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Ab initio calculations are performed on the e -He2 complex using the R-matrix technique. A two-
state approximation is utilized in which the X X„+ and the A Xg+ electronic states of He2+, in the
close-coupling expansion, are represented by truncated configuration-interaction (CI) wave functions ob-
tained from multiconfiguration-self-consistent-field —complete-active-space-SCF (MCSCF-CASSCF) cal-
culations. A (4s, 2p, 2d) Slater basis is used to perform bound-state calculations at SCF, full CI, and
MCSCF-CASSCF levels, to gauge the quality of wave functions at various bond separations. Elastic
cross sections are presented for selected bond lengths in the range 1.5—4.0ao, for the X„+ total symmetry.
Hei*(lo.s la„npo and nfcr 'X„+) resonances are detected at each separation and fitted to Breit-Wigner
formulas in order to determine their energies and autoionization widths. In addition, low-lying
He&*( lo.

g
lo.„ns, nd, and ng X„+)bound states are also calculated at several geometries.

PACS number(s): 34.80.Bm, 31.20.Tz, 31.20.0i, 34.90.+q

I. INTRODUCTION

In this paper we report results of ab initio calculations
for the low-energy elastic scattering of electrons from
He 2+ molecular ions. To our knowledge no other
methods have been used for scattering calculations on
this system nor have there been experimental measure-
ments of the process; this is due, no doubt, to the
difficulty of handling He2+ in the laboratory. He2+ ions
produced from neutral dimers are normally in hot vibra-
tional and rotational states and therefore must be
quenched in order to perform experiments on the ground
vibrational state [1]. We report in this work ab initio cal-
culations of cross sections for elastic scattering and, in
addition, autoionization widths are obtained for several
bond lengths. There are no relevant experimental data or
theoretical work with which to compare our results at
this time.

Estimates for the autoionization widths arising from
the interaction of two metastable helium atoms in their
triplet states have been reported previously by Garrison,
Miller, and Schaefer [2]. We note that only approximate
estimates of the autoionization widths and resonance
widths for the high-lying states 'Xg+, X„+,and X + of
He2* have been made. For these states of the helium di-
mer Garrison, Miller, and Schaefer [2] parametrized the
autoionization widths as exponentially decaying func-
tions of internuclear separation, as opposed to calculating
them from first principles. As noted by Miiller et al. [3],
detailed knowledge of the X„+ and 'X + resonances

widths as functions of internuclear separation ar re-
quired to fully understand the energy spectrum of elec-
trons produced by ionizing collisions between pairs of
metastable He(2'S, 2 S) atoms. Autoionization is spin
forbidden for the Xg+ entrance channel, which may only
be accessed through spin-orbital coupling, and so this
symmetry may be neglected as indicated by Hill and co-
workers [4].

The computations reported here open the way to a host
of related theoretical problems [5,6]. From here we can
progress to a detailed study of Penning and associative
ionization in He*-He, and He*-He* collisions, with and
without the presence of a photon field. Field-free associa-
tive ionization and excitation transfer cross sections have
previously been studied, within a diabatic representation
of the He*-He complex, using a multistate curve crossing
model [7]. Bieniek, Miiller, and Movre [8] recently have
investigated associative and Penning ionization in
He(2 S)-He(2 S) collisions using a uniform semiclassical
approximation. There also have been recent experimen-
tal and theoretical studies by Miiller et al. [9] on He*-
He* collisions at thermal and subthermal kinetic ener-
gies.

Estimates have been made by Julienne and Mies [10] of
the upper and lower bounds for the rate coefficient of
Penning ionization in He(2 S)—He(2 S) collisions, which
are respectively 10 and 5 X 10 " cm s '. Within the
past two years Weiner, Masnou-Seeuws, and Giusti-Suzor
[11] have published an extensive review of associative
ionization in several systems and Niehaus [12] has re-
viewed field-free spontaneous electron emission from slow
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atomic collisions at incident energies less than 10 keV.
Finally, a review of field-free chemi-ionization in binary
collisions at thermal energies has been made by Klu-
charev and Vujnovic [13].

Our work will make it possible to study photoioniza-
tion of the excited states of the helium dimer for which
there are resonances in the resulting cross sections.
These resonances can be analyzed and identified with
Rydberg states of He2* from phase-shift calculations in
e -He2+ scattering. It then may be possible to resolve
the controversy that exists at present in experiments on
photon-assisted He*-He collisions [14,15].

We note that in models of the ejecta of the supernova
SN 1987A [16], He+ ions formed by the radioactive de-
cay of Co are removed by radiative and dielectronic
recombination, charge transfer, the radiative association
process He++He~He&++hv, and by reactions with
CO. It is desirable to know accurately cross sections as
well as rate constants for these processes. In particular,
radiative recombination cross sections and rate
coefficients may be obtained from ab initio photoioniza-
tion cross sections calculations on the ground and excited
states of the helium atom [17]. Quantitative calculations
of the autoionization widths and resonance widths I (R),
as functions of the internuclear separation variable R,
will permit a detailed investigation to be conducted of the
dissociative recombination (DR) process, e +He&
~He*+ He. Generally it is recognized that the X +

and 'X + are the two lowest-lying electronic states that
provide the primary routes for DR but other diabatic
states of the helium dimer, namely, H„, 'H„, X„+,and
'X„+ are possible routes [18]. Finally it is our intention
to study vibrational excitation of the ground electronic
state of the He2+ molecular ion, which will provide a rich
source of information on this molecular-ion complex.

