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Theory of laser-induced associative ionization of ultracold Na
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The rate coefficient for the laser-induced associative-ionization reaction of ultracold Na in an optical
trap is calculated as a function of the trap laser detuning from the Na( SI&&,F =2)~Na( P3&2, F =3)
resonance. Aided by a knowledge of the excited-state potential-energy curves and of the nature of the
free-atom optical-pumping process, we propose the following mechanism, which we call photoassocia-

tive ionization (PAI): 2Na( X„+)~Na2 (Og and lg )~Na& *(1„)—+Na&++ e . Maxima in the calculated
PAI rate coefficient occur at detunings that are simultaneously one-photon resonant with bound levels of
the long-range 0~ state and two-photon resonant with the lower rotational levels of a vibrational level ly-

ing 9 GHz below the dissociation threshold of the autoionizing 1„state. The calculated PAI spectrum
(PAI rate coefficient versus trap-laser detuning) displays a series of broad peaks between —0.5 and —4
GHz detuning and a cutoff at —5 GHz detuning, as does the experimentally measured spectrum of Lett
et al. [Phys. Rev. Lett. 67, 2139 (1991)]. The broad widths of the peaks in the PAI spectrum is due in
part to the orientation averaging of the collision vector with respect to the electric-field vector and to the
optical pumping of the Na2~Na~ rovibronic transition. The calculated PAI rate coefficient at —0.6
GHz detuning is a factor of 4 higher than the experimental value. Fine-structure-changing transitions
play a role in the doubly excited states, because of the 1„avoided crossing, but not in the intermediate
states, because they have gerade symmetry and the only states that have been shown to undergo fine-

structure-changing transitions with large probability have ungerade symmetry. Several predictions
based on the proposed model and suggestions for future experiments are discussed.

PACS number(s): 34.50.Fa, 34.50.Rk, 32.80.Pj

I. INTRODUCTION

Currently, there is much interest in using laser light
forces to cool and trap neutral atoms [1]. These studies
are motivated by a desire to improve time and frequency
standards [2] and to study the collision dynamics of ul-
tracold (T(1 mK) atoms [3—13]. Collisional loss pro-
cesses limit the length of time an individual atom spends
in the trap, and as a result, limit the density of trapped
atoms. Also, collisions may shift and broaden optical
transitions of importance in time and frequency stan-
dards [14]. Several important features of ultracold col-
lisions include a small velocity spread and long collisional
times, both of which should improve the ability to per-
form high-resolution studies of free-bound transitions,
e.g., photoassociation [15]. Indeed, the laser-induced
associative-ionization (AI) reaction of Na,
2Na+ 2Aco —+Na2+ +e, at ultracold temperatures, is
both a trap loss process and an example of photoassocia-
tion.

Recently, Lett et al. [16] measured the rate of ul-
tracold Na AI in a hybrid optical trap [17]. Their trap
employed a rapid alternation between a low-intensity,
optical-molasses cooling phase, which utilized Doppler
and polarization gradient cooling, and a high-intensity,
double-focus trapping phase, which utilized the dipole
force. In this manner they were able to cool Na atoms to
approximately 0.75 mK at a density of 10' to 10" cm
and ion count rates of up to 1 kHz were measured. A
large difference in the AI rate coeKcient between the
trapping and cooling phases, which has been explained by
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in which two Na atoms are resonantly excited at large
separations and then collide in a doubly excited electron-
ic state, at small separation ejecting an electron to form
Na2+. At normal temperatures the rate coefficient (but
not the rate) is insensitive to the laser frequency and in-
tensity because the role of the laser is to provide reac-
tants, i.e., Na(3P) atoms. However, the normal tempera-
ture mechanism does not work at ultracold temperatures
because the radiative lifetime of Na(3P) (16 ns) is much
shorter than the collision time. This suggests that the
mechanism at ultracold temperature involves sequential
excitation at smaller interatomic separations [11,18], and
this causes the rate coe%cient to be very sensitive to the
laser frequency and intensity. We will call the ultracold
process photoassociative ionization (PAI) to distinguish it
from the high-temperature process.

Shown in Fig. 1 is the experimentally observed [16]
trapping phase Naz+ signal as a function of the laser de-
tuning to the red of the Na(3 S,rz, F =2)
~Na(3 P3&2,F=3) transition. This type of measure-
ment is an example of photoassociation spectroscopy
[15],i.e., measuring the rate of molecular formation from
fragments as a function of the laser frequency, and we
refer to Fig. 1 as a PAI spectrum. The ion signal cuts off
at about —0.S GHz detuning because the dipole force at
shorter wavelengths is too weak to trap the atoms. At
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Julienne and Heather [18], is inconsistent with the Na AI
mechanism at normal temperatures,

2N a( 3S) +2trico ~2Na( 3P )~Na2+ +e
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FIG. 1. The experimental Na2+ signal vs trap laser detuning
(from Ref. [16]).

detunings beyond about —5 GHz, however, the loss of
ion signal is not due to the loss of the trap because
Auorescence is still observed. Resonance features ob-
served in the ion signal but not in the excited state
fluorescence are particularly interesting.

