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Symmetric double charge exchange in fast collisions of bare nuclei
with heliumlike atomic systems
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Double charge exchange in fast collisions between completely stripped projectiles and heliumlike
atomic systems is investigated by means of the correct first Born approximation. The theory is devised
beyond the usual independent-particle model. For the reason of consistency, the usual proper boundary
conditions must be reformulated when dealing with atoms or ions containing more than one electron.
Consequently an appropriate correction ought to be introduced in the perturbation potential, which con-
veniently deals with the difhculty related to the unavailability of exact two-electron bound-state wave
functions. For the purpose of illustration, numerical computations are performed for electron capture
by e particles from helium. Total cross sections are found to be in satisfactory agreement with the avail-
able experimental data from 100 to 2000 keV.

PACS number(s): 34.70.+e, 82.30.Fi

I. INTRODUCTION

Double electron capture from multielectron atoms or
ions by completely stripped projectiles has received con-
siderable attention over a long period of time from both
experimental and theoretical points of view. Most of the
measurements cover the low and intermediate incident-
energy region [1—16] [50,500] keV/amu, whereas the ex-
perimental data at higher energies are sparse [17—20] and
hence still awaiting completion. The measured total
cross sections are far from forming a fully satisfactory
data base and much further effort is required to fill in the
existing gaps. This is particularly important in view of
the relative significance of the electronic-correlation
effects. These effects are manifested through the elec-
tronic repulsion 1/r, 2, which prevents the two electrons
from coming too close to each other in space. The corre-
lations of the electrons play a marginal role in the
intermediate-energy range, but they become of consider-
able importance at low and, quite interestingly, also at
high energies.

As to the theoretical studies, they were mostly concen-
trated upon the so-called independent-particle model
(IPM) [21—35], in which the interelectron potential is
substituted by an average field introduced within various
perturbative or nonperturbative approximations. The
IPM consists of treatment of the double charge exchange
as two independent single-electron transfers. As a conse-
quence, the overall transition probability P for the total
event is given as the product P,P2 of the two individual
probabilities P, and P2 for each of the participating elec-
trons. Such an approach then completely ignores the dy-
namic correlations, as one of the causes of the transition
from the initial to the final state of the whole four-body
system. Consequently, e.g., capture of a given target elec-
tron resulting from its interaction with the other electron
in the presence of the projectile field is entirely neglected.
In other words, the inability of the IPM to account for

the dynamic correlations stems from the very definition
of total probability P, which is given only in terms of cer-
tain single-electron perturbation potentials.

In addition to the dynamic, there exist also the static
correlations, which originate from the Coulomb interac-
tion 1/r&2 between the two electrons in the heliumlike
atomic systems before the collision takes place. This kind
of correlation is reminiscent of a given isolated two-
electron atomic particle and, therefore, has nothing to do
with the scattering event, since, e.g. , a quantum-
mechanical bound state of the target is by definition
prepared in the absence of the incident beam. Strictly
speaking, a fully adequate description of the static corre-
lations for heliumlike atomic systems must explicitly in-
clude the two electronic coordinates r, 2 and directly or
indirectly the interelectronic distance r, z

= ~ri —r2~.
When this is accomplished, the resulting correlated
theory departs in a clear manner from the standard
Hartree-Fock method. As the best known representative
of the single-particle model, the Hartree-Fock self-
consistent-field procedure encompasses the so-called
sing(e-electron approximation, which provides a helium-
like orbital in terms of only one electronic coordinate.
Recall that the correlation effects are by definition re-
ferred to as the phenomena which cannot be described by
a single-particle model. A well-known example is the no-
tion of the correlation energy, which is introduced as the
difference between the "exact" and the corresponding
Hartree-Fock energy [36]. From the physical point of
view, the electron correlation is plausibly understood as
the phenomenon by which the electrons try to avoid each
other through the Coulomb repulsion 1/rj2 in order to
lower the binding energy of a given heliumlike atomic
system. For an instructive analysis of the role of the
correlation effects concerning the single and double
charge exchange in a-He collisions at low and intermedi-
ate energies, see Schaudt, Kwong, and Garcia [37].

Here the natural question emerges as to whether there
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is any reason to go beyond the above-mentioned standard
IPM or eventually to abandon it altogether. This is a
matter of principle, since it is necessary to inspect wheth-
er the IPM possibly violates certain ab initio conditions.
Such a question is then put on a qualitatively different
footing from previous judgments about the validity of the
IPM based upon empirical evidence collected merely by
checking the theory against the experimental data. The
answer to the above question cannot a priori be negative,
before we verify whether a purely three-body nature of
the IPM is justified on a theoretical basis, when dealing
with the true four body p-roblem under study. Of course,
a proper four-body treatment is a more satisfactory start-
ing point, because it offers various possibilities to incorp-
orate adequately both dynamic and static correlations.
The dynamic correlations would be included by selecting
the appropriate forms of the four-body perturbation po-
tentials, which could not be done at all in the IPM. The
static correlations of a four-body scattering theory can
also be treated in an adequate manner, because the heli-
umlike orbitals would automatically contain both elec-
tronic coordinates ri 2 together with an implicit
(configuration interaction [38]) or explicit [39] inclusion
of the interelectron distance r,2. Hence the justification
for introduction of new theories, which would preserve
the genuine four-body nature of double charge exchange
in collisions between bare nuclei and two-electron atoms
or ions.

Once the single-electron transition amplitudes are
available in any of the existing approximations, the pre-
dictions on double charge exchange can easily be ob-
tained within the IPM. In this way, Gayet, Rivarola, and
Salin [28] and more recently Deco and Griin [30] have
used the general algorithm of Belkic, Gayet, and Salin
[40] for one-electron transfer in the framework of the
continuum-distorted-wave (CDW) approximation of
Cheshire [41] to readily deduce the cross sections for
double charge exchange in a-He collisions at intermedi-
ate and high energies. The major reason for the fact that
the previous studies of two-electron transfer processes
have predominantly been concentrated upon the IPM
was the computational complexity of the proper four-
body treatment. Most researchers have limited them-
selves to analytically calculating the transition amplitude
for double charge exchange [20,28 —32), just as easily as
in the case of single-electron transitions, so that resorting
to the IPM became unavoidable.