II. COMPUTATIONAL METHOD

A. Outline of calculations

We have applied the R-matrix method to the electron-
molecular ion complex as outlined by Gillan [19] and
McLaughlin et al. [5] in order to solve the scattering
equations. For the solution of the scattering equations in
the external region, specific to neutral molecular com-
plexes, the reader should consult the work of Gillan et al.
[20]. This R-matrix method has proved, among others,
to be very successful in ab initio studies of low-energy
electron molecule collisions. In particular, Tennyson,
Noble, and Salvini [21] and Tennyson and Noble [22] ap-
plied the method to the e -H2+ system, this work being
extended by Shimamura, Noble, and Burke [23] to com-
plete a detailed study of the Feshbach resonances con-
verging to the first excited state. Recent work on the
e -H2+ and the e -HeH+ system, using the multichan-
nel quantum-defect theory (MQDT) approach, within the
R-matrix context, has also been carried out, respectively,
by Branchett and Tennyson [24] and Sarpal and Ten-
nyson [25]. Branchett and Tennyson [24] have augment-
ed the work of Shimamura, Noble, and Burke [23] using
the R-matrix method to compute transition dipole mo-

ments between low-lying bound and diffuse Rydberg
states of the H2 molecule. Tennyson [26] has used the R-
matrix method to study bound and continuum states of
the e -CH+ system. Sarpal et al. [27] have completed
work on bound states of the e -HeH+ system and have
implemented the method of Seaton [28] to calculate the
lowest 33 bound electronic states of the HeH molecule.
We have used the same technique here for the bound
states of the He2* complex.

The next three sections cover the most important as-
pects of our cross-section calculations of the scattering
process. We begin by considering the representation of
the target-state wave functions. Following this we de-
scribe the method of solution of the scattering equations
and conclude with a brief discussion of our choice of the

functions which are important constituents of the R-
matrix basis states.

B. Target suave-function calculations

The target eigenstates are expanded in a set of orthogo-
nal molecular orbitals, each of which is expanded in a
basis of Slater-type orbitals (STO's). All the calculations
have been performed using the (4s, 2p, 2d) double g plus
polarization (DZ+P), STO basis of Reagen, Browne, and
Matsen [29]. The sensitivity of the scattering calcula-
tions to the target representations has previously been
demonstrated by McLaughlin et al. [6] using (SCF and
full CI) approximations for the target states.

The present study began with a self-consistent-field
(SCF) calculation of the Icrg lo „' X X„+ state of He&+ in
the STO basis. Due to linear dependence we were forced
to delete one of the o. and one of the o.„basis functions.
This yielded the orbital set

1o. ~6o. , 1o.„~6o.„, 1m„~3~„,
1 fag ~3&g 15g 15

We then Schmidt orthogonalized the open-shell virtual
orbitals to the bound orbitals and used the resulting or-
thogonal orbital set for the expansion of both target
states.

Our first approximation was to use single
configurations for both the X X„+ and A X~+ states.
The X state was represented by its SCF form. We found
that the representation of the 3 state in the common or-
bital basis was close to that obtained from a SCF calcula-
tion on the 2-state configuration itself. The second ap-
proximation began with full configuration-interaction
(CI) calculations [30] for both target states in the com-
mon orbital set defined by (1). The dimension of the
configuration-state-function (CSF) space for each target
eigenfunction was 562. This representation was, there-
fore, at the STO basis-set limit and independent of the
form of representation of the molecular orbitals that we
had chosen. Using these target-state expansions would
have rendered the solution of the scattering equations
difficult due to the algorithm used in our codes for Ham-
iltonian matrix construction. We note in passing that
this restriction has been removed.

In order to make the inner region Hamiltonian
manageable it was necessary to reduce the number of
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CSF's, without unduly degrading the wave functions.
Accordingly, we evaluated the first-order spin-reduced
density matrix for the X state (in the full CI approxima-
tion), diagonalized this, and then transformed the initial
orbital set to natural orbitals, cf. Mulliken and Errnler
[31]. The new orbital set was truncated by omitting all
natural orbitals with occupation numbers less than 10
The truncated natural orbital space was then

lo. ~3o. , 1o.„~2o.„, 1m„, 1~ (2)

TABLE I. Comparison of the truncated natural orbital CI
approximation, with full CI at selected bond separations for the
target energies of the X and 2 electronic states of He&+. The
(4s, 2p, 2d) STO basis of Reagen, Browne, and Matsen [29] is
used. All the energies are given in hartrees.

R (units of ap)

1.5
2.0
2.5
3.0
3.5
4.0

Truncated CI
X X„+ state

—4.922 291 5
—4.982 802 2
—4.968 760 5
—4.943 661 9
—4.923 105 4
—4.889 604 1

Full CI
X X„+ state

—4.930 279 4
—4.990 725 8
—4.976 836 1
—4.951 917 3
—4.931 538 0
—4.9177162

The performance of a full CI calculation in set (2) yielded
30 CSF's per state with a negligible degradation in abso-
lute energy compared with full CI in the orbital set (1).
This can be seen from Table I. We found that the degra-
dation in energy was larger for internuclear separations
different from the equilibrium separation. Although the
use of these natural orbitals derived from the ground
state introduces an extra approximation in the expansion
of the excited state, we do not believe that it significantly
affects the results reported here.

In our full CI calculations performed with the SCF
molecular-orbital set (1), at internuclear separations less
than R & 1.5ao, we found that the expansion coefficients
of the SCF molecular orbitals became extremely large, an
indication of severe linear dependence in the basis set. In
the CI technique only configuration coefficients are
varied since those of the molecular orbitals are already
fixed. Our results were therefore judged to be un-
trustworthy at internuclear geometries less than ( 1.45ao
for the 2 state using this CI procedure and have not been
included here. The X state results are in satisfactory
agreement with the work of Kahn and Jordan [32] and
are reported for bond separation R ) 1.3ao.