In this paper we investigate the origin of these reso-
nance features by using close-coupling quantal scattering
theory to calculate the PAI rate coefficient, as a function
of laser detuning, under conditions similar to those in the
trapping phase of the hybrid optical trap of Lett et al.
[16]. Because an exact theoretical description of ul-
tracold Na PAI is an untractable problem at this time, we
make simplifications to the exact description, which we
attempt to justify on physical grounds. These approxi-
mations are made both to reduce the computational effort
needed to calculate the PAI spectrum and because of a
lack of accurate doubly excited state potentials and their
couplings to the molecular ion state.

We begin by restricting our model to a small subset of
the ground (labeled Naz), intermediate (labeled Na2), and
doubly excited (labeled Na2*) molecular electronic states,
which correlate at large separation to Na(3S)+Na(3S),
Na(3S)+Na(3P), and Na(3P)+Na(3P), respectively. We
make an effort to accurately treat the long-range part of
the collision, where photon absorption occurs, rather
than the short-range part where the doubly excited states
autoionize to form Na2+. the autoionization step is
simulated by coupling the doubly excited states to
artificial channels, and the AI rate coefficient is expressed
in terms of the transition probabilities from the ground-
state entrance channels to the artificial channels. Our
choice of the coupling strength between the doubly excit-
ed states and the artificial channels is influenced by the
theoretical work of Dulieu, Giusti-Suzor, and Masnou-
Seeuws [19],as well as the results of high-temperature ex-
periments [20—22].

Further approximations are needed to simplify the
theory of ultracold atomic collisions in a laser field. A
number of authors have described how excited-state
spontaneous emission can play a very important role dur-
ing the long time scale of an ultracold excited state col-
lision [4—9,11—13]. A proper treatment of such collisions
requires solving the Liouville equation of motion for the
quantum density matrix [10,13,23] instead of the
Schrodinger equation for the wave function. In fact, this
must be done to describe PAI in the optical molasses
phase of the National Institute of Standards and Technol-
ogy hybrid trap, where the detuning from the atomic res-

onance is on the order of a natural linewidth, and the
atoms are excited while they are very far apart. Band
and Julienne have applied their optical Bloch equation
methodology [23] to explain PAI for the small detuning
case in optical molasses and cold atomic beams, but this
work is planned to be described in a separate publication.
The present paper concentrates on describing PAI during
the trapping phase, where the trapping laser is detuned
by more than 50 natural linewidths and the Rabi frequen-
cy is on the order of 100 natural linewidths. In this case,
excited-state spontaneous decay can be ignored, and we
assume that a Schrodinger equation wave-function
description using a conservative Hamiltonian is adequate.
This is justified because the atoms are excited when they
are close enough together that they ionize before decay-
ing. The vibrational spacing is very large compared to
the natural linewidth, and the widths of the bound-state
resonances are dominated by stimulated emission and au-
toionization, not by radiative decay.

Another set of approximations relate to how we de-
scribe the full three-dimensional aspects of the problem.
First, we investigate the accuracy of predynamically
averaging the orientation dependence of the molecule-
field interaction in order to remove the dependence of the
PAI probability on the projection of the total angular
momentum on the space fixed z axis. Summing over pro-
jections results in an orientation averaging which
broadens the PAI spectrum. Second, we eliminate from
the coupling scattering equations rotational branching
due to the optical pumping of the Na2~Na2 rovibronic
transition, which also broadens the PAI spectrum. We
simulate broadening due to orientation averaging and op-
tical pumping by convolving the calculated PAI spec-
trum with a narrow Lorentzian. Third, we develop a
model based on AJ=O rather than AJ=O, +1 selection
rules, where J is the total angular momentum quantum
number, in order to further reduce the dimensionality of
the coupled equations. This approximation is motivated
by the fact that the optical transitions occur at large sep-
aration where the rotational spacings are small. And
fourth, we neglect hyperfine, Coriolis, and other
rotational-electronic interactions, but not the spin-orbit
interaction. The motivation for making these approxima-
tions is to develop a simple but accurate model for inves-
tigating the sensitivity of the PAI spectrum to the un-
known parameters of the calculation —particularly those
associated with the doubly excited states and the autoion-
ization step.

Although the rate coefficient for PAI under strong-field
conditions has been calculated by Gallagher using a semi-
classical method [11],no resonance structure was found
because no molecular bound states were included in his
model. In addition, we feel that his model significantly
overestimates the role of the intermediate-state fine-
structure-changing transitions in diverting Aux from the
pathway leading to AI.

