ")'""E(—iq (P )li[k, (P,),r, —k (P ) r, [) = 0

2@v
(106)

k (R, p~) = k + 2a (p) 3

with R=) r .

(107)

with local momentum k (p ). It is somewhat tedious but
straightforward to show that in the domain O~ the wave
functions O2+ (r, p ) and 4~' + (r, p ), Eq. (102), are
equivalent in the sense that both satisfy the Schrodinger
equation (10) to the same order O(p ).

Similarly to Eq. (100) we can generalize also the wave
function (105) even further so that it is valid, in addition,
in the region Ao. To this end we introduce a new local
momentum

The motivation for this choice, which is nonunique but
highly symmetric in all particle coordinates, instead of
Eq. (82), rests upon the fact that, as mentioned in Sec. II,
in Ao directions exist such that when all interparticle dis-
tances tend to infinity, i.e. , if r —+ oo, for v = 1, 2, and 3,
nevertheless one of the center-of-mass variables p can
remain finite. This would imply that we no longer are
in 0 . Such a situation is excluded, e.g. , by the choice
(107). However, in any of the domains 0 this new defi-
nition of k (R, p ) coincides in the leading order [up to
terms of the order O(p z)] with the previously given one,
for n = 1, 2, and3. Hence the most general wave func-
tion which is an asymptotic solution of the three-body
Schrodinger equation (2) with purely Coulombic interac-
tions in A~, for 0, = 0, 1, 2, and 3, except for the singular
directions, is

I

v=1
N (R, p )F( —ii) (R, p ), 1;i[k (R, p )r —k (R, p ) r ]), (Ios)

where the hypergeometric functions F( —ill (R, p ), 1; i[k„(R,p )r —k (R, p ) r„]) satisfy the equation

—T,.—V (r )
e'""~ '~. ) "F(—ill (R, p ), 1;'i[k (R, p )r —k (R, p ) r ]) = 0.(

k R, p
Pv

(109)
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H,.(p. ) =H..(p.)+ v."( -)
=T„.+v. (r.)+v. (r.)+v. (p-), (11o)

The quantities rl (R, p ) and K„(R,p ) follow from
the expressions (98) by the substitution k~ (R, p ) for
k (p ). It is easily verified that in A~ the wave func-

tion 4&+ (r~, p~) coincides in the leading order with

(r~, p ), Eq. (100). In fact, this is true even in Ao
except for regions where all three interparticle distances
go to infinity but p remains finite. In Ao, as was the

/ /

case for @k'+ (r, p ), also Cz+ (r, p ) coincides in
the leading order with the asymptotic wave function (5),
of a three-particle Coulomb-distorted plane wave, i.e. , a
product of plane waves times the leading terms of three
hypergeometric functions.

The results obtained up to now can easily be extended
to the case when, in addition to Coulomb, also short-
range interactions are present. Of course, since in 0
the center-of-mass variable p, and hence also rp and
r~, tend to infinity the terms in the ansatz (81) which
describe the relative motion of particles o. and p, and o.
and P, respectively, remain unchanged: the short-range
part of the interactions Vp and V~ has died out. Hence
the sole modifications will concern the description of the
relative motion of particles P and p. But these are easy to
accomplish. In order that the ansatz (81) be the leading
term of the solution of the asymptotic Schrodinger equa-
tion (10) in fl, F (r; p ) has to satisfy the equation

(92), but with H+ (p~) now being replaced by H, (p~),

@()( )

—ik~(R, P„) r„

xy~ (Rp)(r ),(+) (114)

where g„(~& )(r~) is the solution of the Schrodinger
(+)

equation

k2(R, p ) (+)—T,„—V(r ) g„(~g, )(r )=0, (115)

with the full interaction in channel v. This wave function,
which is the asymptotic solution of the Schrodinger equa-
tion (2) with general Coulomb-type pair interactions in
all regions 0, o. = 0, 1, 2, and 3, is therefore the leading
term of an asymptotic expansion of the three-charged-
particle wave function in all these domains.

term (55) in the asymptotic expansion of the exact wave
function derived analytically in Sec. III. This proves that

(r, p ) is the leading term in fI of the three-(+)

charged-particle wave function, thereby generalizing ex-
pression (99).

Consequently, our discussion of the applicability of
the two possible spectral decompositions of the resol-
vent of H~' remain generally valid, provided everywhere

)(r ) is replaced by @k ( )(r ).(+) (+)

In an analogous manner the wave function (108) can
be generalized to yield

which includes the nuclear interaction in channel o..
Equivalently, if we introduce the solution Q& ( )(r~) of(+)

the Schrodinger equation with potential V~ = V + V+
for a local energy E~(p~) = k2 (p~)/2p~,

(p.) T, —v.(r.-))y„'+'„)(r.) = o,

we have again for r /p ~ 0

1&
k {p ) Pn

(112)

Of course, in general for the solution of Eq. (111) one
must take resort to numerical techniques.