To circumvent these problems one must use the corn-
plete active-space self-consistent field (CASSCF) with the
multiconfiguration self-consistent-field (MCSCF) pro-
cedure [33,34], or a variant of this approach, for which

both configuration and molecular-orbital coefficients are
optimized. Using the CASSCF procedure one gets better
orbitals automatically. However, in the case of this
(4s, 2p, 2d) Slater basis there still are problems if one uses
the entire set for the X„+ and Xg+ symmetries at inter-
nuclear geometries near the united atom limit (R ~0),
where there is severe linear dependence. The main at-
traction of this (4s, 2p, 2d) Slater basis is the advantage it
provides of doing CASSCF on the whole orbital set (1), as
opposed to a subset, which is the normal way structure
calculations are performed when very large Slater basis
sets are employed. We note that here the MCSCF-
CASSCF and the full CI approximations are functionally
equivalent which we confirmed for our own satisfaction,
by performing calculations in both approximations. Fur-
ther details may be obtained from the authors for the in-
terested reader. The full CI results were obtained using a
modified version of the ALCHEMY I codes [35,36]. The
MCSCF-CASSCF results were obtained using the
ALCHEMY II suite of codes [37]. Following the work of
Branchett and Tennyson [38] we carefully checked the in-
tegration grids used in this work. An additional compli-
cation which may arise in scattering calculations is an in-
consistency in phase between the scattering and target-
wave functions. This was pointed out by Noble [39] who
modified the algorithm to remove this inconsistency.
This modification has now been incorporated in the R-
matrix suite of programs.

C. The scattering calculation

All of the calculations reported here have been per-
formed with the nuclei held fixed in space. In the fixed
nuclei R-matrix theory there are two regions of Euclide-
an configuration space. The inner region is a hyper-
sphere defined by r; & a Vi, where r, is the radial distance
of electron i from the center of mass of the target. The
outer region in the electron-scattering problem for an N
electron target is defined by r,- & a for i = 1,N and
r&+&) a. The parameter a is the R-matrix radius, which
we have chosen to be 10ao, a value large enough that the
target-state charge distributions are enveloped by the
hypersphere. Electron exchange is neglected in the outer
region. A multicenter configuration-interaction-type ex-
pansion of the scattering wave function is chosen to
represent the e -He2+ complex in the finite inner region.
Thus, the inner-region wave function is expanded in the
basis

Pk(x„xz, x3 x4) =A gP;(xi, x2, x3, cr4)i) (r4)a; k

IJ

+gjj ( Xi y X2y X3i X4 )13t'k

J

R (units of ap)

1.5
2.0
2.5
3.0
3.5
4.0

A Xg state

—4.195 363 5
—4.594 455 0
—4.757 254 5
—4.827 267 8
—4.859 095 2
—4.850 456 0

Xg+ state

—4.208 052 8
—4.604 711 1
—4.766 982 9
—4.836 745 1
—4.868 413 3
—4.883 517 8

where A is the antisymmetrization operator and
x; =(r;,o;) stands for the space and spin coordinates of
the ith electron. The functions P,. are eigenfunctions of
the total spin operator S and its z component S„formed
by coupling the products of the spin function of the con-
tinuum electron with the target electronic states P;. The

functions are continuum molecular orbitals which are
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nonzero on the boundary of the inner region. The second
summation is over square integrable X functions, g,
descriptive of states with all of the electrons in bound or-
bitals. The composition of this second summation is dis-
cussed in the following section. We have retained in Eq.
(3) the lowest two states of the He&+ molecular ion,
namely the X X„+ ground state and A X + excited
state. These two-state calculations reported here will
serve as a comparison for future multistate calculations
on this system. The coefficients a, .

k and )33& are deter-igk gk

mined by diagonalizing the operator (0+L) in the basis

gk in the inner region. Thus

~Qk IH+L Ig, ) =E„o„, , (4)

d2

d7"

l;(l;+1)
+2Vo(r)+k u, , (r) =0 (5)

subject to the fixed boundary conditions

du;J(r)
u;. =0,

dp'

a

u; (r) r=a

Here V0 is the spherical part of the static potential of the
SCF target ground state of He2+. The use of the fixed
boundary condition requires the introduction of the But-
tle correction [41] when computing the R matrix. Four
partial waves were used for each continuum symmetry.
Convergence was achieved with three partial waves per
continuum symmetry. We chose the continuum basis to
be complete up to 11 Ry, a condition that required the
use of about nine continuum functions per partial wave.

The outer-region part of the collision problem was han-
dled by adopting a single-center, no-exchange, close-
coupling expansion of the wave function. R-matrix prop-
agator [42] and accelerated Gailitis expansion methods
[43] were employed in the solution. For the scattering
process the external region was solved for positive ener-
gies and the R matrix matched onto outgoing wave solu-
tions. The T matrices obtained by this procedure then
were employed in standard formulas to produce
differential and integral cross sections. To evaluate
bound states of He2' we employed the method of Seaton
[28], as used by Sarpal et al. [27] for HeH*. In our ear-
lier work [6] we reported on the bound-state energy of
the He2(los icr„2s a X„+)state, which was evaluated by
solving the collision problem with all channels closed.
The advantage of the R-matrix method is that the bound

where H is the electronic Hamiltonian for the target plus
projectile and L, a surface projection operator introduced
by Bloch [40], is so defined that (H+L) is Hermitian.
The construction and diagonalization of the operator
(H +L) in the inner region is carried out using a
modified, machine portable, version of the IBM
ALcHEMY quantum chemistry program suite [35,36].

The continuum molecular orbitals g, representing the
scattered electron, are formed by taking suitable linear
combinations of the target molecular orbitals and addi-
tional continuum basis functions, the radial parts of
which are obtained by numerically solving the model
scattering problem

states can be obtained as an external region scattering
problem with negative kinetic energy and requires no
reevaluation of the inner region.