However, it is quite clear a priori that formal theories
for single-electron transfer, built for pure three-body
problems, can be directly generalized, without any
difhculty, to double charge exchange in four-body col-
lisions. Nevertheless, it was only recently that, e.g. , the
CDW method was properly formulated and implemented
by Belkic and Mancev [42,43] to double-electron transfer
as a correct four-body theory. The CDW approximation
of Refs. [42] and [43] was devised within the well-known
distorted-wave formalism of Dodd and Csreider [44] in
such a manner that the four-body nature of the problem
is fully preserved. Such a CDW method has emerged as a
first-order approximation to Dodd and Greider's
modified perturbation expansion [44] in which all the dia-

grams are kept connected by an adequate choice of the
distorting potentials. At the same time, the new CDW
method [42,43] belongs to a class of so-called second-
order theories, which relate to the methods including the
continuum intermediate states of the two electrons in one
and/or both channels of the double-charge-exchange re-
action. Such a strict four-body CDW method of Refs.
[42] and [43] is not only theoretically more satisfactory
than all the previous IPM versions [28—31] of Cheshire's
[41] theory, but also provides excellent agreement with
the existing experimental data on two-electron capture
from He by fast protons [42,43]. Further work is re-
quired along these lines for other systems to assess the va-
lidity of the four-body CDW approximation in systematic
comparisons with the measurements on other colliding
particles. Also the actual validity of the IPM three-body
variant [28—31] of the CDW approximation should now
be established by comparisons with the four-body CDW
theory [42,43] and that certainly represents a much more
stringent test than the previous checking against the mea-
surements.

Considering the single-electron transfer problems, the
former detailed experience [45,46] confirmed that, for re-
liable predictions on total cross sections, it is not manda-
tory at all to use the second-order theories, at impact en-
ergies which are small in comparison with the range
dominated by the Thomas double scattering. In particu-
lar, it has been convincingly demonstrated [45,46] that
the first Born (CB1) approximation with the correct
boundary conditions is systematically in excellent agree-
ment with the experiment on one-electron capture from
hydrogenic and multielectron targets. It would then ap-
pear desirable to see whether an analogous conclusion
would also hold true for the two-electron capture process.
Hence the need to devise a four-body CB1 approxima-
tion. This is the subject of the present work. We shall
first formulate the CB1 theory for a general case
(heteronuclear and/or homonuclear) of two-electron cap-
ture from heliumlke systems by completely stripped pro-
jectiles. The explicit calculation of the matrix elements
will, however, presently be accomplished for the
homonuclear collisions and applied to the symmetric res-
onant double charge exchange in a-He(ls ) scattering.
Particular attention is focused upon a consistent intro-
duction of the proper asymptotic channel states, despite
the fact that the exact bound-state wave function of the
two-electron systems is unknown.

Zp+ (ZT'ei, e2 ), ~(Zr;e&, e2 )&+ZT (2.1)

The parentheses in double-charge-exchange process (2.1)
symbolize the bound states, whose quantum numbers are
given by the collective label i or f. Let us denote by R
the position vector of P relative to T. Further, the posi-
tion vectors of ei and e2 relative to P and T will, respec-

II. THEORY

We study a collision in which the nucleus P of charge
Zz is impinging upon a heliumlike atomic system consist-
ing of two electrons e, and e2 bound to the nucleus T of
charge ZT, i.e.,
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where henceforth the atomic units are used. Here 4,—f
are the entrance and exit channel states, Q,—f represent+

the Moiler wave operators, V; f denote the channel per-
turbation interactions, and W; f are certain distorting po-
tentials to be conveniently specified,

(E H; /
—W—;/)&b,*/=0, (2.3a)

tively, be represented by s, z and x, z. Thus the in-
terelectron distance r, z—= riz~ can be defined by the vec-

12 x1 X2 x12 s1 s2 s12 We also introduce r;
and rf as the position vectors of P and T relative to the
center of mass of (T,2e) and (P, 2e), respectively.

When treating a general collision, one formally begins
with the exact transition amplitude in either its standard
prior V;& or post V;& form. These two starting expres-
sions are identical to each other on the energy shell, if the
initial y; and final yf bound-state wave functions are ex-
act. Whenever the latter conditions are not fulfilled, as in
the case of reaction (2.1), we say that there is a so-called
post-prior discrepancy. In such a circumstance, one can-
not decide with certainty on a purely theoretical basis
which of the two forms, prior or post, is more physically
acceptable. It then appears reasonable to introduce a
modified transition amplitude, which would be, e.g. , an
average value [45(d)] of the quantities 7;& and V;&, such
as V;&=(7;&+7;.&)/2. Clearly, this new starting point
of the full transition amplitude '7,

& would yield the same
result as its prior or post form on the energy shell and for
the exact bound-state wave functions y;f. The first-
order T;f of such an average full transition amplitude Y;f
in the distorted-wave formalism of Belkic, Gayet, and Sa-
lin [47] reads as follows:

2T;/=(N/ IQ/t[( V; —W, )+(V/ —W/)]0,+ 4,+),
(2.2)

1
f=;f+HTp~ E f V„2P. f

HT =ET+ VT, Hp =Ep+ Vp,

ZT1 1
V — V V=—2 2

2b i 2b 2

(2.4b)

(2.4c)

T 1

XZ X1Z

(2.4d)

1 2 1

2a1 1 2az

Zp

$1

Zp +
S1Z

(2.4e)

where p;=[mp(mz. +2)]/m, @&=[mr(mz+2)]/m,
ai =mz/(mp+1), m =mp+mr+2, a&=(mz+I)/
(m~+2), b, =mr/(mr+1), bz=(mz. + I)/(mr+2),
and m~ (mr ) is the mass of the projectile (target) nu-
cleus.