II. THEORY

The long time and distance scales associated with ul-
tracold collisions complicates the theoretical description.
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As was mentioned in the Introduction, if the detuning is
sufficiently large, as it is during the trapping phase of the
optical trap, then excitation occurs at short enough sepa-
ration that the duration of the collision while the mole-
cule is in the excited state is much shorter than the natu-
ral lifetime and spontaneous emission can be neglected.
In this case the role of the long-range optical pumping
and spontaneous emission is to prepare steady-state pop-
ulations of field dressed states [24], and one can describe
the collision of atoms in these field dressed states using
regular scattering theory with a conservative Hamiltoni-
an. In the close-coupling method, which will now be de-
scribed, one solves coupled equations to obtained quanti-
ties such as the T matrix whose elements are used to cal-
culate the cross section or rare coefficient. 0=H,)+ V, , + T~ +H„,+H„d+ V„d, (2)

and integrating over all degrees of freedom other than the
internuclear separation R. This results in a coupled
second-order difFerential equation, which is a function of
R, that is numerically solved to yield a T matrix, whose
elements are labeled by the asymptotic channels. The
PAI rate coefficient is calculated by performing the ap-
propriate sum of the square moduli of the T matrix ele-
ments for transitions from the entrance channels to the
artificial channels which simulate autoionization. This
procedure is repeated for each detuning to obtain the
PAI spectrum.

The Hamiltonian describing the collision of two atoms
in a 1aser field consists of the following terms:

A. Coupled scattering equations

We now derive the coupling scattering equations
describing the collision of two Na atoms in a laser field.
This involves expanding the total wave function in
molecule-plus-Geld basis functions and scattering wave
functions, substituting this wave function into the time-
independent Schrodinger equation, left multiplying the
Schrodinger equation by the individual basis functions,

I

where H, &
is the electronic Hamiltonian, V, , is the

spin-orbit interaction, Tz is the radial kinetic-energy
operator of the nuclei, H„, is the kinetic-energy operator
of the rotating molecule, H„d is the Hamiltonian of the
laser field, and V„d is the molecule-field interaction.
These terms will be described in more detail later.

We begin by expanding the total wave function in
terms of molecule-plus-field basis functions of the form

yo(J, MS, IAI, I&l, I&I,a, n ) =[(2J+I)&&~l'"[+.&(S,A, &,&,a)DMn++, )(S, —A, —&, —&,a)DM*, o]I«~,e+i &

4, (E)=+go(j )F,(R,E)iR, (5)

if AWO or XWO, or

$(0JM, S, O, OO, an)
= [(2J+ I ) 14ir]'~ Q,i(S,0,0,0, a)DM 0 ~

n fico, e+, )

(4)

if A=O, X=O, and A=A+X=O, where +,i(S, A, X,Q, a)
are Hund's case (a) Born-Oppenheimer electronic wave
functions [25], DM ri are the Wigner rotation matrices,
and ~niece, e+, ) are photon number states with n photons
of energy Ace and o.+ polarization e+, . The basis func-
tions are labeled by the total electronic spin S, its projec-
tion on the molecular axis X (all projections are in units
of R), the projection of the electronic orbital angular
momentum on the molecular axis A, the total angular
momentum (neglecting nuclear spin) J, and its projection
on the space fixed z axis M and molecular axis Q. n is a
collection of labels such as the inversion symmetry (g or
u), the reliection symmetry (+ or —,A=O states only),
or any other labels needed to distinguish states that have
all the other labels in common. Note that it is important
to use basis functions of definite parity —such as those in
Eqs. (3) and (4)—when studying collisions between iden-
tical particles.

The wave function 4, (E) corresponding .to the ith in-
dependent solution of the scattering equations at total en-
ergy E is expressed as a sum of products of the basis func-
tions in Eqs. (3) and (4) and the to-be-determined scatter-
ing wave functions F ;(R,E), i.e., .

I

where i and j are collective indices for diQ'erent values of
J, M, S, A, X, Q, o., n, and parity. Spontaneous emission
is omitted by including in the wave-function expansion
only photon states corresponding to stimulated processes.

Upon substituting +;(E) into the time-independent
Schrodinger equation, left multiplying by $0(i), and in-
tegrating over all coordinates other than R one obtains
the coupled scattering equations:

(E H, , )F,, (R,E)—=gH qF&, (R,E) .
J

How one obtains the PAI spectrum from the solution of
Eq. (6) will be discussed in Sec. IV.