D. The L functions for full CI target representations

For scattering calculations with a full CI representa-
tion of the target states the truncated natural orbital set
of Eq. (2) was used. To ensure consistency with the use of
full CI the X terms consisted of all possible arrange-
ments of four electrons in the natural orbital space. Our
scattering calculation was therefore completely correlat-
ed within this truncated orbital space. Naturally, only
those configurations which are consistent with the target
symmetry and equivalence restrictions of the scattering
symmetry in question were constructed.

III. RESULTS AND DISCUSSION

Very little scattering information is available for this
molecular system. This is probably due to several
anomalies in target wave-function representation at vari-
ous internuclear separations. Figure 1 shows several
low-lying potential-energy curves of He2+ taken from the
valence-bond calculations of Michels [44] in the adiabatic
representation. The avoided crossings in the X + sym-
metrics are clearly visible at bond separations R 1.5a0,
as in the recent work of Metropoulos, Nicolaides, and
Buenker [45]. In the diabatic regime the A X + state
correlates in the united atom limit (R ~0) to the
Be ( Is2p ) state [46,47]. At internuclear separations+ 2

greater than approximately 6.0a0 the A X + and the
2 + 0 g

X X„states become degenerate. For bond lengths
greater than the equilibrium geometry r, there is a rela-
tively large energy separation between the A X + state
and higher-lying X „+or II „states. This justifies our
use of a two-state calculation for this system. Shimamu-
ra, Noble, and Burke [23] successfully employed a similar
two-state approximation in their work on the e -H +

2
complex.

-2.0

-3.0

-4.0

-5.0

I I I I I I I I I I I I »» I I » I I

3 4 5

internuclear distance (units of a )0

FIG. 1. He2+ potential-energy curves for low-lying X + and
2 +
Xg states from the valence-bond calculations of Michels [44].

The avoided crossings in the Xg+ symmetries are clearly visible
at bond separations R ~ 1.5ao. The II~ „states have been omit-
ted in the graph for the sake of clarity.
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Figure 2 shows the potential-energy curves we calculat-
ed for the X and A target states of the He2+ molecular
ion using the SCF approximation. For comparison pur-
poses the accurate multiconfiguration self-consistent-field
(MCSCF) results [32] are shown for these same two
states. At the SCF level the single-configuration repre-
sentation of the A state is inadequate near the united
atom limit (R ~0) and gives no avoided crossing in the

X~+ state at internuclear separations for the range
1.0—1.5ao. The curves shown in Figs. 2 and 3 incorpo-
rate the correction to the Kahn and Jordan [32] data that
was pointed out by Yu and Wing [48] for the X„+
ground state.

The energies of the X and A states of He2+ in both the
MCSCF-CASSCF and the full CI approximations are
identical to six decimal places for R 1.45ao, using the
(4s, 2p, 2d) Slater basis. Consequently we have chosen to
plot only the MCSCF-CASSCF results in Fig. 3. For
comparison purposes the results of Kahn and Jordan [32]
are included in both these figures. In both the MCSCF-
CASSCF and full CI calculations, using the (4s, 2p, 2d)
Slater basis of Reagen, Browne, and Matsen [29], the
severe linear dependence in the basis set for internuclear
geometries R ~ 1.45ao gives erroneous results for the A
state. These are not reported here. The X-state results
agree well with the work of Kahn and Jordan [32] and
are given for bond separations R ~ 1.3ao. Our scattering
work requires the use of a common set of molecular or-
bitals to represent both the X and A states. One there-
fore can only use this (4s, 2p, 2d) Slater basis for scatter-
ing work at bond separations greater than R ~ 1.5ao.

It is worth noting that for internuclear distances
R ~1.5ao the SCF-MO-LCAO wave functions provide
qualitatively satisfactory representations of the X and the
A states of Hez+. These single-configuration SCF wave
functions belong to the valence configuration-interaction
(VCI) [31] category and therefore automatically dissoci-

—3

ate into the correct Hartree-Fock states of the molecular
ion. Our full CI and MCSCF-CASSCF calculations at
bond separations R +1.5ao are in excellent agreement
with previous work. In particular, for the X X„+
ground state there is good agreement with the larger
basis set calculations of Sunil et al. [49], Kahn and Jor-
dan [32], Yu and co-workers [50,51] and Bauschlicher,
Partridge, and Ceperley [52]. A useful indication of the
accuracy of the wave function for the X state is provided
by comparing the value obtained for the dissociation con-
stant D, at the equilibrium bond length r, with values
available in the literature. Our results presented in Table
II for the dissociation constant D, and the equilibrium
bond separation r, are in harmony with the theoretical
and experimental values of previous studies. There is no
comparable test for the repulsive A state and so one must
rely solely upon the results of previous calculations for
comparisons.

Earlier scattering results on this system were carried
out by McLaughlin et al. [5], who performed cross-
section calculations at two fixed internuclear separations,
1.Sao and 2.0625ao, using the same two-state approxima-
tion as we have used here. The present work is an exten-
sion of this earlier work to selected bond separations in
the region 1.5—4.0ao, using full CI target-state represen-
tations obtained from the natural orbitals CASSCF calcu-
lations. As in our previous studies the direct potential in
the outer-region calculations contains, in addition to the
dominant Coulomb term, contributions from the ground-
and excited-state quadrupole moments as well as the di-
pole moment coupling the X and A states.