Distorting potentials W; &
from (2.3c) are conveniently

written in the additive form W; f = U; f + 8' f, which is
particularly advantageous for construction of the Moiler
wave operator from (2.3b), by independent choices of the
constituent parts U;,f and W,",f. Operators
U' f —U~ f( 1 f ) are short-range potentials, which are as-
sumed, without loss of generality, to be dependent only
on the coordinates r, f. On the other hand, in addition to
the eventual appearance of short-range interactions in
8,-"f these operators must contain the Coulomb distort-
ing potentials Z (Zr 2) /r, , and Zz—(Zp 2)/r& betw—een
the two aggregates P —(T,2e) and T —(P, 2e) in the en-
trance and exit channels of the process (2.1). If the per-
turbations V, f were some short-range interactions, as in
nuclear physics, we would then put W,."f=0 from the on-
set. We shall presently make the simplest choice of the
short-range distorting potentials, i.e., U; f =0, which im-
plies 0,—+. f = 1, so that

W, f = U, f + 8"f,

ZpZT
R

Zp Zp

sz

ZpZT
Vf = ZT ZT

Q,—= 1+ U;, a~01 +
E —H,-f —8, f+iE

(2.3b)

(2.3c)

2T,/
=

& + / I ( V; —W,')+ ( V/
—W/" )

I e,+ ) . (2.5a)

Distorting potentials W;"& must be chosen from Eq. (2.3a)
by requiring that the asymptotic states 4,. f exhibit the
prescribed correct boundary conditions. In other words,
we shall determine 8' f by looking for the solutions of
Eq. (2.3a) in the following proper forms;

(2.3d)

k kE= +E, = +Ef .
2Pi 2Pf

Further, H; and Hf are the channel Hamiltonians,

(2.4a)

The initial and final bound-state wave functions will be
labeled by y; =p, (xi, xz) and tP& ——y/(si, sz) and they cor-
respond to the exact electronic binding energies E, and
Ef, respectively. Here the term "exact" refers to the
most accurate variational calculations such as those of
Pekeris [39], but if these are unavailable then the experi-
mentally determined values of E; f should be used.
Quantity E is the total energy of the four-body system,
whereas k,. and kf are the initial and final wave vectors,

f lip' fexp[+ik, i' r; i+i(; fin(k f1 f k' f 'r' f )]

(2.5b)

where g; =Z~(Zz- —2)/u;, g& =Zz (Z~ —2)/u&, and
u; &

=k, &/p, &. Before we make a particular selection of
the potentials W;f, we shall resort to the well-known
eikonal approximation (small scattering angles and
p;&))1), which is appropriate for heavy particle col-
lisions, such as reaction (2.1), for which the total cross
sections are predominantly determined by a narrow cone
near the forward direction. The error invoked by use of
this additional approximation is of the order of
max[ 1/p;, 1/p&], which is typically less than or equal to
—10 . We are then justified in employing the following
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useful linearization of the kinetic-energy operators K; f,
i.e.,

k,. f
f 2p) f

ui f (kI' f+I VI ) p fbI f )) 1 (2.6a)

By means of this expression, it immediately follows that
in the limit p;f ))1 the wave functions 4,—f satisfy the
equations

2k,-f
K] f V) f Vi f i C ) f2pi f

=[u;f (k;f+iV„)—V f]C f0',

1
i f Vi f +( VT P VT P )9 i f

i,f
(2.8b)

where VT' p are the model interactions VT p shifted
through the constant potentials VT p appearing as the en-

ergy discrepancy terms 6; f,

Here VT p represent, respectively, the selected model po-
tentials of the isolated bound systems (Z7, e„e2); and
(Zp;e, , ez)f, whereas E f are the corresponding approxi
mate electronic binding energies. Employing the
identity (E; f H—TP)Iiv;f =— [(E;f H—7 P)

(E f H7 p)]lp f +(E f H7 p)lp f= '[(E f H7 p)—(E f HT—p ) ]Ip; f, we shall have from (2.8a),

(2.6b)

where V f are the asymptotic forms of V;f as r;f~~,
VT'p= VT,p+~; f ~; f=E;f —E f (2.8c)

Zp(ZT —2) ZT(Zp —2)
f

Ti ff
(2.6c)

Utilizing energy conservation (2.4a) and applying the
operator E H; f —Wdf —from Eq. (2.3a) to the required
explicit expression (2.5b) of the wave functions @,—f, we
find with the help of Eq. (2.6b),

Interestingly, the shifting constant potentials Vp T —=6;f
are such that they render the expectation values of the
exact Hamiltonians HT p KT p+ VT p and the operators
KT p + VT p identical to each other. Namely, by defining

the exact eigenenergies E; f as the average values of the
true Hamiltonians HT p over the best known variational
bound-state wave functions y;f,V

0=(E H; f —W—; f )4,—f ( p f HTPIV ,f ~ 'if' (2.9a)

= ( V f —W;"f )4,—.f +g;+f (E; f HT p )—y; f . —(2.6d) we shall have for the normalized approximate orbitals

V'i, f ~If the bound-state wave functions for two-electron sys-
tems were known exactly, the terms g; f(E f H7 p)liv

on the right-hand side of Eq. (2.6b) would vanish identi-
cally. Since such wave functions are unavailable, the con-
tributions g;+f(E;f H7 p)lp f to th—e solutions 4,—f are
generally nonzero and, as such, should be kept in the
analysis. The distorted-wave formalism provides a con-
venient framework to deal with this term through the ap-
propriate selection of the potentials 8';"f. A choice of
these distorting potentials implied by (2.6b) is given by

PI',f I +T,P + VT, P I 'f i,f ~ ~ Pl, f I +T, P + VT, P +~I',f I Pi,f &

~&'fl f fI&f~'
(lip' f IE f+E fE'fl'p' f)''

(2.9b)

where the model eigenvalue equations from (2.8a) are uti-
lized.