B. Molecular electronic states

In order to calculate the H~=(g, (i)~H~Q, (j)) matrix
elements in Eq. (6) one needs Hund's case (a) electronic
wave functions %„(S,A, X,Q, a), valid when H, i » V. . .
corresponding to the electronic states that correlate at
large separation to Na(3S) +Na(3S), Na(3S) +Na(3P), and
Na(3P)+Na(3P). The calculation of molecular electronic
wave functions —especially excited-state electronic wave
functions —is a difficult task. However, we are aided by
the fact that because the trap laser detuning 5 is small
(~b,

~

& 5 GHz), photon absorption occurs at large separa-
tion (R & 50ao) where there is negligible overlap of the
electron charge distributions of each atom. At large sep-
arations the electronic wave functions can be expressed as
properly symmetrized combinations of Na 3S and 3P or-



1890 ROBERT W. HEATHER AND PAUL S. JULIENNE

bital wave functions and electronic-spin wave functions.
The long-range potentials can then be calculated using
these wave functions and the multipolar expansion of the
Coulomb interaction: states that correlate to
Na(3S)+Na(3S) interact by a R van der Waals interac-
tion, states that correlate to Na(3S)+Na(3P) interact by a
long-range R resonant dipole-dipole interaction, and
states that correlate to Na(3P)+Na(3P) interact by a R
quadrupole-quadrupole interaction. A knowledge of the
long-range electronic wave functions also allows one to
calculate the off diagonal couplings in Eq. (6) due to H„„
V... and Vrad.

Ground states

for the 'X+ state and

+ ('&')=(2) '"[S"(1)S'(2)

S A(2)SB(1 )]3+

for the 2„+ state, where, for example, S "(1) denotes a
Na 3S orbital wave function centered on atom A, which
is a function of the coordinates of (3S) electron 1. The
singlet electronic spin wave function is

'y, ,=(2)-'"(~m, = —
—,', m, ——

—,'&

—m, =
—,', m, = —

—,
' (9)

and the triplet electronic spin wave functions are

Two ground-state (3 S ) Na atoms can collide in either
a 'X+ or a X„+ molecular electronic state, where the
term symbol X denotes that A=O, where A is the projec-
tion of the electronic orbital angular momentum on the
molecular axis, the superscripts 1 and 3 indicate the total
electronic spin multiplicity 2S+1, with spin quantum
number S=s, +s2 =0 or 1, the subscripts g and u indi-
cate that the wave function has even (gerade) or odd
(ungerade) inversion symmetry, and superscript + indi-
cates that the wave function has even reAection symmetry
in a plane containing the nuclei (A=O states only). The
long-range electronic wave functions can be expressed as

,( X )=(2) ~ [S (1)S (2)+S (2)S (1)] yx —0

have been calculated at short range by Konowalow,
Rosenkranz, and Olson [26], and by Jeung [27], and
behave at long range as C6/R .

2. Intermediate states

+c,c2S (2)PA" (I)] (13)

where, for example, PA(1) represents a Na 3P orbital
wave function on atom 8, which is a function of the coor-
dinates of electron 1, with a projection of the orbital an-
gular momentum on the molecular axis A=0, +1. In Eq.
(13), A =0 for X states and +1 for II states, c

~

= +1 for
singlets (S =0) and —1 for triplets (S =1), and cz =+1
for ungerade states and —1 for gerade states. The short-
range potentials for these states have also been calculated
by Konowalow, Rosenkrantz, and Olson [26] and by
Jeung [27], and experimentally determined RKR poten-
tials exist for the 'X„+ and 'II„states [29,30].

The long-range interaction is a resonant dipole-dipole
interaction,

Vd =e [(r&.r2) —3(r& z)(r2. z)]/R (14)

where e is the electron charge, r, and rz are the position
vectors of electrons 1 and 2, and z is a unit vector along
the molecular axis. The long-range potentials can be
determined using Eq. (13) and the following relation [28]:

V~(R)=(S (l)P~(2)~ Vd ~S (2)PA(1) &

d /R if A=+1
—2d /R if A=O

where d=e(S(1)~r&~PO(1)& is the transition dipole for
the 3S~3P transition, and the intermediate state poten-
tials are

Eight Hund's case (a) electronic states labeled by the
term symbols 'X+, X+, 'II, H, 'X„+, X„+, 'll„, and
'II„correlate at long range to Na(3S)+Na(3P), where II
denotes states with A=+1. The long-range wave func-
tions for these states are of the form [28]

4„=—,'[S"(1)P~(2)+c,S"(2)P„(1)+c2S (1)PA (2)

, =~m, =
—,', m, =

—,
' &, (10) V, ,(R)=c,c, V, (R) . (16)

yx —0=(2) (~m =
—,', m

I
2P s

+~m, = —,', m = ——'&)

and

Xg= —]
—

imp
— —

2r m
1 2

(12)

where m, and m, are the projections of the spin angular
I 2

momentum of electrons 1 and 2 on the molecular axis,
and 2=m, +m, . The molecular potentials

3. Doubly excited states

Twelve Hund's case (a) electronic states labeled by the

'Xg+(oo ), X„+(oo ), 'X+(mm), and X„+(crier) correlate at
large separation to Na(3P)+Na(3P), where b, denotes
states with A=+2, the superscript —indicates that the
wave function has odd symmetry with respect to
reAection in a plane containing the nuclei, and o.a. and
m~ are used to differentiate states of o. or ~ orbital char-
acter, but with the same term symbols. The long-range
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TABLE I. Hund's case (a) long-range electronic wave functions of the doubly excited state.