Work on electron collisions with CH+ by Tennyson
[26], Hz+ by Shimamura, Noble, and Burke [23] and
HeH+ by Sarpal, Tennyson, and Morgan [53] has shown
that complex multichannel quantum defects (MCQD) are
useful in analyzing complicated resonance structure and
superexcited states. The T matrix above a threshold can
be used to calculate the MCQD parameters,
Iu,„=a„+ip„a osutlined by Seaton [54]. Here a„ is re-

—3.5

—4.5—
Q

Q

, od) —4.2—
(1J
Q

—4.4—
oS

—4.6—
hQ

(D

—4.8—

I
i

I I I I

i
I I I

/

I I I I

/

I I I I

/

I I I I

He2

op, Zd)

—5.5
0 1 2 3 4 5

int. er nuclear dist. ance (units of ao)

FIG. 2. Comparisons of the SCF potential-energy calcula-
tions using the (4s, 2p, 2d) Slater basis for the X and the A states
of He2+ with MCSCF (6s, 4p, ld) Gaussian-basis calculations of
Kahn and Jordan [32]. Note the failure of the SCF calculations
to represent the avoided crossing in the He2+(1o.gin„A Xg+)
state.

—5.2
0

I

1 2

internuclear

I I t I I I I I I I I

3

distance (units of

I I

5

a, )

FIG. 3. MCSCF-CASSCF potential-energy calculations for
the X and A states of He, + using the (4s, 2p, 2d) Slater basis
compared with the MCSCF (6s, 4p, ld) Gaussian basis calcula-
tions of Kahn and Jordan [32].
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The dissociation energy D, (eV) and the equilibrium internuclear separation r, (ao) The calculated values from our

target representations are compared with existing ones for the ground state of He&+(lo. ~
lo.„X 2„+).

Method

SCF-GTO (Maas et al. [62])
SCF-STO (present work)

D, (eV)

2.622
2.648

r, (units of ao)

2.0050
2.0057

Cl-GTO (Maas et al. [62])
MCSCF-GTO (Kahn and Jordan [32])
CI-STO (Liu [63])
CI-GTO/STO (Bauschlicher, Partridge, and Ceperley [51])
CI-STO (present work)
MCSCF-CASSCF-STO (present work)
Expt. estimates (Huber and Herzberg [64])
Expt. estimates (Ginter and Ginter [65])

2.459
2.451
2.469+0.006
2.469+0.003
2.521
2.521
2.34 and 2. 55
2.33+0.02

2.0457
2.0447
2.0440
2.0428
2.0444
2.0444
2.0424
2.0423

lated to the effective quantum number n * by a„=n —n '
and P„ is defined as P„=—' I „(n*), with I „being the
width of the resonance n. The effective quantum number
n * is obtained from the relation

where c. is the series limit and c„ the energy of the reso-
nance n.

The resonances in the cross sections shown in Fig. 4
were detected and fitted to the following Breit-Wigner
form for several overlapping resonances:

g(E)=go(E)+ g tan

Here go(E) is the background phase shift at scattering en-

ergy c., c'„ the position of the ith resonance, I; the width,
and M the number of overlapping resonances. The reso-
nances were fitted automatically using a modified version
of the computer code of Tennyson and Noble [55,56],
with a quadratic form for the background phase shift
go(E), using an energy mesh of 10 Ry. From an
analysis of the eigenphase sum obtained from the K ma-
trix, the effective quantum number n ', the complex
quantum defect p„=a„+ip„, and the autoionizing width
were obtained for low-lying resonances at each fixed in-
ternuclear separation. The fitted parameters from our
scattering results are presented in Tables III—X. The re-
sults are for several low-lying He& (lo. lo „npo X„+ and
lo. lcr„nfo X„+) quasibound states that contribute to
the elastic scattering cross section at selected bond
lengths in the range 1.5 —4.0ao.

Our results indicate that the following resonance pro-
cesses contribute to the elastic-scattering process in the
X„+symmetry:

e +He&+(lo. lo „X X„+)

He&(lets lo„npcr, nfcr, nho, . . . , X„+)

He2+(lcr lo.„X X„+)+e

Each corresponds to a rearrangement of the He2+
molecular-ion core with the continuum electron attach-
ing itself to the repulsive unstable excited 3 X +He2+
state. These quasibound states, therefore, consist of an
unstable excited He2+ core surrounded by and interact-
ing with a diffuse Rydberg orbital. Our results clearly
show that there are several resonance series in the
elastic-scattering cross sections. The most prominent of
these is the npcr series and the weaker is the nf o Avery.
faint nh o. series is visible at internuclear distances greater
than 2.0ao. Only the npcr and nf o series have been ana-
lyzed in detail here.

In common with the work of Shimamura, Noble, and
Burke [23] on superexcited states of Hz we have analyzed
the real and imaginary parts of the quantum defects for
these superexcited states of He&. Figures 5 and 6 show
the real and imaginary parts of the quantum defects for
the He2( lo 1o „npoand nf.o 2„+)series. The behavior
of the real part of p„ for both the npo and nf o shows
trends similar to those appearing in Fig. 4 of Ref. [23]
for H2. The imaginary part of p„ for our nfcr series
behaves similarly to results reported by Shimamura, No-
ble, and Burke [23] on superexcited states of Hz. Howev-
er, our npcr series (except for the 3pcr) results show struc-
ture which have no counterparts for H2. Within the fixed
nuclei approximation the Wigner —Von Neumann non-
crossing rule applies. Therefore it is likely that these npo.
superexcited Rydberg resonance states exhibit avoided
crossings. For completeness in Fig. 7 we show the abso-
lute magnitudes of the quantum defects for the npo. and
nfcr 2„+ superexcited He2 states as functions of the
principal quantum number for the several internuclear
separations.

The curves of Fig. 8 illustrate the npo and nf cr

autoionizing widths varying with internuclear distance.
As before the npo and nf o 2„+ resonance series behave
differently. The 3po. resonance vanishes at R ~3.0ao,
whereas the higher-lying members of the npo. series are
monotonically decreasing functions of internuclear dis-
tance. We attribute the structure in the autoionizing
width of the npo. series to the proximity of the avoided
crossing in the A X + target state. The nfo X„+ au-
toionizing widths are monotonic increasing functions of
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TABLE III. Effective quantum numbers (n*), complex quantum defects (p„= a„+i@„),and posi-
tions (E.„) of the lag lcr„npa and la la„nfa resonances in the X„+ scattering symmetry. The posi-
tion of the resonances are relative to the X X„+ state of He2+ at the fixed internuclear separation of
R =1.5ao.

