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Often the inclusion of electron-correlation effects in photoionization calculations is crucial; e.g., calcu-
lation of satellite cross sections and asymmetry parameters in core ionization of molecules. We have
developed a computational approach to include the relaxation, multiconfiguration, and multichannel
effects, in a multichannel configuration-interaction (MCCI) approximation, for the study of molecular
photoionization. Results are presented of a detailed MCCI-Schwinger study of the C(1s) core-hole pro-
duction in CO, including the formation of the lowest two 17— 7* shake-up satellites. It is shown that the
multichannel effects are more important in describing the satellites than the core-hole channel.

PACS number(s): 33.80.Eh, 33.60.Fy, 03.65.Nk

I. INTRODUCTION

Photoionization of core electrons of atoms and mole-
cules is often accompanied by the simultaneous excitation
of secondary electrons. In the photoelectron spectrum
the results of these shake-up processes manifest them-
selves as satellites. Theoretically, there can be an infinite
number of such satellites. However, only a few will have
observable intensities. This phenomena may be substan-
tial in unsaturated molecules. Satellites with intensities
up to 25% of that of the primary or the core-hole (CH)
line have been observed in N(1s) photoionization of N,
[1]. Satellite formation is inherently a multielectron pro-
cess. Hence, a quantitative comparison between theoreti-
cal and experimental cross sections for the formation of
satellites is important in understanding the many-body
nature of the atomic and molecular structure and the
photoionization process itself.

A series of satellites, associated with the production of
the C(1s) core hole, have been observed [1] in the Al K«
x-ray photoionization spectrum of CO. The CH line ap-
pears at a binding energy of 296.2 eV. The first and the
second satellites (which we designate as S1 and S2, re-
spectively) appear 8.3 and 14.9 eV above the main line.
Later, more elaborate experimental work [2,3] attributed
the lowest two satellites to be due to #— 7* transitions.
The branching ratios (with respect to the CH line) of S'1
and S2 were observed to behave differently close to the
threshold; in S'1 it increases with decreasing photon ener-
gy and in S2 it decreases. Detailed configuration-
interaction (CI) calculations [4] reveal the existence of
two distinct 27 states with the primary configuration
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at these binding energies. They differ in their spin sym-
metry; in S'1 the 7 subsystem is spin coupled to give an
intermediate triplet, while it is a singlet in S2. The
different behavior of the branching ratios in light of the
fact that both S1 and S2 arise from the same primary
configuration has aroused great theoretical interest in
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these satellites [5].

Shake-up processes are an indication of the importance
of electron-correlation effects in core ionization since it
cannot be described by the frozen-core model of the pho-
toionization process. A proper description of the process
must include the multielectron effects even in its lowest-
order form. At higher photon energies one can calculate
the photoionization cross section using the sudden ap-
proximation [6,7]. In this limit, the cross section is a
function of spectroscopic factors which depend only on
the bound-state wave functions of the ion and the neutral
molecule; the continuum state associated with the photo-
electron plays no crucial role. However, close to the
threshold and near resonances, one cannot neglect the
scattering states, and the explicit inclusion of them into
the theory is necessary.

Incorporation of correlation effects in photoionization
can be done at three levels: target relaxation, initial and
final bound-state correlation, and interchannel coupling.
Unlike valence photoionization, relaxation effects in core
ionization of molecules is important [8,9]. This can
greatly alter the energy positions and the intensities of
resonances. Calculations of Guest et al. [4] (and our own
calculations) reveal the existence of substantial
configuration mixing in the wave functions of the residual
ion in satellite channels. This necessitates the use of
multiconfiguration ionic states. Relatively little work has
been done on the molecular electronic excitation process
using multiconfigurational target wave functions [10].
Even fewer use substantial configuration expansions
[11-13]. It is the usual practice in calculations with
multiconfiguration targets to keep the scattering state or-
thogonal to the bound molecular orbitals and add polar-
ization terms to the expansion to relax this unphysical
orthogonality constraint [10]. This formulation leads to
the appearance of spurious singularities in the S matrix,
and special averaging techniques are required to extract
the physical information [14,15]. The multichannel
effects in the CO problem, to our knowledge, have hither-
to remained unexplored.
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In this paper we develop a computational approach to
describe the general photoionization problem (not limited
to the core ionization problem) which includes relaxation,
multiconfiguration, and multichannel effects, in a mul-
tichannel configuration-interaction approximation
(MCCI), by combining the CI method and the Schwinger
variational principle. At the outset, we use scattering
states which are not orthogonal to the bound molecular
orbitals. We report the results of a detailed MCCI-
Schwinger calculation of the C(1s) photoionization in-
cluding the two shake-up satellites S'1 and S2.

The rest of the paper is organized as follows: In Sec. II
we develop the theory. Computational details are given
in Sec. III. Section IV is devoted to the results and a dis-
cussion. Conclusions are found in Sec. V. In the Appen-
dix we construct a mathematical proof to show that the
optical potential we used has certain desirable mathemat-
ical characteristics which enabled us to use Green’s-
function techniques.