Term
symbol

lg
3Q

H„
'rr„
Hgly-

3g
g

'x+(~~)
X„+(O.o. )

'Xg+(mm)

X„(~m)

Wave functions

W„(A=2)='6, , /+2, +„(A=—2)='6, , /&2
4'„{A=2)= 6, , /+2, %'„(A= —2)= 6, , /&2
%,)(A=1)=('6', , +'e, .)/2, 'II'„(A= —1)='('6, , +'6 „)/2

~(A= 1)=( 6p &+ 6& p)/2 4 ](A= 1)=( 6 + 6 )/2
%'„(A=1)=('6,—'6, )/2, 4'„(A= —1)=('6,—'6, )/2
~„(A=1)=('6,', —'6, ', )/2, e„(A=—1)=('6,',—'6, ', )/2
+,~(A =0)=('6~

~
—'6, , )/2

e „(A=0)=('6,',—'6, ', )/2
~„(A=0)='6„/v'Z
e„(A=0)='6,', /v'Z

P,i( A =0)= ( '6, , + '6, , ) /2
'4I,)(A=O) =('6, )+ 6, , )/2

wave functions [31], listed in Table I, are expressed in
terms of the functions

'B~ (X=O)=[P~ (1)P (2)+P"(2)P (1)] 'y

(17)

& e„iv„(A,a)i)'8, , , &

=25~ p[ [ Q2(p„)Q2 (ps )+Q2 (pa )Qz (pa ) I /24

2I Q2(PA )Q2 (PB )+Qz '(p~ )Q2(pB ) I /3

+~Qz(p~ )Qz(pa)] (20)

8& r(X)—= [Pz (1)Pr(2)—Pz (2)P&(l)] gz o+, , (18)

where A=A, +y.
The wave functions of Table I can be used to calculate

the electrostatic quadrupole-quadrupole interaction ener-

gy between two Na (3 P) atoms, valid at long range, for
the different molecular states. The diagonal interaction
energy is

V, +,(Z) = (e„~H„~+„)
=(+,)l V2, ( A, B)l'p)/R'—=C, /R', (19)

where p„=P& (1)*P&(1) and pz =Pz, (2)*P,(2) are the
charge distributions of atoms A and B, and the quadru-
pole moment tensor elements [31] Qz are listed in Table
II, where (r ) =39.0ao is the expectation value of the
square of the Na 3P electronic coordinate [32]. The C5
coeKcients for the states correlating to 3P+3P are listed
in Table III as are the C6 coe%cients of the van der
Waals interaction calculated by Geltman [33]. In addi-
tion, the short-range potentials, which are very di%cult
to calculate accurately due to the high density of elec-
tronic states, have been calculated by Henriet and
Masnou-Seeuws [34].

where V~2(A, B) is the quadrupole-quadrupole term of
the multipolar expansion of the electrostatic interaction
between the 3P electrons on atoms A and B. Equation
(19) can be evaluated with the aid of the following expres-
sion [31]:

C. Spin-orbit interaction
and Hund's case (a) to case (c) transformation

The theoretical analysis of the preceding subsection
was concerned with calculating long-range wave func-
tions and potentials which were eigenfunctions and eigen-

TABLE II. Quadrupole tensor elements from Ref. [31].

p*p
P&P& or
P IP 1

Pop, or
P*,Pp
P,*Pp or
Pop-i
P* (PI
POP

Q2(p)

12(r )/30
—6(r )/30

Q2(p)

I V8/2(r )/30

Q2 '(p)

18/&2( r') /30

Q2(p)

0
72(r )/30

Q2 '(p)

72(r ) /30
0
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TABLE III. C5 and C6 coefficients of the doubly excited
states. Asterisk denotes from Ref. [33].

State C5 (a.u. )

365
365

—1460
—1460

0
0
0
0

1460
1460
730
730

C, (a.u.)*

—6303
—6303
—9134
—9134
—9134
—9134
—7550
—7550
—147
—147

—7550
—7550

values of H,&, respectively. These wave functions are val-
id in the Hund's case (a) coupling region, where
H, &

)& V. .. and the good quantum numbers are A, X, 5,
and Q. The analysis must now be modified to account for
the spin-orbit splitting of the P level into P3/2 and P, /2
sublevels, separated by 17.2 cm ', where the subscripts
j=3/2 and 1/2 denote the two ways of vectorally adding
the orbital (l =1) and spin (s =1/2) angular momentum
(the ground S state is not split by V, , because I =0).
When the spin-orbit interaction is included, the
intermediate electronic states correlate to
either Na( S,/2)+Na( P, /2) or Na( S,/2)+Na( P3/2),
and the doubly excited states correlate to
eith«Na( Pl/2)+Na( Pl/2) Na( Pl/2)+Na('P3/2), or
Na( P3/2)+Na( P3/2). For these states H, 1

((V, , at
large separation, which is Hund's case (c) coupling re-
girne, and the only good quantum number is 0, the pro-

I

jection of the total angular momentum on the molecular
axis.