2.579 131 6
3.721 729 4
4.795 508 1

5.831 472 7

a„=n —n

0.420 868 4
0.278 270 6
0.204 491 9
0.168 527 3

P„=1m(p)

lo. lo.„npo. X„+
0.882 616 1

0.586 406 6
0.621 770 1

0.624 588 6

0.420 960 9
0.284 382 2
0.213 735 6
0.179 729 1

E„(Ry)

1.303 523 4
1.381 660 4
1.410 371 8

1.424 449 4

4.102 761 6
5.133 5560
6.147 886 5

lcrgla„nfa X„+
—0.102 761 6 0.100964 6
—0.133 5560 0.135 906 7
—0.147 886 5 0.157 003 8

0.102 766 6
0.133 562 9
0.147 894 8

1.394 447 6
1.415 910 1

1.427 398 4

TABLE IV. Effective quantum numbers (n*), complex quantum defects (p„= a+i'„), and posi-
tions (e„) of the Icr~la „npaand .lcr lcr„nfa resonances in the 2„+ scattering symmetry. The posi-
tion of the resonances are relative to the X X„+ state of He2+ at the fixed internuclear separation of
R =2.0ao.

2.613 184 2
3.724 982 9
4.784 320 5
5.812 687 6

n„=n —n*

0.386 815 8

0.275 017 1

0.215 679 5
0.187 312 4

13„=1m(p,)

lo.
g

lo.„npo. 2„+
0.117440 6
0.197 145 5

0.148 203 4
0.120 557 7

0.386 994 0
0.755 725 0
0.216 188 1

0.187 700 0

c„c',Ry)

0.630 254 3
0.704 624 8
0.733 006 6
0.747 097 4

4.112702 6
5.146 333 9
6.162 180 2

—0.112702 6
—0.146 333 9
—0.162 180 2

la.glcr„nfcr '2„+
0.182 873 1

0.246 475 1

0.284 225 0

0.1127174
0.146 354 7
0.162 205 1

0.717 572 8
0.738 936 7
0.750 359 5

TABLE V. Effective quantum numbers (n *), complex quantum defects (p,„=a„+ill„),and positions
(e„) of the lcrs la. „npcr and lcr~ la'„nf a resonances in the 'X„+ scattering symmetry. The position of
the resonances are relative to the X X„+ state of He2+ at the fixed internuclear separation of
R =2.5ao.

O.„=n —n* P„=1m(p)

2.661 848 1

3.676 473 0
4.742 280 3
5.780 574 9

lo.
~

lo.„npo. 2„+
0.338 151 9 0.032 302 8

0.323 527 0 0.106 169 9
0.257 719 7 0.135 235 4
0.219 425 1 0.145 721 3

0.339 691 3
0.340 502 2
0.291 046 5
0.263 404 8

0.281 877 4
0.349 028 1

0.378 546 3
0.393 085 4

4.130862 5

5.169 128 0
6.188 723 2

—0.130 862 5
—0.169 128 0
—0.188 723 2

I cr~ la „nfa 2„+
0.835 222 7
0.101 357 3
0.869 215 3

0.131 128 8
0.169431 4
0.188 923 3

0.364 409 2
0.385 586 7
0.396 902 5
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TABLE VI. Effective numbers (n *), complex quantum defects (p„=a„+i)r)„), and positions (e„) of
the lo s 1 o „npo and I erg lo „nfcr resonances in the 'X„+ scattering symmetry. The position of the reso-
nances are relative to the X X„+state of He2+ at the fixed internuclear separation of R =3.0ao.

2.689 005 0
3.670 893 0
4.690 587 0
5.707 450 8

n„=n —n*

0.310995 0
0.329 1070
0.309 4130
0.292 549 2

)33„=Im( p)

lo 1o u npo Xu
0.779 500 3
0.342 607 4
0.498 085 8
0.460 544 2

0.320 615 2
0.330 885 5
0.313 3964
0.296 152 1

0.094 489 9
0.158 550 7
0.187 336 9
0.202 089 8

4.151 525 6
5.195 6900
6.215 1108

—0.151 525 6
—0.195 690 0
—0.215 1108

I erg 1o.„nfo'X„+.
0.207 237 3
0.186293 0
0.201 095 5

0.152 936 2
0.196 574 7
0.216 048 7

0.174 767 3
0.195 744 5

0.206 899 9

TABLE VII. Effective quantum numbers (n*), complex quantum defects (p„=a„+iP„),and posi-
tions (e„) of the los la'„npo and Ios lo „nfcr resonances in the '2„+ scattering symmetry. The posi-
tion of the resonances are relative to the X X„+ state of He2+ at the fixed internuclear separation of
R =3.5ao.