II. THEORY

The multichannel configuration-interaction wave func-
tion of a molecule with an ionized electron is written as
N, N, N,
Yyvca= X &)= 3 3 Cyi(x:) (1)
i=1 i=1j=1
where y; is the ith channel scattering state, ®; represents
the configuration-interaction wave function of the residu-
al ion in channel i, and N, is the number of channels.
The notation 1;(x;) implies a spin-adapted N-electron
configuration state function (CSF), not a simple product
of ¥; and x;. @, is expanded in a channel-independent
CSF basis {¢;}.
Some of the electronic configurations important for the
J
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A priori there is no reason to force orthogonality be-
tween Y; and the spatial molecular orbitals {¢;} (except
to the ones which are doubly occupied in all CSF’s) and
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problem under consideration can have more than two
singly occupied orbitals. Such configurations can give
more than one CSF which differ in their spin coupling.
Using a systematic spin-coupling scheme [16], one can
easily construct these CSF’s. The equations developed
here are very general and do not depend on the particular
spin-coupling scheme utilized. Also, the equations are
equally valid for a low-spin species (e.g., ionized mole-
cule) as well as a high-spin species (e.g., ionized radical).

Let us designate the total and the z component of spin
of a N-electron molecule (or ion) by the quantum num-
bers S and M,, respectively. Since the Hamiltonian and
the physical quantities we are interested in are indepen-
dent of the spin, without loss of generality we can use the
spin eigenfunctions with M, =S,. In general, the residu-
al ion can have two different total spin values, viz.,
Sy_1=Sy*l (only Sy_, exists for Sy=0). Then an
(N —1)-electron CSF ¢, has the form

'rqu :‘)4{(¢I¢l¢m¢m U ¢y¢K )
X[aBaB -+ ©,(n;Sy_; My =Sx_)]} . ()

Here ¢, represents a spatial orbital; a and S represent the
usual spin-up and spin-down states of a single electron;
and ©,(n,;S;M) is a spin eigenfunction of n, electrons,
with total and azimuth spin quantum numbers S and M,
where n, is the number of singly occupied orbitals in the
CSF. A is the antisymmetrizer. Then using spin addi-
tion and subtraction formulas [16], one obtains the fol-
lowing forms for ¢, (x;):

¢q(Xj):‘)4{(¢l¢l¢m¢m T ¢y¢x te X_/)
X[aBaB - ©,(n,;Sy_1;8v_1)al} (3a)

or

(= A{($1610mbm by X aBaB - O, (ny;Sy_1;Sy— — e}

FV2Sy 1A (G191 Gmbm by - X BaB - © (g3 Sy 13881 IB]}) . (3b)
|
N N 1
Hy=3 fi)+ 3 — (5)
i=1 ij i
i>j

we do not impose such a condition in general. Nonortho-
gonality allows more flexibility in Y; and permits the
scattering function to include the functional space
spanned by the molecular orbitals. However, when a re-
stricted set of channel state functions are included, un-
physical resonances will appear in the scattering solutions
unless certain orthogonality constraints are imposed.

The MCCI wave function is required to satisfy the pro-
jected Schrédinger equation [17]

NC
< S ®,(5x;) ’HN—E |‘I’Mcc1>=0 , @)

i=1

where the electronic Hamiltonian in atomic units is

and where N is the number of electrons, with

Zy
o (6)
7.

fli)y=—1vi—3

1la

In Eq. (4), ®;(8y;) represents all possible variations of
®,(x;) which can be obtained by variations in the scatter-
ing orbital x;. In order to simplify Eq. (4), it is con-
venient to introduce the projection operator P, defined by

P+ S 16,)(e,1=1, @)

j=1
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where n is the total number of spatial molecular orbitals
used to expand the set of CSF’s. Replacing x; and 8y; by

Py;+ i l¢]><¢j|)(:>

j=1
and
Poy;+ 3 |¢j)<¢j|8Xi>
j=1

in Eq. (4) and integrating over N — 1 coordinates, one can
reduce Eq. (4) to a set of coupled variational equations

|
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for the channel scattering functions (see the Appendix for
a proof):

NC
—E;]llx;)+ > (8l

(8x;|[f (@) Uijb(j>:0,
j=1
i=1,2,...,N, (8
with E; =E —¢;, where ¢; is the total energy of the resid-

ual ionic state in the ith channel. Then E; is the asymp-
totic kinetic energy of the photoelectron in the same
channel. Uj;; is the nonlocal optical potential which has

the following form (see the Appendix):

¢n1)¢K ><¢Lix,>caﬁy"“<1)

- ¢n(1)[PXj(2)]>C,-7B7”’(2)

1
T |9s Dy 2>> (¢ylx; Y CFPT(3)

~ 1P, (D2 }C“" )

a,B

)b, (1)) d,lx; ) CET(6)

LA (D10 bglx; Y CA8)

3 Ou18 E(Dlx, ) CA9I+8, 3 (Sxil8) Ex(baly, ) C10) )

The coefficients C"*(m) depend on the coefficients
Cit>Cjx» and the electronic configurations used to con-
struct the expansion in Eq. (1).

The potential U has no differential operators acting on
{x;} [18]. All the differential parts are in the first term of
Eq. (8). Hence, Eq. (8) is in a suitable form for the appli-
cation of Green’s-function techniques.