The case (a) to case (c) transformation —as well as the
case (c) potentials —are found by diagonalizing
H„+ V, , expanded in the case (a) basis: the transforma-
tion matrix is the eigenvectors and the potentials are the
eigenvalues. V, , is taken to be R independent and of the
form

V, , =A(l, s, +12 s2), (21)

where 3 =—', AE, DE=17.2 cm ' is the Na P3/2 PI/2
splitting, I and s are the orbital and spin angular momen-
tum operators, and the subscript 1 or 2 indicates that
these operators operate on electron 1 or 2, respectively.
Note that I s is equivalent to (j —I —s )/2, where
j=l+s is the total angular momentum of the atom
(neglecting nuclear spin). One can construct eigenstates
of I.s:

l l, s,j,m, )=g g. C( l, s,j;m1, m„m ) l l, m1, s, m, ),
m mj

such that

l.sll, s,j,m &

=
—,'[j(j+1)—l(1+1)—s(s+1)]lt,s,j,m/) . (23)

In Eq. (22), ll, m1, s, m, ) are the 3S or 3P orbital wave
functions with electron spin, and C is a Clebsch-Gordan
coefficient. For a P state electron l =1, s= —,', j=—,

' or —,',
ms= —1, 0, or 1 [m1 is the same as A, and y in Eqs. (17)
and (18)],and m, = —

—,
' or —,'.

Using Eqs. (22) and (23) the following spin-orbit matrix
elements coupling intermediate states can be derived [28]:

(%I„(S'=1,A', 2', a =g(u))lV. . le„(S=I,A, &,a=g(u)))

and

=(/I/2)[A6A AX6x, x+6A A 16x x+, +6A, A+16x, x, ]6 (24)

( %,1(S'=O,A', X', a'=g(u))l V, , l %,1(S=1,A, X,a =g(u)) )

= (1'„(s=1,A, x, a=g(u))l v, , l%„(s'=0,A', x'=o, a'=g(u)))

=( ~ /2)[A6A, A6o, x+6A, A —16—1,x 6A', A+16+1,x]6a', a . (25)

The matrix elements of V, , coupling the doubly excited states can be calculated using the wave functions of Table I
and the following formulas also derived from Eqs. (22) and (23):

('e, ,(r=o)lv, .l'e, , (x =o)&=o,

&'e, ,(r)lv. l'e„(r=o)&=&'e„(r=o)lv, . l'e, , (r)&

6x, 16@,r'+1+6x, oy6r, r +6x, —16r, r' —1] 6r, r'[ 6x, 162., 2.'+1+6x,o~62, ,x'+6x, —»2., 2. —1]) ~

(26)

(27)

and
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= A (5q q [X5x x y5 +5x x +]5& & ]+5x x }5 +]]+5 [X5 k5 +5 5 +5y, y' x, x' x, v x,x'+ i z, x —
& x, x —&4,z+ & ]) .

(28)

Due to the nature of the spin-orbit interaction, only
states of the same Q are coupled, where A =A+ X is the
projection of the total (orbital plus spin) angular momen-
tum on the molecular axis. Also, there is no coupling be-
tween gerade and ungerade states.

The long-range case (c) molecular potentials, obtained
by diag onalizing the matrix with elements

eel s.o. I el)+ &'Pei~iHe]1%'e~)~ are plotted in Fig. 2 for
the intermediate states and in Fig. 3 for the doubly excit-
ed states. These states, which are labeled by ~Q~ (states
with ~n,~ewi ~ ~ 1 are doubly degenerate), the inversion sym-

Q=O
metry {g or u), and the reAection symmetr (+

states only), will be discussed in more detail later
when we propose a PAI mechanism valid at ultracold
temperatures. Since 5, X, and A are no longer good
quantum numbers in case (c), it is more appropriate to
use %,&(Q,a) for the electronic wave functions in Eqs. (3)
and (4). Note in Fig. 2 the existence of long-range inter-
mediate bound states of l„and 0 symmetries, which
have inner turning points at R )50a [35—37]. Th 0
ion -rong-range bound state plays a very important role in the
ultracold Na PAI process, which will be discussed in
more detail in Sec. III. The intermediate state potentials
appearing in Fig. 2 have also been calculated by Bussery
and Aubert-Frecon [36]. We also note that the efFects of
the exchange interaction and of dipole-dipole couplings
between the doubly excited states and states correlating
to 3S+4D, have been neglected [38].