Hence for general two-particle interactions we conclude
that the wave function

e„'+' (...p. ) = 0k('. (,.) (r-) ~k."..'(p-)
y(+) (r ) eisa Pa'
k(c)

xe j&& ln(k& p —& pkp p )

xeiq 1n(k p —~ k p )

where yk' +
(p ) is an asymptotic solution of Eq. (86),

and gk+( )(r~) is the solution of the Schrodinger equa-
tion (111), satisfies [up to terms of the order O(p 2)]
the asymptotic [Eq. (10)], and hence also the original
Schrodinger equation (2), in the region 0 . Further-
more, for V:—0 it coincides with the generalized leading

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented the asymptotic wave

function 4 z (r, p ) for three charged particles in the(+)'

continuum which is valid not only when all three interpar-
ticle distances tend to infinity, but also when the distance
between any two particles is small compared to the dis-
tance between the center of mass of this pair and the third
particle. This wave function has been shown to be an
asymptotic solution of the asymptotic Schrodinger equa-
tion in all the asymptotic regions 0, n = 0, 1, 2, and3,
except for the singular directions. Its explicit form is
given by Eq. (114) for general Coulomb plus nuclear in-
teractions. In 00 it coincides in the leading order with
the standard asymptotic solution @o' + (r, p ), Eq. (5),

/

i.e. , it is equivalent there to @0+ (r~, p ), Eq. (6). In

0, for a = 1, 2, or 3, the wave function C 2 (r, p )
-(+) '

coincides in leading order with (113), for general poten-
tials V, and with (99), respectively (105), for purely
Coulombic interactions. Note that although we have al-
ways discussed the wave function with prescribed outgo-
ing boundary conditions only, the corresponding one with
prescribed incoming boundary conditions follows from it
in the conventional manner.

From the physical point of view our main results are
the following. First, in 0, o, = 1, 2, or 3, the asymptotic
three-charged-particle wave function cannot be decom-
posed into a product of the internal relative-motion wave
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@k'+ (r, p )=g„+(r )e'- - in 0 (116)

This is just its conventional form since Qk~ l(r ) is the

function of the pair of particles P and p, times an inde-
pendent wave function describing the relative motion of
the third particle a with respect to the center of mass
of this pair, as is the case if the latter is in a bound
state. The physically intuitive reason being that if the
two particles of the pair are in the continuum such a split-
ting would imply a complete decoupling of the motion of
the third particle from the individual movement of the
other two particles, at least asymptotically, despite the
infinite range of the Coulomb interactions present. In
contrast, the requirements to be an asymptotic solution
in 0 and in Ao of the three-body Schrodinger equation
quite naturally exclude such a structure as a product of
the two independent wave functions. To be sure, also
our asymptotic wave function in A~, o, = 1, 2, or3, can
be represented as a product of eigenfunctions of two suit-
ably chosen component Hamiltonians in an evident way,
but both of them are three-body wave functions. This has
the consequence that a continuing modification of the in-
ternal motion of the considered pair by the third particle
cannot even asymptotically be avoided. Formally, this
manifests itself in the result that the corresponding in-
ternal relative-motion wave function of the pair depends
on a local momentum which contains the distance be-
tween its center of mass and the third particle as a pa-
rameter. And the other wave function of the product
which essentially describes the motion of the third par-
ticle relative to the center of mass of this pair depends
not only on the corresponding canonically conjugated rel-
ative momentum, but also on the relative momentum
of the particles within the pair through the individual
particle momenta. This is, of course, nothing but a re-
Hection of the genuine three-body nature of the system
under consideration: even in the asymptotic region 0
the long-range three-particle correlations arising from the
Coulomb interaction between each of the three pairs of
particles aEect their individual motion.

Second, it is obvious that the wave functions obtained
are valid also if only two of the particles are charged, the
third one being neutral. However, because of its prac-
tical importance let us explicitly write down the corre-
sponding formulas. To be specific assume particle e to
be the neutral one, i.e. , e~ = 0, but ep, e& g 0. Then

gp = g~ = 0, and hence also a (p ) = a (p ) = 0.(P) - (&)-
This implies that for the subsystems of particles P and p
the local relative momentum k~(p~) coincides with the
physical momentum, k (p ) = k . Consequently, when
the relative distance between the two charged particles P
and p is small compared to the separation of their center
of mass from the neutral particle o, , i.e. , in the region 0
the asymptotic wave function (113) reduces to

solution of the Schrodinger equation (111) but to the
asymptotic energy E~ = k /2p~. In the domain Ap,
for P g n, which characterizes a situation in which the
charged particle P is far separated from the center of
mass of the pair (n, p) while the neutral particle n and
the charged particle p can be close to each other, we find

@x'+ (rp &p) = &g+( l(rp)
imp pp ig~ 1n(A; pp —&p k pp)

(in Ap), (117)

with kp(pp) = kp + a& (p&)/pp. The wave function

l(rp) is the solution of the subsystem-p analog of
Eq. (111) for the local energy Ep(pp), where it has to
be kept in mind that the interaction between particles o.
and p consists of the short-range part U& (rp) only. In
Ao, of course, the specialization of Eq. (5) results.