Now suppose that we want to force orthogonality be-
tween a given channel scattering state and a selected set
of molecular orbitals which defines the projection opera-
tor g;:

9= 3

¢y Eset i

o 2 {bl, i=1,2,...,N, . (10)

Then the variational equations satisfied by the orthogonal
part of the scattering states are [19]

((1—g))8x; [ f () —E; 1|1 —g;)x;)
N
j=1

i=1,2,...,N, . (1)

To construct the Lippmann-Schwinger equation which
is equivalent to Eq. (11), we use the channel matrix
Phillips-Kleinman pseudopotential [19,20], whose dimen-
sions are N, by N,

Yo=V—LQ—QL+QLQ, (12)

where L, Q, and ¥ are defined by

1 1
Ly=|=Vi-——E [8;+V;, (13)
Qij:qiaij ’ (14)
Z, 1
Vii:—27—+ +U;, Vy=+U; . s
a ia

The matrix Lippmann-Schwinger equation [17,21] is then
¥=x"+G.VoX , (16)

where ¥ and ¥° are the vectors of the channel scattering
states and the channel Coulomb waves. G, is the mul-
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tichannel Coulomb Green’s matrix defined by

(G.);;=G(E})d; . a7n

Although we are interested in photoionization here,
the theory described so far is very general and can be
used to study electron-molecule collisions as well. The
Schwinger variational principle can be utilized to solve
Eq. (16) to study photoionization [22]. Let the initial
state (i.e., unionized) of the molecule be represented by
Y,. In an ideal calculation the final channel wave func-
tions must be orthogonal to W, since they represent
different stationary states of the same N-electron Hamil-
tonian. However, because of the approximate nature of
the solution, there may be slight nonorthogonality be-
tween ®,;(x;) and ¥, which can lead to meaningless self-
transitions. Thus the self-term has to be subtracted out
in defining the transition moment. With the appropriate
projection operator, the channel photoionization cross
section is proportional to the square of the matrix ele-
ment:

J
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120= (%] 3 ut V)| x))
ji=1
N
~(%| = ut V| W) wle 00 [, a)
j=1
where upf'” is the one-electron dipole operator;

ui(j )=\/_l:,-rj-ﬁ in length form and
ul )=k /%0)V ;-

in velocity form, with k; representing the momentum of
the photoelectron in channel i, i the direction of polar-
ization of the light, and » the angular frequency of the
photon.

The correlated initial-state wave function is expanded
in a set of N-electron CSF’s which in turn are expanded
in a molecular-orbital basis {¢}}, which is orthonormal
to {¢;]. Using the projection operator technique de-
scribed earlier, one can simplify the channel transition
moment to a sum over one-electron integrals:

IFV=(REVx )= 3 AouDIpE P (DIgg1)) (o, Ix YD (1)+ 3 (¢ DpF V(DI [Px,(1)])DA2) . (19)

B,y

Then the double-differential photoionization cross sec-
tion in length (or velocity) and the mixed form in the
body fixed frame is given by [23]

dzg{‘(V) _ 477_2hw |IL(V)|2 20)
dﬂﬁidﬂﬁ ! ’
dzaf” 2
= 4 H0 pei(IEy 1YY 1)

dQﬁ}dQﬁ c

respectively. The final cross sections are obtained in the
usual manner by integrating over all orientations of the
molecule in the laboratory frame to give the differential
cross section as [24]

UIL(V,M )

= 1+pF">Mp 0], 22
a0, yy RAr 2( cosf)] (22)

L(V,M)
dU'i

where 0 is the angle between i and iE, P, is the Legendre
polynomial of degree 2, and B-¥*™ is the photoelectron
asymmetry parameter in the length (velocity or mixed)
form. The mixed form of the cross section is believed to
be more useful than either the usual length or velocity
forms of the cross section since the oscillator strength
computed in the mixed form satisfies the Thomas-
Reiche-Kuhun (TRK) sum rule [25].

III. COMPUTATIONS

The calculations are done in two stages. The first stage
involves the determination of {¢;} and {¢,}, calculation
of the coefficients C;; and construction of the potential
Y. Calculation ¥, is also done in the first stage. Solu-
tion of Eq. (14) and evaluation of photoionization param-

[
eters are accomplished in the second stage using well-
documented techniques [22].

In principle, any orthonormal molecular-orbital basis
can be used to expand the CSF’s {¢,}. However, for
practical considerations it is desirable to keep N, to a
minimum. To this end, we have used a set of natural or-
bitals [26] which give a rapidly converging series in Eq.
(1). A set of molecular orbitals were generated by per-
forming a restricted open-shell Hartree-Fock (ROHF)
calculation on the CH state of CO™. The natural orbitals
were then generated by doing a single-reference singles
and doubles (SD) configuration-interaction calculation,
using the full set of ROHF orbitals, with the CH
configuration as the reference. Gaussian atomic basis
sets were used in constructing the molecular orbitals.
The results reported here were generated using the stan-
dard triple zeta valence plus polarization (TZVP) bases
[27]. We have checked the stability of the cross sections
and the asymmetry parameters against the changes in
basis by repeating the calculation, at a few points, using a
much larger (quadruple {) Gaussian basis. All the calcu-
lations were done at the equilibrium bond length of CO;
R=1.128 A.

To construct the CSF basis, we first performed a SD-
CI on each channel using the full natural orbital basis (40
functions in TZVP basis). The reference for each channel
was chosen to be its primary configuration(s). We have
not truncated the molecular-orbital basis, at this stage,
since the occupation numbers do not form a reliable cri-
terion when one wants to pick a few prominent
configurations. The first few most important CSF’s in
each channel were included in {¢,}. We have 30 CSF’s
functions in the set which exploits only 15 molecular or-
bitals. At present we have included states which have
only three or fewer singly occupied orbitals. This is not a
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serious limitation especially for the CH and S1 states
since the most important configurations do not have
more than three open orbitals. The spin coupling was ac-
complished using Yamanouchi-Kotani genealogical spin
functions [16]. Table I lists the different types of ¢, and
the corresponding ¥,(x;) included in our calculations.
There, in self-explanatory notation, ¢ represents a spin
orbital with spin a and spatial factor ¢,, A is the an-
tisymmetrizer, and (core) describes the doubly occupied
orbital manifold. A limited CI was then performed in ¢,
to determine the coefficients C;, for the residual ionic
state in each channel. These coefficients were kept con-
stant during subsequent scattering calculations. We have
utilized the GAMESS computer code [28] for all self-
consistent field (SCF) and CI calculations.