D. Nuclear kinectic-energy operator

Th ke kinetic operator of nuclear motion can be separat-
ed into a radial term

f2 Q2

mZ gg2

and a rotational term

H„„=(mR ) '(J —L—S)

(29)

(30)

where m is the Na mass, and J, L, and S are the total
(neglecting nuclear spin), electronic orbital, and electron-
ic spin angular momentum operators respecti 17 ve y.

n t ss study we make the simplifying approximation

H =(mR 2) —1J2 (31)

Stnctly speaking, Eq. (31) is valid only under limited con-
ditions: the neglected terms may cause perturbations

~. Since photon absorption occurs at large R, theseI3940". ~'

perturbations are probably small for the ground and in-
termediate states. For the doubly excited states the per-
turbations might be important because autoionization
occurs at small R. However, the positions of the unper-
turbed autoionizing bound states cannot be accurately
determined theoretically because the doubly excited po-
tentials are not known accurately enough at short range
For this reason we account for shifts caused by the
neglected terms by adjusting the positions of the autoion-
izing bound states (by changing the well depth) to repro-
duce the —5-GHz cutofF in the experimental PAI spec-
trurn.

Both T &in t e(' the Born-Oppenheimer approximation)
and H„, [using Eq. (31)] are diagonal with respect to the
basis functions Eqs. (3) and (4), and have matrix elements

& g,( ) I T +H... I g, (j) )

=5, . [Tz + ( A /m R )J(J+ 1 ) ] . (32)
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FIG. 2. Hun 'Hund's case (c) long-range potentials of the inter-
mediate states. The solid (dashed) curves correspond to states
of gerade (ungerade) symmetry. The zero ofo energy1s 3g+3p.

FIG. 3. HG. 3. Hund s case (c) long-range potentials of the doubly
excited states. The solid (dashed) curves correspond to states of
gerade (ungerade) symmetry. The zero of energy is E3P+3P'
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Note that, due to Eq. (31), J is also the rotational quan-
tum number of bound states: the energy levels of a rigid
rotor are E„,=BJ(J + 1), where B is the rotational con-
stant.

polarization e+i and are eigenfunctions of H,~
=iiima a,

i.e., H„d~nfico, e+i) =nfico~nfim, e+i), where a and a are
photon creation and annihilation operators. The
molecule-field interaction in the length gauge and the di-
pole approximation is of the form [41]

E. Molecule-field interaction
V„d =e(8~Ace/cV)' (a +a )e+, (r, +r2), (33)

The H„d and V„,d terms in Eq. (2) describe the free
laser field and the molecule-field interaction. The photon
number states ~nhco, e+, ) in Eqs. (3) and (4) describe a
laser field containing n photons of energy fico and (o+)

where e is the electronic charge, V is the volume of
quantization, and r& and rz are the position vectors of the
unpaired electrons on Na atoms 1 and 2. V„,d has matrix
elements

(1(0~ V„d~go) =(8vrRru/cV)'~ (n' a "+a ~n )e(%",i~r, +r2~%„)c(+,0)
1

X[(2J+I)/(2J'+1)]'~ C(J, 1,J';M, 1,M') g C(J, I,J';Q, p, Q') . (34)

The various terms in Eq. (34) are responsible for the elec-
tric dipole selection rules: (n'~a +a ~n )
=(n + I)'~ 5„„+& +(n)'~ 5„„ i couples photon states
diff'ering by one photon, e ('P,', ~r, +r~~ 4„)=0, d, or
(2)' d (d is the free atom transition dipole) determines
the electronic selection rules, which are AS =0, AX=0,
b, A=O, +I, and g~u, c(+,0) is a constant which is
nonzero only when 1to and po have the proper overall
symmetry, and the two Clebsch-Gordan coefficients are
responsible for the AJ=O, +1; AM=+1; and AD=0, +1
selection rules.

Often it is convenient to express the molecule-field in-
teraction in terms of the free-atom Rabi frequency
Qz =2(n8mco/cAV)'~ d instead of the number of pho-
tons per volume or the electric-field strength. Note that
Eq. (34) is orientation dependent, i.e., it is a function of
M, the projection of the total angular momentum on the
space-fixed z axis.

III. ULTRACOLD Na PHOTOASSOCIATIVE
IONIZATION MECHANISM

l

the X„+ state is the entrance channel for the following
reason. During each trapping phase of the optical trap
the atoms interacted with a single focused beam of o. +

polarized light [16,17]. Optical pumping with o+ polar-
ized light produces Na (3S) in its "stretched" state, with
F=2 and MF =2 (their maximum values), where F is the
total angular momentum quantum number (including nu-
clear spin) and MF is its space fixed projection (in units of
fi). MF =MI +M =2 is only possible if MI =—', and

Mj 2
their maximum values, where MI is the space

fixed projection of the nuclear spin angular momentum
and M =—MF —MI=M&+M, where M& and M, are the
space fixed projection of the electronic orbital and spin
angular momentum, respectively. Since I =0 and M& =0
for S states, it follows that M, =M =