Next, by consistently proceeding with the eikonal ap-
proximation, i.e., by ignoring every term smaller than or
equal to 1/iM; f and dropping out the unimportant phase
factors, the expressions for the distorted waves N,—f can
further be simplified as follows:

1
W f = V f+(E;f HT p)q, fo —=—V f+W f . (27a)

i,f

flp' fexp[+'ik; f r;f+iv, fin(vR +v R)]

Here, it is understood that the symbol (o ) requires that
any function O,=f from the domain of the definition of
operators 8,'f~ must be given in the form
0, f lp f8 f(r; f ), so'— 'that W;"f8 fV f8f'''

8 f(r; f )(H7 p E f )Ip; f . 'In particular, we have

+W f@ fV' f4 fg f (1'f)(H'7' p E f')liv ~f'~ +
Vi f~i,f (2.10a)

+ +
f fg, f(,f )+,f' (2.7b)

The overall factorizing functions g, f in o,=f preserve the
regular behavior of the operator 8"f at the eventual
nodes of the bound-state wave functions y; f. For
nonexact state vectors cp; f, the functions

ip f:(H7 p . E f )lp f are not equal to zero. Instead of
the exact Schrodinger equations, such quantities
satisfy a model eigenvalue problem of the sort,

where

Zp(Z7. —2) Z7.(Zp —2)
(2.10b)

with v being the vector of the incident velocity. In the
same mass approximations p,. f ))1, we shall have
V =Zp(Z7. 2)/R and Vf =Z7.(ZP —2)/R. The transi-—
tion amplitude (2.2a) then becomes

2T;f =
& q f I

W( V'+ Vf ) I q; & (a;f +a,.f ), (2—.11a)

(E,'f HTP)q, f = (E,'f rCT—P V,', )+,—=0.— —(2.8a) where
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7= 7f *7,+ =exp [i [Zp(ZT 2—) lu]ln( uR —v R) I exp [i [ZT(Zp —2) lu]ln( uR +v R) I exp( ik, r,. +i kf rf )

2lZp ZT /V= (pu ) exp [ 2i—[Zp /v]ln( vR v—R ) ]exp 2—i [ZT /u ]ln( uR +v R) I exp( ik, .r, +i kf rf.)

2lZT( Zp 2 ) /V
=(pu ) exp[2i[(ZT Z—p )/u]ln(uR —v R)]exp(ik; r; +ikf .rf )

(2. 1 lb)

(2.1 lc)

2Zp

R s

2/Zp( ZT 2)/V=(pv) exp[2i[(Zp —Zz. )lu]ln(vR +v.R)Iexp(ik, r, +ikf rf ),
Zp Zp 2ZT ZT ZT

s i R x i x i
f

(2.1 ld)

(2.1 le)

k; r;+kf If qp'(s~+sz)+qT (x, +xz)

with

2qp = +g —
q +v, 2qT = —g —

q v

(2.12a)

and p=R —(v R)v, p v=0, and v=v/u. Since the in-
terelectron potential 1 /r, 2 is contained in both Hamil-
tonians Hp and HT, it follows that the transition ampli-
tude (2.8a) approximately includes, to a certain extent,
the correlation effects in (ZT, e &, ez ),. and (Zp, e &, ez )f .
This is so even if the bound-state wave functions cp; f are
chosen to be completely uncorrelated, such as the
well-known one-parameter Hylleraas [48] orbital—y(r& +r2 )

(y /~)e ' ' . We emphasize, however, that con
sistency is the sole cause of the appearance of the correc-
tions y,

' f, which must also be taken into account for
highly correlated bound-state functions y; f . Namely, by
using any of the existing approximate orbitals y; f in
place of the exact ones, we immediately have that

f(HT p'E f )y; f%0, so that the correct boundary
conditions are consistently formulated for a model prob-
lem only if the nonzero terms y,'- f are taken into account.
In fact, the inequality y,

'
fWO signifies that we are treat-

ing a model problem instead of the one from which we
have started and where y,'. f =—0 by definition.

Calculation of the term k; .r, +kf -rf is very simple in
the eikonal approximation, since

observables E,'f from a given model . Thus the total cross
section for the two-electron transfer reaction (2.1) is in-
troduced by

2
R;f( ri )

Q;f(ao )=fdg (2.1 3)

Q=exP[iqT (x&+xz)+iqp (s]+sz)

ij ln(—uR +v R)],
2( Zz. —Zp )

(2.14c)

We see that the internuclear potential Zp ZT /R does not
contribute to the total cross sections, whenever the eikon-
al mass limit holds true, in precise agreement with the
well-known conclusion reached previously for single
charge exchange [47].

III. CALCULATION
OF THE MATRIX ELEMENTS

WITH THE H YLLERAAS WAVE FUNCT IONS

where

2R,p ri) =
& (pf l ~( v,'+ vf ) l (p, &

+ [%f(ri)+Sf (g)],
Xf (ri)= &qf &*lq ;'&, & f (g) &'pf ~g; &, (2 14»

Ef —E;q=u+ (2.12b)

where vector ri = ( zi cosp, oisin p, 0) stands for the usual
transverse momentum transfer. Notice that the momen-
tum transfers qp z from (2.12b) contain the "exact," i.e.,

the most accurate variational values or the best experi-
mental findings for the binding energies E; f and not the

I

We shall henceforth concentrate on the symmetric ver-
sion of reaction (2.1) obtained for Zp =Zz. in which case
$=0. Nevertheless, since cross section Q,f depends only
parametrically on g, it is convenient to put (=0 and con-
tinue considering the two labels Zp and ZT as if they
were generally unequal. In such a case, we need to calcu-
late the following matrix element for the determination of
the cross section (2.10):

Zp, ZT;g) = f f f dR dx, dxzexp[iqT'(x&+xz )+iqp (s, +sz)]

2 1
X gf (s&&sz) Zp

S )

1 +(HT E; ) y;(x„xz)—
S2

2+y;(x„xz) Zz.
1 1

X ) X 2

+(Hp Ef ) Ipf(sflsz) (3.1a)
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or equivalently