One needs the potential in the algebraic form depicted
in Eq. (9) for the iterative calculations in the second
stage. The primary entity needed to construct this opera-
tor is

(®,(8x,)|Hy|®;(x;)) .

Here we only outline the philosophy behind the methods
we used since the rest is a straightforward exercise in
computer programming.

Each SCF is a sum of Slater determinants. Hence a
matrix element of the Hamiltonian in the channel basis is
a summation of matrix elements over Slater deter-
minants. Since {¥;} is not orthogonal to {¢;}, Condon-
Slater rules [26] are not directly applicable for further
reduction of these matrix elements. However, this
difficulty can be easily removed by expanding each chan-
nel scattering state in the molecular-orbital basis set (used
to construct ¢, ) and the part orthogonal to them. Then
the matrix elements reduce to a summation over the usu-
al single- and double-electron integrals. We have
developed a FORTRAN code to perform the necessary
algebraic manipulations and evaluate the coefficients
C§ - using {®;] as the input. With slight modification,
the same program was used to calculate the coefficients
Df - in Eq. (19).

We had to force orthogonality between the channel
scattering states and a number of molecular orbitals to
avoid spurious resonances. We recognize a singularity in
the S matrix as spurious if (a) it is present in a single-
channel calculation but is absent in a multichannel calcu-
lation or (b) it appears well above the threshold. In
single-channel calculations the inclusion of the 4o orbital
leads to such a resonance, in the CH channel around 43.8
eV above threshold and S2 right at the threshold. The
5o molecular orbital creates one 11.8 eV above threshold
in the CH channel. A sharp spurious resonance observed

in the CH channel at 10.8 eV above threshold and a very
broad resonance in S1 at 30.5 eV above threshold was
due to the lor= component in the channel scattering
state. In multichannel calculations 17+ leads to a broad
resonance, at a photon energy of 360 eV, in S1 and S2
channels and a narrow resonance at 223.0 eV in S1. All
the results reported here were generated by keeping the
channel scattering states orthogonal to 40, 50, and 17*
orbitals. We must remark here that the exclusion of
these orbitals from the channel scattering functions is in
agreement with the recently proposed prescription in
Ref. [13]. We have checked that the relaxation of this re-
striction does not have a significant effect either on the
cross sections or the asymmetry parameters at photon en-
ergies other than where the singularities appear.

The initial-state wave function ¥, was determined as
follows: First, a SD-CI calculation was performed on the
ground state of CO, using the full set of natural orbitals
of CO™ obtained as described earlier, to determine the
important configurations. Then another CI calculation
was performed in a truncated CSF basis to obtain the
final wave function. This included 85 CSF’s which are
expanded in 31 natural orbitals. It is not surprising that
¥, needs more CSF’s in its expansion to achieve compa-
rable accuracy since the natural orbitals were optimized
for the ionic state of CO.

The multichannel Schwinger approach with Padé ap-
proximate corrections [21,22] was used in all reported
calculations. Explicitly, the variational expression for the
channel transition moment was

TEV=(RLDV[y0)

+ S ARFVNG Vylou Vg —YoG V) !
a,B

X5l ¥olx?) (23)

where {¢;} forms a multichannel scattering basis set and
(REWM] is defined in Eq. (19). We have used the total set
of natural orbitals, including 1, 3, 4, 5o, 17+, and & or-
bitals, as our scattering basis. There were 16 functions in
each o channel and 7 in each 7 channel. This represents
a substantial reduction of the basis size compared to the
Gaussian bases used in previous calculations [5]. Molec-
ular orbitals are more efficient in describing the space
around the nuclei than individual Gaussian basis func-
tions. These were sufficient to give an initial guess which
converges rapidly on iteration—usually to three to four
figures in cross section and asymmetry parameter in three
iterations.

All of the integrals in Eq. (19) were evaluated using nu-
merical techniques based on single-center expansions cen-

TABLE I. Forms of (N —1)- and the corresponding N-electron CSF’s used in our calculations.

Type !/}q ¢q(X1)
1 A [(core)p?] N A[(core)(¢ZxB+x28)1/V2
2 A[(core)(psdhpl+s5¢2)1/V 2 A[(core)(p3dBoixP+ dldbx 7ol + 55 dox?
_ +o5dlxie)]/2
3 A[(core)(dsdhod—pIdids—202¢545)1/V'6 A[(core)(dgdloix?+odhxiel—pidfoox?

— P dixiE —2050005xT —2xIdf9ige)]/V 12




1994 GUNADYA BANDARAGE AND ROBERT R. LUCCHESE 47

tered at the bond midpoint, which has been discussed in
detail elsewhere [22,29]. Here we only give a brief ac-
count of the parameters used in our calculations. The ra-
dial grid had 1696 points and extended to a distance of
100 a.u. The grid points were chosen using a set of well-
defined empirical rules [30]. The integration formulas
used for radial integrals on this grid were Newton-Cotes-
type formulas [29] which allow for the accurate integra-
tion of functions which have discontinuities in their
slopes, such as those which occur in the integration of
Coulomb Green’s function and in the integration of
1/r,.

The partial-wave expansions used in this study were as
follows: [,, =60, where /,, is the maximum [ included in
the expansion of the scattering functions as well as target
orbitals at all times; A}, =60, where A;} is the maximum /
included in the expansion of 1/r, in the exchange and
AL =120 for the static potential terms; and /, = 10, where

P

I, is the maximum !/ included in the expansion of the

homogeneous solutions ¥°.