A third, more technical point concerns the fact that
our asymptotic wave function has been shown to be
the asymptotic solution of the Schrodinger equation only
away from the singular directions. However, for practi-
cal purposes it is desirable to have expressions which can
also be used there and in the immediate neighborhood.
This problem has not yet been solved from a fundamental
point of view. However, in the Appendix we suggest one
practical possibility to improve our wave function in the
singular directions. This is achieved by replacing a~(p ),
which enters the definition of the local momentum and
becomes singular there, by a quantity which remains well
behaved everywhere and, in the nonsingular regions, co-
incides in the main order with a (p ). With such a mod-
ificatio our wave function is, however, not a solution of
the Schrodinger equation in the singular directions, a de-

I

ficiency shared by the extension [4,5] to @o'+ (r~, p~),
Eq. (6), of @o'+ (r, p~), Eq. (5). But, nevertheless, as

is the case for 40'+ (r, p ) (see, e.g. , Ref. [5]) such a
generalized wave function might be useful for practical
calculations.

Among the physical applications of our wave function
we point specifically to the approximate calculation of
ionization processes in atomic physics, and break-up re-
actions in nuclear physics, with charged particles in the
three-body final state. In the prior form the correspond-
ing amplitude contains the overlap of the initial state,
which consists of a two-body bound-state wave func-
tion for the subsystem n times a plane wave for particle
a, multiplied by the channel interaction, with the final
three-body scattering state. When evaluating the contri-
bution from large impact parameters the wave function
(113),or its asymptotically equivalent form

@{+) (p ~ ) —g&Q~'p~ ~+ {0 )'&cx/pa f {+) (+q x»P~l —~ ~k (p ) 4 o') N I" ( —i ri„, 1;i (k„r„—k r )), (118)
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I
a (0 ) I

M~
k -+0 q

ep e~

mp my
(119)

That is, we have found in our quantum-mechanical treat-
ment that the famous charge-over-mass ratio difference
is the crucial parameter for such processes. Furthermore,
the change of k (p ) due to [a (p ) ~

becomes the more
pronounced the smaller the relative velocity q /Ma be-
tween particle a and the center of mass of the pair (P, p)
1s.
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APPENDIX

In the preceding sections we have pointed out that
the expressions for the various asymptotic wave functions
presented in this paper are not valid in the singular direc-

tions where at least one of the a ( ) (p ), v g o., becomes
singular. One possible remedy is provided by the follow-
ing procedure.

Let us start from the asymptotic representation

should be used. In the singular directions it can be mod-
ified according to the prescription discussed in the Ap-
pendix.

Under what circumstances might one expect an ap-
preciable inHuence on ionization cross sections from our
modified wave functions? When terminating the expan-
sion of the Coulomb distortion factors as in Eq. (79) we
had to assume r /p~ (( 1. But this does not preclude
a significant change of the local momentum [k~(pa)[ =
]k +a (p )/p [

as compared to its asymptotic value k
when the latter is small. In fact, for k —+ 0 we derive
from Eq. (83) with (80) that the "strength" ~a~(p ) ~

of
this modification is given by

KpF( —irlp, 1; i(kpp —e pkp p~))

d !n F( irlp—, 1;i( p) irlp
(A2)

which can be used to write

(p.)
(~)-

= ikp (e p p —kp)
p~ m~

d ln F( —irlp, 1;i(kpp —e pkp p ))
d(~p

(e p p —kp)
m~

F(1 —imp, 2;i(kpp —e pkp p ))X F( —irlp, 1;i(kpp —e pkp p ))
'

Here we have made use of the relation F'(a, b;x)
o F(l + a, 1 + b; x)/b. The rhs of Eq. (A3) coincides in
the nonsingular direction to leading order in p with
the lhs, but it is well-behaved everywhere, including the
singular direction where it goes to zero. Hence substi-
tution of a( (p )/p by the rhs of Eq. (A3), and a
similar expression for aa (p )/p in all equations pro-
vides us with wave functions which can be used in practi-
cal calculations everywhere. [It is obvious that near the
singular directions the ratio of the two hypergeometric
functions occurring in Eq. (A3) is easily calculable as a
sum of few terms in the series expansion of the latter. ]
In the nonsingular directions the wave functions modi-
fied in such a way coincide with those obtained before;
but, of course, they are not asymptotic solutions of the
Schrodinger equation (2) in the singular directions.

in@ 1n(ks p~ —e~skp p~) (A1))
Pci ~OO

which is valid in the nonsingular region characterized by
e pkp p g 1. We introduce the shorthand notation
( p = kpp —e pkp p . From Eq. (Al) we derive
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