2R;~(Zp Zr rI) f f fdRdx, dxzexp[iqT (x, +xz)+iqp (s, +sz)]

X +I(sl, sz) ~ Zp
si

+ ( Vr —Vz') p;(x„xz)
$2

+g;(x„xz) ZT
2 1 1

Xi X2
+( Vp —Vp') @I(s„sz) . (3.1b)

The CB1 approximation for homonuclear double charge
exchange is obtained by specification ZP =ZT —=Z in the
final result,

R,Pv]) =R,~ '(ri) =R,QZ, Z;g) . (3.1c)

In order to perform the explicit calculations of the matrix
elements in (3.1a), and (3.1b), we shall presently choose
the bound-state wave functions y; & in the form of the
one-parameter Hylleraas orbitals [48],

y;(x„xz)=P (x, )P (xz),

0 f(sl sz) Pg(sl )ep(sz)
(3.2a)

(3.2b)

with the corresponding approximate binding energies
E = —a, E& = —P, and

1/2

Pr(r)= e r" (&=&,P),

Xy;(x„xz), (3.5a)

I„=f f fdRdx, d zxqrI

exp[iqz" (x/+xz)+iqp (s, +sz)]
X

XI2

Xg;(x),xz) (3.5b)

It„=f f fdRdxldxzp~(sl, sz)

exp['qT'(xl+ xz)+ E qp (sl+ sz) ]
X

$16

where

I„—f f f dRdx, dxzq f(slysz)

exp[iq T( x+ x)z+iq p(s, +sz)]
X

a=ZT —a, P=Zp b, a =b =—
—,', =0.3125 . (3.2c) Xp;(xl, xz) (3.5c)

VT=—
Xi X2

p p
Si S2

(3.2d)

This implies

(HT E; )y;(x„xz)—
=( Vr —VT )y;(x„xz)

The two-electron Hylleraas orbitals y, &
from (3.2a) satis-

fy the eigenvalue problem (2.8a), where the potentials
VT p are given by

J= f f f dRdx, dxzyf(sl sz)

exp[iqr (x&+xz)+iqp (s, +sz)]
X

R

Xy, (x, xz),

I. =f f fdRdx, dxz@I(s&, sz)

Xexp[iqT (x, +xz)+iqp'(sl+sz)]

Xy, (x»xz) .

(3.5d)

(3.5e)

XI2 XI

a +5, y;(x„xz),
X2

(Hp EI )+I(sl sz)

=( Vp Vp )QI(s] sz)

(3.3a) By making the transformation xl+ x2 and s&~s2 in the
integrals (3.5a), (3.5c), and (3.5e) and using the symmetry
property y;(x„xz)=y;(xz, x, ) and yf(s, sz) Ipf(sz sl)
of the Hylleraas orbitals from (3.2a), it is at once seen
that

b +kf iPf (sl sz)
S2 (3.3b)s)

Ii+I2
R;r(zl) =(Zp+Zz. )J+I,z

—(a+ZT)
2

Ki +%2 6;+Ag(b+Z )—P + I. ,2
(3.4)

$12

where the shifting constant potentials 5, & are defined in
Eq. (2.8c). This derivation allows us to write Eq. (3.1a)
in the following concise form:

Ii =I2 ——I, Ji =J2 ——J,
which yields

(3.6)

R Pri) =(Zp+ZT)J+Ilz —(a +ZT)I
6, +A~(b+Z )E+ — I. .P (3.7)

In order to carry out the integrations in (3.5a) —(3.5d), we
now employ the usual asymmetric Fourier transform
f(p) and its inverse f(r) by
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f(p)= fdre'~'f(r),

f(r)=(2') fdpe 'l"f(p) .
(3.8)

Hence we shall have

I= ,'P —N p f1p&z, (-p),
(3.14a)

Furthermore, it will prove convenient to introduce the
following auxiliary functions:

lqz- Xk

~(l)( x )

I,2= ,'a—pN p fdp&, ,(p),
J= ,'ap—Np fdp&pr(p),

(3.14b)
Xk

gp'(s„)=, Pp(s„) (1 =0, 1) .
s)c

(3.9) K = ,'apN—pfdp&p, (p),

L =aP N p fdpi'(p), (3.14c)

By first taking the inverse Fourier transform of the func-
tions gp("(s2) in the integrands of Eqs. (3.5a) —(3.5d), we
arrive at the result

fdP 4 p (P)4 p'( —p)f."'(p)f.'"(—p),

where

512 4 3a (3.15a)

(3.10a)

&=(2~) 'fdpOp"(p)yp"( p)f—'"(p)f' '( p)—

(3.10b)

L =(2~) 'fd p O p"(p)O p"( p)X—"'(p)g"'( —p) .

(3.10c)

~T (P) F (P)G (P) ~ (p)=F'(p)B "(p) (3.15b)

F'(p) =, , G'(p) =1

happ

qTa~Ta
(3.16a)

F"(p)= 1
G "(p)=

&Ipqi p

1

2 7

~Ta
(3.16b)

F (P)G (P) ~pz (p) = ~ '(p)B'(p), (3.15c)

As to the integrals (3.5b) and (3.5d), in addition to the
variable s2, we further need to introduce the Fourier
transforms of the terms 1/R and 1/x, 2,

~'(p)= +, , &(p)=F'(p)G"(p),1

(gz- happ )
(3.16c)

1=
R

X I2

1 dq
exp[ —iq (x, —s, )],

277 g

exp[ —iq (x, —x )]
1 dq

2' g

(3.11) B"(p)=2)22(q )', a; —
q 2', a),

+n n ('ql Pl 12 P2)

(3.17a)

which give

J=(2') 3 f

dpi'

p()(p)g( '( —p)JV'(p),

I, =(2m) 'f dpgp'(p) )l'r'( —p)A, (p),

where

JV(P)=, f qgp('(q —P)f( '(P —q),dq -(0i -(0]

~(p)=, f, g( '(p —q)g' '(q —p) .dq -(0) -(0)

(3.12a)

(3.12b)

(3.12c)

(3.12d)

1 1

9'(lq —qll'+pl) '( q —q2I'+02) '

(3.17b)

(3.18a)

(3.18b)

(3.18c)

+ — + 2 2
~Ta 9 Ta~Ta ~Ta ~ qT —P +

Ap Qppqrp~ vi~p= lqr —Pl +P

qT+p q2 qp p ql qi q2 =qT p .