IV. RESULTS AND DISCUSSION

In Table II we have compared the energies of the resid-
ual ionic states calculated with our final CI wave func-
tions with the extended-root-set CI calculations [4] and
the experiment results [1]. Our transition energies are in
reasonably good agreement with the experiment. It is
known [4] that in S2, there are correlation contributions
coming from configurations which have a larger number
of singly occupied orbitals than we have presently includ-
ed in our expansions. We attribute the relatively larger
departure of the transition energy from the experimental
value to this. We have used the transition energies shown
in Table II as the energy thresholds of the satellites rela-
tive to the CH channel in our scattering calculations. As
for the ionization threshold of the CH channel, we have
used the experimental ionization potential of 296.2 eV.

We have reported the CI coefficients of the primary
CSF’s in each of the normalized ionic wave functions in
Table III. The sum of the squares of the expansion
coefficients of the primary CSF’s in S1 and S2 are 0.92
and 0.72, respectively. This gives a measure of the im-
portance of the other configurations in the satellite wave
functions. Multiconfigurational effects are somewhat
more important in S2 than in S'1.

First, a calculation, at iteration zero, was performed on
an evenly spaced photon-energy grid to detect the reso-

TABLE II. Comparison of our transition energies with the
experiment and extended-root-set CI calculations. The calculat-
ed energy of the residual ion in the CH channel reported in Ref.
[4]is —101.9899 a.u. Our value is —101.9414 a.u.

Transition energy (eV)

Channel Present Previous theory® Experiment®
CH 0.0 0.0 0.0
S1 8.2 8.5 8.3
S2 17.5 15.7 14.9

#Reference [4].
"Reference [1].

nances. Since the spacing of this grid is 0.5 eV, we might
not have detected any resonances whose width is less
than 0.5 eV. Once the resonances have been isolated, a
suitable set of photon energies were determined to do the
final iterative calculations.

A. Core-hole channel

We have plotted the length and velocity forms of the
cross section for the o and 7 components in single and
multichannel calculations leading to the CH state in Figs.
1 and 2, respectively. A strong shape resonance centered
at 308.0 eV is observed in the o cross section. Mul-
tichannel effects are virtually absent in this component.
Quite prominent multichannel effects are observed in the
7 component. A Rydberg progression of autoionization
peaks is present close to the threshold. In Figs. 3 and 4
we have displayed the asymmetry parameter for the o
and 7 components. Multichannel effects are less impor-
tant in determining the asymmetry parameter. Agree-
ment between the length and velocity forms, for both the
cross section and the asymmetry parameter, is quite
good, except very close to the threshold.

We have compared our total cross sections (in mixed
form which satisfies the Thomas-Reiche-Kohn sum rule
[25]) and the asymmetry parameters with recent experi-
ment and theoretical calculations in Figs. 5 and 6. The
two less intense autoionizing peaks in the 7 cross section
get washed out in the total cross section because of the
strong o resonance. Our results, both cross section and
asymmetry parameter, are in good agreement with the re-
cent experimental results of Ref. [33]. Our results closely
resemble (except the peak in cross section due to autoion-
ization in the 7 component in multichannel results) the
(single-channel) relaxed core Hartree-Fock calculations
of Ref. [9] (which used two separate sets of orbitals,
which are orthogonal among themselves but otherwise
nonorthogonal, to expand the molecular and the ionic
wave functions). This shows that we have successfully re-
tained the orthogonality in the molecular-orbital basis
used to expand the wave functions of unionized molecu-
lar state and the residual ionic state by representing the
initial state by a linear combination of CSF’s expanded in
relaxed orbitals. Orthogonality among molecular orbitals
is a useful feature, especially when one wants to use large
CI expansions to accurately account for the correlation
effects in the initial as well as the final states.