3.740 929 5

4.747 364 4
5.758 166 2

a„=n —n*

0.256 907 1

0.252 635 6
0.241 833 8

P„=Im(p )

lo.
g

lo.„npo. 2„+
0.187 497 3
0.145 735 8
0.127 495 6

0.259 748 1

0.253 055 6
0.242 169 6

c„(Ry)

0.056 564 0
0.083 649 9
0.097 860 4

4.179 831 0
5.223 543 4
6.245 264 6

—0.179 831 0
—0.223 543 4
—0.245 264 6

log lo „nfoX„+.
0.372 205 8
0.420 188 7
0.354 1312

0.183 642 5
0.227 458 2
0.247 808 0

0.070 782 6
0.091 370 8
0.102 381 6

TABLE VIII. Effective quantum numbers (n*), complex quantum defects (p„= +aiP„), and posi-
tions (e„) of the los lcr„npo and lo lo.„nfo resonances in the X„+ scattering symmetry. The posi-
tion of the resonances are relative to the X X„+ state of He2+ at the fixed internuclear separation of
R =4.0ao.

a„=n —n* P„=Im( p, )

4.787 870 0
5.792 937 1

10g 10 „npo Xq
0.212 1300 0.546 340 2
0.207 062 9 0.649 891 7

0.212 200 3
0.207 164 9

0.034 673 4
0.048 497 2

4.215 291 7
5.253 129 8
6.272 392 8

—0.215 291 7
—0.253 129 8
—0.272 392 8

log lo „nfo 'X„+
0.755 283 0
0.829 921 2
0.858 3444

0.228 155 7
0.266 387 7
0.285 596 2

0.022 017 5

0.042 058 3
0.052 878 7

TABLE IX. Autoionization widths, in rydbergs, at selected bond separations for the lo.~la. „npo
resonances in the X„+ scattering symmetry. The results are from fitting the elastic eigenphase sum to
the Breit-Wigner form for overlapping resonances. The eigenphase sums are obtained from scattering
calculations of electrons on the X X„+ state of He2+ using two-state CI target wave functions, ob-
tained from natural orbital analysis of MCSCF-CASSCF calculations.

R (units of ao)

1.5
2.0
2.5
3.0
3.5
4.0

3pQ

2.058
2.632
6.851
1.604

4p cr

4.550
1.526
8.546
2.772 3

1.432

Spo

2.255
5.413
5.072
1.930
5.448-4
1.991

6po.

1.260
2.455
3.017
9.908
2.671-4
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TABLE X. Autoionization widths, in rydbergs, at selected
bond separations for the lcrg lo „nfo resonances in the 'X„+
scattering symmetry. The results are from fitting the elastic
eigenphase sum to the Breit-Wigner form for overlapping reso-
nances. The eigenphase sums are obtained from scattering cal-
culations of electrons on the X X„+ state of He2+ using two-

state CI target wave functions, obtained from natural orbital
analysis of MCSCF-CASSCF calculations.

0.2

0.1

He (la ta'npo Z ') (a)

3

4

5

6

R (units of ao)

1.5
2.0
2.5
3.0
3.5
4.0

5.848-'
1.052
4.739
1.158
2.038
4.034

5fcr

4.018
7233 '
2.935
5.313-4
1.179
2.290

6fo.

2.702-'
4.858
1.467
3.350
5.815
1.391

0.0 I I I I

1.5 2 2.5 3 3.5 4
internuclear distance (units of a )

4.5

R, due to couplings with a larger number of channels.
This, again, is similar to the behavior of the superexcited
states of H2 [23].

We note that in the basis-set quantum chemistry ap-
proach the evaluation of Rydberg states is treated by in-
corporating diffuse orbitals into the basis set. This leads
to severe linear dependence and therefore to a poor repre-
sentation of the high-lying molecular Rydberg states.
The inner-region R-matrix technique can be interpreted

0.05

0 00 I I I I

H

(b)

0.5
I

He (la ta'npa X '

1 1.5 2 2.5 3 3.5 4

internuclear distance (units of a )

4.5

0.4

0.3

FIG. 6. Imaginary part P„of the quantum defect p„ for the
npo and nfcr 'X„+ Rydberg series as a function of internuclear
distance. (a) is the npcr 'X„+ series and (b) the nfcr 'X„+ series.

0.2

0.3 I

0.2

H

1.5 2 2.5 3 3.5 4

internuclear distance (units of a )

(b)

4.5

as merely a configuration-interaction approach which
uses numerical basis functions with appreciable magni-
tudes on the R-matrix boundary. Diffuse Rydberg states
that extend beyond the R-matrix boundary are accounted
for by solving the coupled difFerential equations (for
negative-scattering energies) in the outer region. We note
that Tennyson and co-workers [27,24,53,25] and Nor-
cross and Gorczyca [57,58] have illustrated the power of
the quantum-defect and close-coupling method in

TABLE XI ~ Calculated absolute energies, in hartrees, of the
lowest-lying 'X„+ state of He2*. The energy of the a 'X„+ state
is compared with the MCSCF calculations of Sunil et al. [49],
the SA-MCSCF/SOCI calculations of Yarkony [59], and the
SOCI calculations of Konowalow and Lengsfield [60], at the in-
ternuclear separation R =2.0625ao. Our results are obtained by
performing bound-state R-matrix scattering calculations.

0.1
1 4.51.5 2 2.5 3 3.5 4

internuclear distance (units of a )

FIG. 5. Real part a„of the quantum defect p„ for the npo.

and nfo X„+ Rydberg series as a function of internuclear dis-

tance. (a) is the npcr 'X„series and (b) the nf cr 'X„+ series.

Method

R matrix
R matrix (method of Seaton)
MCSCF
SA-MCSCF/SOCI
SOCI

Energy

—5.131 26
—5.131 53
—5.13847
—5.146 25
—5.148 05
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Absolute magnitude of the quantum defect I@I for
the npo and nfcr X„+ Rydberg series as a function of principal
quantum number n. (a) is the npo. X„+ series and (b) the
nfo 'X„+ series.

evaluating Rydberg bound states of molecules such as H2,
HeH, H2, HF, and HC1

Table XI provides comparison of our bound-state re-
sults, obtained from the close-coupling method with re-
sults of quantum chemistry calculations. The results are
for the energy of the lowest-lying a X„+Hez* state at the
internuclear distance of R =2.0625ao, a value close to

FIG. 8. Autoionization widths for the npo and nfcr 'X„+
Rydberg series as a function of internuclear distance. (a) is the
npo 3X„+series and lb) the nfo 3X„+series.

that of the equilibrium geometry r, . Included in Table
XI is the result from the method of Seaton, as implement-
ed by Sarpal et al. I27], together with our previous R-
matrix result. This provides an indication of the
e6'ectiveness of this method and for the sake of complete-
ness. Where necessary, for direct comparison with other
authors, we have interpolated the appropriate potential-
energy curves. Our absolute energies from both methods
are in satisfactory agreement with the MCSCF calcula-

TABLE XII. Energies in hartrees, effective quantum number
(n*), and quantum defect (n —n*), for the He2( log lo.„ns,ndo. ,
and ngcr X„)Rydberg bound states at internuclear distance
R =1.5ao.