The Fourier transforms of the auxiliary functions y'" and
gp(" from Eq. (3.9) are readily obtained as

g "'(p)=4mN lqz. +pl +a
(3.13a)

8mo, N

(Iqz-+pl +a )
X'."(P)=

Quantity 2)„„(q„p),'q2, )M2) defined by Eq. (3.17b) be-

longs to the class of the Dalitz three-denominator in-
tegrals [49]. The basic variant 2)»(ql, )M„'q2, p2) was also
considered by Lewis [50] in the most general case of arbi-
trary (real or complex) parameters )((, , and )((,2 with the
final result,

47TN p

lq, +pl'+p' '(p)=

8mPNp.
(Iq +pl'+p')'

(0)( )—
(3.13b)

1
&»(ql Pl q2 P2)

D 1 /2

B+D'i
B —D

(3.19)

where the values of the function
ln[(B +D ' )/(B D' )] are com—puted from the
diff'erence ln(B +D '

) —ln(B D' ), with each —loga-
rithm being taken at its principal branch,
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»T2+P2T1 D =& —C= —T, T2r —AA,
(3.20a)C=T, T2T,

T =r +P, T; =q; +P; (i =1,2),
P=p]+p2,

P2T1 ~

(3.20b)

(3.20c)

By carrying out these partial differentiations with respect
to parameters p, and pz, we arrive at

+12(q1 P1 'q2 P2) [01 +11('ql P1 'q2 P2)/2 ~12

&21 (ql *Pl q2 P2) =[—02'&1 1(ql P 1 q2 P2)/2 —~2'1/c) /»
and finally,

For a detailed study of a larger class of the three-
denominator Dalitz integrals including the general
momentum space hydrogenic orbitals, see the work of
Belkic [51]. The result for 2)22(q„P, ;q2, P2) is obtained
from —[1/(2P, ) ](8/BP, )2),2(q„P, ;q2, P2), where

»2(q1 P»q2 P2) = —[I/(2P2))(~/~P2)&»(q1. P1 q2 P2) .

As an intermediate expression, we also need the values of

21('ql Pl 'q2 P2) [1 /(2P1 )] (~ /i)P1 11 (ql P1 'q2 P2)

2
+11( ll Pl q2 P2)

1 I 2B —Ccos
C

(3.25)

—(a+ZT)P&z-, (p)

+ —,'(b, ;+bf )aPX(p)] . (3.26)

Let us notice that setting a =b =—0, &„:—0, and 6;f ——0
in Eq. (3.26) we could obtain a version of the CB1 ap-
proximation, which would be a direct generalization to
double charge exchange (2.1) of the same kind of theory
introduced in the one-electron capture problems [45—47].
The rationale for introduction of the additional terms in
(3.26) with a =b&0, &„%0, and b, ; fWO is to correct
such a CB1 theory for the fact that the functions
y,'f (=—[HTP E; f]q3;f ) ar—e never strictly equal to the
zero state vector for any of the existing approximate
two-electron orbitals y; I.

where formulas 1.622/3 and 1.628/2 of Gradstheyn and
Ryzhik [52] are employed. This completes the calcula-
tion of the matrix elements R,f from Eq. (3.1a), so that

8 i( ri) 2PN & Jdp[(Z +ZT)a@&&T(p)+aP& (p)

(b +—Zp)a&~, (p)

1 D'
+22(ql Pl 12 P2) 2D 2D +11(ql Pl 'q2 P2)

2gCO1+2 —h+ QP2)
Pi

(3.21)

IV. THE RESULTS
OF THE NUMERICAL COMPUTATIONS

As an illustration of the present theory, we shall per-
form the numerical computations of the total cross sec-
tions (2.13) for two-electron capture from He by a parti-
cles,

where

D'=2D(H —~') —3g, g,+,
z2 ——q21+q2, g,+=A,

, +r T;, &;=&+q; &, —

He ++He(ls )—+He(ls )+He + .

In this case, the Hylleraas parameters are
3.22a

(4.1)

(3.22b) a =p= 1.6875, E f = —2.847 656 3,
Ei f = —2.903 7244, Ai f 0.056068 1 .

(4.2a)

p (vr T, +A, , B)+err; +.HT; T&.
CO,.V p

(4.2b)(3.22c)

(3.23a)
It will prove convenient to carry out the integrations over
the variables p and ri in the spherical p=(p, 8, $) and po-
lar g=(icos/„, g sing„, O) coordinates, respectively. In
such a case, we can choose the X and Z axis of the p in-
tegral to be along the vectors g and v. This implies that
the integration over P„ is done analytically with the result
equal to 2m. . Thus the final working formula for the ob-
servable Q,f will contain a quadruple integration over
variables 21&[0, a&], p & [0, ~ ], HE [0,m], and
PH [0,2m. ]. For the innermost P integral we directly em-
ploy the extremely efficient n-order Gauss-Mehler quad-
rature routine. On the other hand, the integration over 0
is best suited for the application of the universal Gauss-
Legendre method, after passing from the variable 6 to u
by the substitution u =cosO, where u H [ —1, + 1]. As to
the remaining two semidefinite quadratures over g and p,
it would naturally be most advantageous to introduce
certain convenient changes of variables, so as to obtain

v=p, T2 p2T1, o =A—h, r, =2p1p2+T—
T2(P1T+PTI ) P142

C D
(3.23b)

ll r (2VP1 T1'i2 )+A, 172

2P1(P2x 8 +A2r1++2r T, T2)+2Po'+
P2

(3.23c)

Further, it can easily be shown that quantity D from
(3.20a) takes the equivalent values,

(3.24)D = —Q, Q=T2q, —T, q2 .