B. Satellites

In earlier experimental studies of the satellites [1-3],
intensities appearing close to the respective thresholds,
304.5 and 311.1 eV, were attributed to be solely due to
the 237 states discussed in this paper. However, recent
experimental work [33,34] has shown that the photoelec-
tron flux close to these thresholds is partly due to other
electronic states (for a discussion on this point, we refer
the reader to Ref. [34]). Hence, one must be cautious in
comparing our results with the experiment. The cross
sections in Ref. [33] are approximately corrected to take
into account the effects of the other electronic states.
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TABLE III. CI expansion coefficients of the primary CSF’s in the normalized residual ion wave
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1020302405017 172 2wL 2 0.0015 —0.0283 0.6025
1020304025021 7% 17! 27, 2 0.0015 —0.0283 0.6025
1020'30%4050 17 172271 3 0.0907 0.6813 0.0321
loR0'30%40250 1 7% 17 27!, 3 0.0907 0.6813 0.0321
o o
- T T T T T o~ T T T T
]
@© <L
ol i
a 8ol
€ o -
Zsf 5
o o
= a
8 z g -
wn -
73 I g
”n o
I N R £,
S Y D Rl P as b
~~~~~~~~ <
O Y S N
°r w0
........ =3 l
g wl L L - L g L L 1 L
280.0 300.0 320.0 340.0 360.0 380.0 400.0 ) 280.0 300.0 320.0 340.0 360.0 380.0 400.0

Photon Energy (eV)

Photon Energy (eV)

FIG. 1. Present single-channel o and 7 cross sections for the FIG. 3. Present single-channel o and m asymmetry parame-

ters for the CH channel:

, length form; — — —, velocity

CH channel: , length form; — — — velocity form.
form.
o o
- T T T T T o~ T T T T
]
© - F B
2| | T
. =
o 8o}
€ 2
=21 £
: :
<)
3 £
©
w < £
wor
o Eo
U 17 d -
<
o~
or )
or ]
:
o
o I L L L L _o_ 5 L L L L
.

280.0 300.0

3200  340.0  360.0
Photon Energy (eV)

380.0

400.0

FIG. 2. Present multichannel o and 7 cross sections for the

CH channel:

, length form; — —

—, velocity form.

280.0 300.0

320.0

340.0

360.0

Photon Energy (eV)

380.0

400.0

FIG. 4. Present multichannel o and 7 asymmetry parameters
for the CH channel: ——, length form; — — —, velocity form.



1996 GUNADYA BANDARAGE AND ROBERT R. LUCCHESE 47

o 0

o~ T T T T T =

° o T T T L T
f‘ g e .

@ ' K = | / \oooo ] 3

-~ L e E /Qﬁ _v.@ww:,v . g | i
e N E
a 3 N o
5 ~ L [ v o > : Eo
=~ ; v 3 1 e B
S o | §°
H 2
22l | 28
2 325.0 8 o o
(S B B S S

<« Vel -

! - 3

o
g 1 L L i L g ,

290.0 310.0 330.0 360.0 370.0

Photon Energy (eV)

390.0 410.0
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In Figs. 7, 8, 9, and 10, we have displayed the length
and velocity forms of the cross sections and asymmetry
parameters for the o and 7 components of S'1 in single-
channel and multichannel calculations. Overall, good
agreement is found between length and velocity forms. A
broad resonance peak, centered around 316.0 eV, is
present in the o cross section. Strong multichannel
effects are apparent in both o and 7 components. The o
cross section is strongly enhanced around 308.0 eV by the
o resonance in the CH channel. The shoulder close to
327.0 eV is presumably due to the multichannel coupling
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core Hartree-Fock, Ref. [5]. Experiment: V, Ref. [32]; ®, Ref.
[2]; O, Ref. [33]. The inset is a closer view of the lower photon-
energy part of the same plot.
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to the resonance in the o component of S2. The mul-
tichannel 7 cross section contains two autoionizing struc-
tures below the S2 threshold. The o asymmetry parame-
ter is more influenced by interchannel coupling than the
T asymmetry parameter.

We have compared our total cross sections for S'1 with
the experiment and the (single-channel) relaxed core
Hartree-Fock (RCHF) calculations, of Ref. [S], in Fig.
11. Our single-channel cross section qualitatively agrees

N
o~

1.6

1.0

Asymmetry Parameter
0.0 0.6

-0.6
T
L

-1.0

1 1 1 1 1
300.0 3200 340.0 360.0  380.0
Photon Energy (eV)

280.0 400.0

FIG. 10. Present multichannel o and 7 asymmetry parame-
ters for the S'1 channel: , length form; — — —, velocity
form.
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FIG. 11. Comparison of the present S1 channel total cross
section with previous theory and experiment. Theory: — — —,
present single channel; , present multichannel; - . . -, re-
laxed core Hartree-Fock, Ref. [5]. Experiment: @, Ref. [33].

with RCHF calculations over the whole energy range.
The agreement is quantitative at high photon energies.
The general trend in theoretical cross sections is well
reproduced in the experimental results.

The asymmetry parameter for S1 is plotted as a func-
tion of photon energy in Fig. 12. There is a distinct dip
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FIG. 12. Comparison of the present S1 channel total asym-
metry parameter with previous theory and experiment. Theory:
— — —, present single channel; , present multichannel;

- -, relaxed core Hartree-Fock, Ref. [5]. Experiment: @,
Ref. [2]; O, Ref. [33].
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around 314.0 eV in single-channel calculations. Channel
coupling shifts this minimum to a higher photon energy
and introduces a narrow dip around 306.0 eV. Our re-
sults reproduce the experimental trend well. We attri-
bute the differences between our results and RCHF re-
sults to the inclusion of multiconfiguration effects in the
present calculation.

Figures 13, 14, 15, and 16 give the length and velocity
cross sections and asymmetry parameters for different
components of S2. The agreement between length and
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FIG. 14. Present multichannel o and 7 cross sections for the
S2 channel: , length form; — — —, velocity form.
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FIG. 15. Present single-channel o and 7 asymmetry parame-