TABLE XIII. Energies in hartrees, effective quantum num-
ber (n *), and quantum defect (n —n *), for the
He2( lo.

g
lo.„ns, ndo. , and ng o X„+)Rydberg bound states at in-

ternuclear distance R =2.0625ao.

State

2s
3$
3do
4s
4do
Ss
Sgo.
Sd o.

6s
6go
6d o.

Energy

—5.077 462
—4.984 995
—4.973 290
—4.956 444
—4.952 125
—4.943 771
—4.942 228
—4.941 706
—4.937 035
—4.936 133
—4.935 883

1.795 066
2.823 844
3.131 163
3.826 250
4.093 893
4.824 766
5.007 926
S.074 891
5.823 552
6.010226
6.065 255

n —n*

0.204 934
0.176 156

—0.131 163
0.173 750

—0.093 893
0.175 234

—0.007 926
—0.074 891

0.176448
—0.010226
—0.065 255

State

2$
3$
3do
4s
4d o.

5$
5do
Sga
6s
6do
6go.

Energy

—5.131 533
—5.044 504
—5.037 606
—5.016617
—5.014 332
—5.004 186
—5.003 146
—5.002 919
—4.997 567
—4.997 000
—4.996 835

1.834 710
2.851 137
3.025 859
3.856 336
3.994 447
4.857 474
4.981 280
5.009 622
5.857 857
5.975 231
6.010609

0.165 290
0.148 863

—0.025 859
0.143 664
0.005 553
0.142 526
0.018 720

—0.009 622
0.142 143
0.024 769

—0.010609



1978 McLAUGHLIN, GILLAN, BURKE, AND DAHLER 47

TABLE XIV. Energies in hartrees, effective quantum num-
ber (n *), and quantum defect (n —n *), for the
He2( lo.

g 1o.„n$,ndo. , and ng o. 2„+)Rydberg bound states at in-
ternuclear distance R =2.5ao.

-4.9

6s
5s
4s

State

2$
3$
3do
4$
4d o.

5$
5do
5go.
6$
6d o.

6go.

Energy

—5.114780
—5.029 686
—5.025 957
—5.002 129
—5.001 229
—4.989 821
—4.989 482
—4.988 671
—4.983 256
—4.983 093
—4.982 596

1.850 459
2.864 751
2.956 666
3.870 958
3.924 257
4.872 540
4.912 141
5.011 203
5 ~ 873 045
5.906 453
6.011 468

n —n*

0.149 541
0.135 249
0.043 334
0.129 042
0.075 743
0.127 460
0.087 859

—0.011 203
0.126 955
0.093 547

—0.011468

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Results have been presented on low-energy elastic
scattering by electrons from He2+ molecular ions for the
X„+ symmetry. These scattering calculations have en-

abled us to calculate the energies of several low-lying
X„+ bound states of the He2* molecule at internuclear

separations in the range 1.5 —4.0ao. In addition we have
presented ab initio calculations of the resonances widths
for low-lying npo and nf o quasibound states with X„+
scattering symmetry. Our scattering results, using full CI

tions of Sunil et al. [48], the state averaged
MCSCF —second-order CI (SA-MCSCF-SOCI) calcula-
tions performed by Yarkony [59], and the second-order
configuration-interaction (SOCI) calculations of
Konowalow and Lengsfield [60].

Presented in Tables XII—XIV are the results we have
obtained for the bound states of He2 using the method
of Seaton. This information on the electronic
He&" ( 1o

g
1cr „ns, nd, and ng X„+) Rydberg states is

given for the bond lengths of 1.5, 2.0625, and 2. 5ao, to il-
lustrate the power of this quantum-defect technique.

The curves of Fig. 9 show how the energies of the
He&*(lo 1cr„ns X„+)Rydberg states vary with internu-
clear separation. The results are similar to the work of
Ginter and Batino [61]. Finally, our numerical values of
these energies for several separations are collected in
Table XV.

a5

bQ

(D

0

-5.0

-5.1

3s

2s

I i I I I I I I « i i I I I I i I I

1.5 2 2.5 3 3.5
internuclear distance (units of a )0

target-state representations obtained from the natural or-
bitals generated by MCSCF-CASSCF calculations, give
information on X„+ bound and continuum states of the
e -He2+ collision complex. We have calculated the
bound and continuum electronic states of the helium di-
mer at this level of CI approximation, whereas other
theoretical approaches tended to cater either to the
bound or continuum states of the collision complex.

As an extension to this work we intend to investigate
nuclear vibrational motion, using a nonadiabatic R-
matrix approach [53]. Other scattering symmetries also
will be studied. Future calculations are planned to em-
ploy a multistate approximation that includes other low-
lying states of the He2+ target. We also plan to carry out
ab initio studies of photoionization cross sections for
several of the low-lying excited singlet and triplet states
of the helium dimer.

ACKNOWLEDGMENTS

We thank Dr. Susan Branchett and Dr. Jonathan Ten-
nyson for helpful discussions on the evaluation of bound
states. The scattering computations were carried out on
the Cray-X-MP/EA/4P/64 MW at the Minnesota Super-
computer Center. The MCSCF-CASSCF He2+ structure
calculations were performed on the IBM 3090-600J using
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