Using this result, the following convenient expression can
be given for the basic Dalitz-Lewis integral (3.19) in the
case of the real parameters p& and p2, such as in Eq.
(3.17a):
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the integrals with finite lower and upper limits. In the
case of the outermost g integral, we already have a guide
for such a variable change, which stems from the fact
that the total cross sections are dominated by the forward
scattering. An inspection of the transverse momentum
transfer g would show that the required substitution is
supplied by the relation [45(d)]

1/22+2''
(4.3)

1 —g'

where the variable g' belongs to the interval [ —1, +1].
For simplicity, we shall adopt the same kind of change
for the variable p by writing

' 1/2
2+ 2pp= (4.4)

with p'C [ —1, +1]. Consequently, we can also employ
the variable-order Gauss-Legendre quadrature for in-
tegrations over g' and p'. The integrand in (2.13) is
smooth in the new variables, so that a moderate size of
the quadrature points over all the four axes suffices to
provide excellent convergence of the results to within at
least two accurate decimal places. Notice that the new
variables g' and p' from Eqs. (4.3) and (4.4) are obviously
of such a nature that it is necessary to investigate the reg-
ularity of the integrand in (2.13) at g'=1 and p'=1.
However, there is no problem in this regard, since it can
be shown that the function ~R I(g) ~

scales according to

dip vgiR Pvg)i2

computations of the total cross sections obtained with

y,'. &
=—0 and y,'. IAO in the CB1 approximations for dou-

ble charge exchange (4.1) are displayed in Fig. 1 at im-
pact energies ranging from 100 to 2000 keV. The present
theory is found to be in satisfactory agreement with the
available measurements. At lower incident energies, the
results relating to the case y'+0 are smaller than the
corresponding data computed with y,'f =0 and the pat-
tern is precisely reverse at higher energies. This trend in-
dicates the relative importance of the correlation effects
in the symmetric double charge exchange (4.1). Notice
that a similar pattern at lower and high energies has pre-
viously been found [20,30,53] in the case of single and
double charge exchange in collisions between bare nuclei
and multielectron target atoms, by using the correlated
configuration-interaction orbitals, but without the correc-
tions y; f.

—15
10

—16
10

-17
10

= f dg'(1 —g')'

f dp' f du f dp(1 —p') i R,I

E
LJ

C5

—18
10

(4.5)

where R f is a regular function everywhere along the four
integration axes including the points g'=1 and p'=1.
The explicit form of real function R,'f will not be given
here, since it can readily be identified from Sec. II by us-
ing the result (3.25) for the Dalitz integral 2)». Of
course, in the actual computations, we use the expression
of the type (4.5). It should be noticed that there is no
post-prior discrepancy in the CB1 approximation for re-
action (4.1), so that

—19
10

—20
10

100 200 300
I

500 700 1000 2000

Tif Tif Tif (4.6) EfkeV)

The present algorithm performs the computation of
the total cross sections with and without the corrective
terms (p,

'.
&

=—(Hr p E y )p; &. Hence any numerical
difference found between the results for y,'I—=0 and y,'+0
would be a direct measure of the significance of the corre-
lation effects which are present in the former and absent
in the latter case. The terms in question would provide
an assessment of the relative importance of the correla-
tion effects for the process under investigation since the
Hamiltonians HT~ contain the interelectron potential
1/rI2, independent of any particular form of the initial
and final bound-state orbitals y; f. The results of the

FIG. 1. Total cross section for the double-charge-exchange
reaction He + + He —+ He+ He +. The displayed theoretical
results relate only to the symmetric resonant case 1s ~1s and
originate from the present correct first Born (CB1) approxima-
tion employing the completely uncorrelated Hylleraas orbitals.
The dashed curve corresponds to the case without the dynamic
correlations (perturbation operator potentials 8"~ neglected),
whereas the full curve represents the results obtained with in-
clusion of the dynamic correlations (8 & retained; see text).
Experimental data: o, Berkner et al. (Ref. [1]);,McDaniel
et al. (Ref. [17]);~, Pivovar, Novikov, and Tubaev (Ref. [12]);
and V, DuBois (Ref. [8]).
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V. DISCUSSION

We have studied double charge exchange in fast col-
lisions of bare nuclei of charge Zz with the heliumlike
atomic systems of the target nuclear charge Z~, such as
Zp+(Zr, 'e„e2).~(Zp'e„e2)&+Zz. . The first Born ap-
proximation with the correct boundary conditions is for-
mulated beyond the customary procedure. Namely,
while solving the boundary-condition problem
(H fW'f E )4,—&

=0, for the asymptotic states
with given channel Hamiltonians H;f, it is always as-
sumed that the corresponding eigenvalue equations

=(Hz—„E;&)—y; &=0 for the bound-state wave func-
tions y; f are automatically satisfied. In other words, the
functions y,'f coincide with the zero state vector by
definition. One subsequently concentrates on the possible
choices of the distorting potentials W, f which must yield
the state vectors N,

+—f with the prescribed proper asymp-
totic behaviors at infinitely large interaggregate separa-
tions in the entrance and exit channels. At present, how-
ever, the exact bound-state wave functions y; f are un-
known for the two-electron atomic systems, which im-
plies that y,

'
&%0 for any of the existing heliumlike orbit-

als y;f utilized in the computations. Hence a consistent
attainment of the asymptotically correct scattering wave
functions for two-electron atomic systems requires that
the following two conditions are satisfied.