ters for the S2 channel: , length form; — — —, velocity
form.

velocity forms is quite good except very close to the
threshold. The large discrepancy in length and velocity
asymmetry parameters, close to the threshold, in the
single-channel o component and the absence of it in the
multichannel results show the crucial role played by
correlation in determining the asymmetry parameter at
lower photon energies. A resonance peak centered at
326.0 eV is present in both single-channel and multichan-
nel o cross sections.
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FIG. 16. Present multichannel o and 7 asymmetry parame-
ters for the S2 channel: , length form; — — —, velocity
form.
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laxed core Hartree-Fock, Ref. [5]. Experiment @, Ref. [33].

Total cross sections of the present calculations for S2
are compared with the RCHF and experimental results in
Fig. 17. Comparison of single-channel results with mul-
tichannel calculations reveals that channel coupling is
important in determining the cross section in S2 not only
close to the threshold but also at higher photon energies.
Our multichannel results agree well with the experiment
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.« . ., relaxed core Hartree-Fock, Ref. [5]. Experiment: @,
Ref. [2]; O, Ref. [33].
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at higher energies. Experimental results show no sign of
a resonance peak, which is also present in RCHF results,
at lower energies.

We have displayed the asymmetry parameter of S2 in
Fig. 18. Multichannel results show a maximum and a
minimum at 317.5 and 324.0 eV, respectively. Single-
channel results deviate from coupled-channel calculations
at low photon energy and lead to unphysical values (i.e.,
negative differential cross sections) near threshold. Such
behavior is possible in the mixed form of the cross section
(hence, asymmetry parameter) when there is a significant
phase difference between the length and velocity forms of
the dipole matrix elements used to evaluate Eq. (21). As
can be seen in Fig. 15, the length and velocity asymmetry
parameters in the o symmetry have very different near-
threshold behavior for the single-channel results leading
to the S2 state. This again points to the high level of
correlation effects in S2. The general trend of the experi-
mental results of Hemmers and Becker is reproduced by
our multichannel results.

V. CONCLUSIONS

Satellite formation in photoionization is inherently a
many-electron phenomenon. Any theory which describes
this process must include electron-correlation effects even
in zeroth order. Here we have developed such an ap-
proach which includes relaxation; configuration interac-
tion, in the initial molecular state as well as the residual
ionic state; and multichannel effects in photoionization of
molecules (electron-molecule collisions as well), both high
spin and low spin. We have rigorously proven that the
variational equation for the system wave function (within
MCCI approximation) can be reduced to a set of equa-
tions for the channel scattering states which is amenable
to Green’s-function techniques. The solution of these
equations, for the case of photoionization, has been done
using the Schwinger variational principle. We have
demonstrated the feasibility of the theory by applying it
to the C(1s) core-hole production and the associated sa-
tellite formation process.

In the core-hole channel, strong autoionizing reso-
nances are observed in the 7 cross section to the thresh-
old. Multichannel effects are less important in the o-
cross section. The agreement between theory and experi-
ment (both cross section and asymmetry parameter) is
very good at higher photon energies. The discrepancies
close to the threshold may be attributed to polarization
effects.

Multichannel effects are more important in describing
the satellites than in the core-hole channel. In S'1, chan-
nel coupling strongly modifies both o as well as 7 cross
sections close to threshold. The o asymmetry parameter
is also strongly influenced. In S2, channel coupling
enhances the cross section, in both components,
throughout the energy range studied. The general experi-
mental trends are well reproduced by our multichannel
results. To make a more reliable judgment on the agree-
ment between experiment and theory for the satellites,
one needs highly resolved spectra which can isolate the
intensity due to 22" components. Also, the calculations
should include CSF’s with more unpaired electrons in the
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wave functions of the molecule and the residual ion than
was possible in this study. Work is under way to general-
ize our potential generation programs to achieve this
goal. Additionally, the calculations should include the
channels leading to the other shake-up channels which
are open at the energies considered here.
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APPENDIX

The first step in the solution of Eq. (4) is the reduction
of it into the set of coupled equations (8). The optical po-
tential U in Eq. (8) does not have terms which lead to
differentiation of the channel scattering states [18].
Hence, Eq. (8) is in a suitable form for the application of
usual Green’s-function techniques. Here we construct a
proof to show that the variational equation satisfied by
the multichannel configuration-interaction wave function
of the ionized molecule can always be reduced to the set
of equations (8) with the optical potential having the form

(@, Hy_|®;)
N, nql nq
= 2 2 2 C‘zxd‘l*x 1CJ‘12d‘12 ky
91,9,=1k;=1k,=1
X S (e lfle)+1
(Pyea)(qlkl)
<¢71,1f‘¢k>+ >

q;yEw(qlkl)

(g ky;
+{@u@yllppr ) (— 1) 200 (g 1k1395K7) ] =€;8; ,

where w(qg, k) is the set of spin orbitals in the product DZ L n

¢y’8Ew(q1kl)

(@, @l @) ]
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depicted in Eq. (9).

In the proof, we only assume the expandability of the
spin eigenfunctions in primitive spin functions [16] which
is true for any spin eigenfunction irrespective of the con-
struction scheme. Hence the equations derived are in-
dependent of the spin-coupling scheme.

Expand ©, in Eq. (2) in primitive spin functions. Then
¥, becomes a sum of Slater determinants:

Y, = Y duA[DE], (A1)
k=1

where D{ represents an ordered spin-orbital product
where the spin orbitals are arranged in increasing order
of the orbital index. Then the orthonormality of {®,}
gives.

Ny
(®;]®;)= 3 C; Cpy (Y, 19, )
q]:qz_l
Ny ey gy
= 2 2 2 C';ld’;(l 1CJ‘12d‘12 ky

919, =1k =1k, =

><8On(qlkl;qzkz)zsij ’ (A2)

where n(qg,;k;;q9,k,) is the number of spin orbitals by

which the sets of spin orbitals in DZ: and D,‘fz2 differ.

Using Condon-Slater rules [26] to reduce the Hamil-
tonian matrix element between any two determinants and
using the fact that {®;} are eigenfunctions of Hy _;, we
obtain

(@, @5l Py Ps) |Bonig, k,ia,ky)

n,(q ky;q,k,)
(=1~ B1n(g,k 30,k

(A3)

(qlk 1;92k,) is the number of permutations performed on

Dk1 to bring the difference between the ordered products Dk and Dk to a minimum, (@,,@,) and (@,,@,) are the spin

orbitals by which the sets of spin orbitals in Dk and Dk dlffer and

<¢a‘pb“<pc¢7d>:<¢a(l)¢b(2) —

¢c<1><pd(z)> <<pa<1)¢>,,(2>

2.(2)p ,,(1)) . (A4)

It is convenient to divide the problem into three separate cases: case 1, only the ionic states with spin S~ are includ-
ed; case 2, only the ionic states with spin S+ are included; and case 3, the most general case, where both spin states are

included in the calculation.



47 MULTICONFIGURATION MULTICHANNEL SCHWINGER STUDY ... 2001

Case 1. We expand the right-hand side of Eq. (3a) in Slater determinants:

"q
Yo (x;)= 3 dyA[DE(x;a)] . (A5)
k=1

Now the decomposition of x; into orthogonal and nonorthogonal parts gives

n
Ny oy

0= 3 3 Cgydu, A[D;’;(ija>]+Izlaq[p,i’;(¢,a>]<¢,|x,> : (A6)
CPAE =
Then
(®,(8x,)|Hy —E|®;(x;))

n n
Ny CRCPY

= 2 2 2 Ci,;ldq*lklch2dq2k2

q91,9,=1k;=1k,=1

X

(A[Dg! (PSY;a)]|Hy —E|A[D (Py;a)])

+ 3 (8l ALDS (1)) Hy —EADS (g, @)]){, x;)

Im=1

+ zn‘,(8)(i|¢1><J4[DZ]‘(¢,a)]’HN|.>4{D,322(PXja)])
=1

+ 3 (A[D] (Psx,0)] | HylA[DE(8,,@)]) b lx;) | - (A7)
m=1

In deriving Eq. (A7), we have used the fact that
(A[Dg! (P8Y;@) | A[ D2 ($,,0)]) = (ALD{ (¢,0) A LD (Px;@)]) =0 . (A8)

Note that the last three terms of Eq. (A7) involve orthogonal orbitals and hence Condon-Slater rules can be used to
reduce the matrix elements over N-electron functions into one- and two-electron integrals. Likewise, one can reduce
the first term into constituent integrals by assuming the orbitals (P8y;a) and (Py;a) to be equal but not normalized,
i.e., (P8Y;a|Px;a)+#1, and applying the Condon-Slater rules.

Observation reveals that, in their most general form, there can be only 13 types of matrix elements in the right-hand
side of Eq. (A7). This includes (with the spin integration done) all the terms listed in Eq. (9), except the last term,
(Pox;|fIPx;), ECP8X;|Px;), {@,|fl@,){P8Y,;|PX;), and

Pega) (POX,IPX,)
T12

<‘Pa Pb

These terms originate in the first term of (A7). Reducing this term and regrouping the one- and two-electron integrals
using Eqgs. (A2) and (A3), we obtain

(A[Dg! (P8Y;)]|Hy—E|A[D{ (Px;a)])

=(P8x;|fIPx;)8;+(e;—E)(P8x,|Px,)s,;

nql n

9
n (g, k,;q,k,)
2 3G d*klcﬁhd‘lzkz(—l)p .

9,79,

Ny
+ X

9,9, =1k =1k,=1

X %'P Eﬂ’z‘}h"n’ (‘py(PBXia)”‘py(PXja)>80n(q1k1;q2k2)+<‘Pn(P8Xia)“‘pl(PXja)>81n(q1k1;q2k |-
Y

(A9)

Subcasel: i7j. From Eq. (A9) it is clear that the terms containing matrix elements of the form (P8x;|f|Px;) and
(P8x;|Px j> disappear in this case. Hence, the form of the potential depicted in Eq. (9) is certainly true for this case
with
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(@,(8x)|Hy —E|®;(x;))=(8x;|U;lx;) .
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Subcase2: i=j. Expanding P using Eq. (7), one obtains for the first two terms of (A9):
(P8Y;|f|Px;)+[e;—E)P8);|Px;)=(P8x,|f—E;|Px;)

(A10)
=Sl —Elx)+ S (8x:1d0)<d,1f 1, )<, X))
ILm=1
+ 3 Sxl Gl IPY D+ 3 (P8Y:If 1) (bolx)
=1 m=1
+ 3 Byl Edilx) - A1)

=1

Equations (A7), (A9), and (A11) reveal that when =},
the potential has the form stated in Eq. (9) with

(@,(8y,) | Hy —E|®,(x,))
:<5Xi|f—Ei|Xi)+<8Xi|Uii‘Xi> .

This concludes the proof for case 1. To avoid writing
down, essentially the same, lengthy algebraic equations,
we only outline the proofs for the other two cases. Work-
ing out the exact expressions is left for the reader as a
simple exercise in algebra.

Case 2. We rewrite Eq. (3b), in self-explanatory nota-
tion, as follows:

U, (X)) ==X+ 2Sy +1Y1) /V2(Sy +1) .

(A12)

(A13)

The proof, in this case, follows the same steps as above

once you realize that (a) (P8y;|Px;) appears only in

terms (X, [Hy—E|X] ) and (Y, |[Hy—E[Y] ) be-

cause spin integration forbids such terms in

(X, |[Hy—E|Y] ) and (Y, |[Hy—E|X] ), and (b)
1 2 1 2

(®;|Hy_,|®;) is independent of My _,.
Case 3. In this case the matrix elements are

(®,(8y,) [ Hy—E|®;(x;)) ,

where one channel, say, i, involves spin S~ and the other,
channel j, involves S ionic states. Here, (P8x;|Px;)
appears only in terms

(4, (5x)) | Hy —E|X], ) .

The proof can be worked out as above when you realize
that fact that

<¢i|¢j>=<¢),‘;HN-1|(D/’>=O

irrespective of the azimuthal spin quantum numbers asso-
ciated with ®; and ®; since they have different total spin
quantum numbers. Hence we have shown that in general
one can reduce Eq. (4) to a set of equations (8) for the
channel scattering functions with the optical potential
given by Eq. (9).
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