(i) The unperturbed channel state N; & must be distort-
ed whenever there are certain remaining Coulomb in-
teractions of the type V;(R) =Zp(Zz. —2)/R and
V;(R) =Zz-(Z~ —2)/R between the two scattering parti-
cles at their infinite mutual separation R. This
is accomplished by requiring that the distorting poten-
tial W;f contain the long-range interactions V;f, which
introduce the appropriate logarithmic Coulomb
phase factors y; = [Zz(Zz —2)/u]ln(uR —v.R) and
y&= [Zz.(ZP —2)/u]ln(uR +v.R) into the wave func-

tions 4;f thusyielding C;+f=e;fe "'.
(ii) The unperturbed asymptotic states 4; & ought to be

given by the products y;&exp(+ik; & r;&) of the two-
electron bound-state wave functions y, f and the plane
waves exp( ik;& r;&) describing the relative motion of
the scattering particles. In the eikonal approximation,
various choices for the distorting potentials 8;.f from
the above defining equation (H, &

—W; & E)4,+—

&
. =0 can-

be made, which could all lead to the asymptotically
correct channel states 4,+—&=@,&exp(+ik;& r; &+iy;/)

fg;-+,f. However, each of the particular selection of
the quantity 8'"f4;f must contain the terms
g flp f —g f(Hr ~ E; & )y; &

'as an'u—navoidable part of
the application of the operator H, f —W,"f—E to the
asymptotic wave function 4';+f

The present additional terms g,
—fy,'f in the resulting

transition amplitudes T,f do not alter the explicit forms of
the asymptotic configurations @,—f, but through the dis-
torting potentials W,-"f merely compensate for the lack of
knowledge of the exact bound-state wave functions y; f.
With this important information included, the correct
boundary conditions can be consistently formulated for a

model problem, despite the unavailability of the exact
wave functions y;f. Moreover, even if the bound-state
wave functions y; f are completely uncorrelated such as—y(r +r )
the Hylleraas orbitals [48] of the type (y /m)e
the transition amplitudes will still approximately incorp-
orate the electron-correlation effects through the terms
W;f"e;+f =g;-+,ff,',f. For the purpose of illustration, the
present computation was limited to the uncorrelated Hyl-
leraas [48] bound-state wave functions, but we could also
employ highly correlated configuration-interactions or-
bitals [38]. In these latter orbitals, a high degree of angu-
lar and radial correlation effects is achieved by using a
linear combination of a large number ( —100) of the
products the Slater-type orbitals (STO's) for each of the
electrons. The price of avoiding the explicit appearance
of the interelectron coordinate r&2 in these wave func-
tions is paid by the need to include many STO's. It
should, however, be remarked that these wave functions
originate from the studies of bound-state problems in
which the main goal consists in obtaining the precise
binding energies E; f, through the diagonalization of the
exact two-electron Hamiltonians of the type Hz-z in the
basis span by the STO's. However, there is no a priori
physical argument which would guarantee that these
many-parameter wave functions are also best suited for
the purpose of scattering problems. Furthermore, use of
these orbitals in, e.g. , the four-body CDW method [42,43]
would be considerably computer-time consuming, since
too many matrix elements (-4X10 ) need to be evalu-
ated for a tremendous number of times for each point of
the four nested integrations. We presently propose an op-
posite procedure by employing the simplest Hylleraas
decoupled wave functions y; f and additionally including
the correlation effects through the potential I/r, z, which
is present in the transition amplitudes T,f as a part of the
perturbation potentials, namely the correction terms yf.
The results obtained exhibit a familiar trend in which the
correlation effects respectively decrease or increase the
total cross sections depending on whether we are dealing
with the lower or higher incident energies. The same pat-
tern is observed through the use of the wave functions
with a high degree of the static but without dynamic
correlations, while studying single [53] as well as double
charge exchange [20,30]. Of course, one could improve
the proposed version of the CB1 theory by using the sim-
ple but correlated orbitals (ls, ls') or (ls, 2p) of Eckart-
Silverman [54] with two or three parameters, as a better
input for the bound-state wave functions y; f. In any
case, the presently implemented variant employing the
Hylleraas orbitals together with the corrections y,'. f ap-
pears to be very useful, at least as a first guess in obtain-
ing an estimate about the relative importance of electron-
ic correlations. After having this quick estimate, one can
then decide whether it is worthwhile to perform exhaus-
tive computations with highly correlated wave functions
y; f, but still keeping the eigenproblem-type corrections

The usefulness of this procedure could also be
checked in other approximations for single and double
charge exchange from heliumlike atomic systems. Thus
we have verified that in the continuum-distorted-wave ap-
proximation of Cheshire [41] for single-electron capture
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from H and He by fast protons, the present input with
the Hylleraas orbitals and the corrective terms y,'. f pro-
vide quantitatively very similar results to those obtained
by Banyard and Szuster [53] with the highly correlated
multiparameter two-electron wave functions in the
configuration-interaction representation.

VI. CONCLUSION

We investigate the problem of double charge exchange
in fast collisions of completely stripped projectiles and
heliumlike atomic systems. An alternative version of the
first Born approximation with the correct boundary con-
ditions is formulated by an ab initio introduction of the
perturbation operator potentials W;'f" =(HT p E f)g.
o [ I/y, .f ], which take proper care of the fact that the ex-
act bound-state two-electron wave functions y; f are un-
known. Here the symbol o indicates that all the func-
tions from the domain of the definition of operators W,'f"

must contain the factored orbitals y; f. As an important
consequence of the introduction of this novel correction
WPf, the interelectron repulsion I/r, 2 always appears in
the transition amplitude as a part of the whole perturba-
tion potential for any of the available approximate two-
electron orbitals. An illustrative computation with and
without the correction term S;.f for the two-electron

bound-state eigenvalue problems is carried out on the
symmetric resonant two-electron transfer in collisions be-
tween fast a particles and He( is ). This is a prototype of
a larger class of processes which directly participate in
determining the transport characteristics of double
charged particles and represent one of the primordial fac-
tors of the energy balance in the high-temperature ther-
monuclear fusion plasmas. The proposed CB1 method,
exemplified with the uncoupled Hylleraas one-parameter
bound-state orbitals, predicts the total cross sections
which agree favorably with the experimental data at im-
pact energies ranging from 100 keV to 2 MeV. We have
found that cross sections with the correction W,'fr' are, re-
spectively, decreased or increased in comparison to the
theoretical results without the contribution W, fp, depend-
ing upon whether we are considering the lower or higher
impact energies.
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