—,'. When two

M, =
—,
' atoms collide, the space fixed projection of the to-

tal electronic spin must be M&=M, +M, =1, which

can only occur if S=1, i.e., if the molecule is in the
molecular state (S =0 for 'X+). Even though the space
fixed projection can have only one value (Ms= 1), there

The Na AI mechanism at normal (nonultracold) tem-
peratures, Eq. (1), in which the atoms are resonantly ex-
cited at large separation, does not work for ultracold AI
because the radiative lifetime of Na (3P) is much shorter
than the collision time. Based on a knowledge of the
long-range potentials and of the nature of the optical
pumping of the free Na atoms, we propose the following
mechanism for Na PAI at ultracold temperatures:

V(R)

Na

Na(3S} + Na

P~+ P~
Pi/ + P./

S+P
2Na(3S)( X„+)~Naz(Og and 1 )

~Na2 *(1„)~Na, +e (3&)

which is illustrated in Fig. 4. We shall now explain the
rationale for choosing this mechanism. artificial channel

A. X„entrance channel

Although two S state atoms can collide in either a
'X or a X„+ molecular electronic state, we believe that

FICx. 4. Illustration of the proposed mechanism for ultracold
Na PAI (not to scale). The vertical arrows denote optical tran-
sitions, and one of the doubly excited 1„state is coupled to an
artificial channel which simulates autoionization.
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are three X„+ entrance channels because the projection of
the electronic spin angular on the molecular axis can
have three values, 2 =0,+1, because collisions can occur
with any orientation with respect to the space fixed axis
system.

Another consequence of the oriented spins on the col-
lision dynamics is the disappearance of half of the rota-
tional levels due to the nuclear statistics. Na nuclei have
a spin quantum number I=—', and therefore obey Fermi-
Dirac statistics: the total wave function
$„„,=$„„1(„„,1(j„,,~

must be antisymmetric with respect
to the exchange of nuclei. The vibrational wave function,
g„;i,=F, (R,E.), is always symmetric with respect to ex-
change of the nuclei because it is a function of only the
magnitude of the internuclear separation. The nuclear
wave function 1(j„„,is symmetric because the nuclei have
been optically pumped into the same I=

2 Mg 2 spi
state. The exchange symmetry of the product of the rota-
tional and electronic wave functions l(„,„must therefore
be antisymmetric. The basis functions in Eqs. (3) and (4)
represent rotational-electronic wave functions with well
characterized symmetry properties. For the X„+ elec-
tronic state the basis functions 1(o+ and gD in Eqs. (3) and
(4) are symmetric with respect to exchange of the nuclei
for even J and antisymmetric for odd J; whereas the basis
function 1(z in Eq. (3) is antisymmetric for even J and
symmetric for odd J. As a result, the entrance channel
corresponds to either 1(~ or g~ if J is odd, or 1(r~ if J is
even.

In the close-coupling calculation we use a spline fit to
the points calculated by Konowalow, Rosenkrantz, and
Olson [26) for the X„+ potential energy V3 (R), at

1C

small separation, and an attractive van der Waals interac-
tion with C6= —1698 a.u. at large separation [36]. This
potential is essentially Aat in the region where photon ab-
sorption occurs.

B. 0~ and 1~ intermediate states

Since the trap laser is detuned slightly to the red of the
Na(3 S

& &z )~Na( 3 P3 &2 ) transition, the intermediate
states must be attractive and correlate to S,/2+ P3/2 at
large separation in order to be on resonance with the red
detuned laser frequency. The detunings of interest here
(~ b.

~

)0.5 GHz) are sufficiently large that excitation
occurs at small enough separation for the electric dipole
selection rules to be valid. Due to the u~g dipole selec-
tion rule the intermediate state must be of gerade (g) sym-
metry because the ground state was of ungerade (u) sym-
metry. In Fig. 2 one sees that one state each of 0 and 1~
symmetry satisfy these requirements. The 0 state is a
pure long-range bound state [35—37] which is formed by
an avoided crossing of a repulsive state correlating to
S,/2+ P, /2 and an attractive state correlating to
S,/2+ P3/2 It is bound by about 2 cm ' and has an

inner turning point at R =55ap. The 1& state is more at-
tractive than the 0 state, correlates to the chemically
bound 'II~ state at small separation, and although it is
believed not to be on resonance with a doubly excited
state that leads to AI, it plays an important role in the

mechanism because —depending on the value of X of the
entrance channel —it can divert Aux from the PAI path-
way.

Due to the spin-orbit interaction, at long range the 0
intermediate state consists of 34% II (S=1, A=+1,
X= + 1) and 66% X (S = 1, A =0, X=0), and therefore
is more strongly coupled radiatively to the X=O (1(~) en-
trance channel than the X=+I (PD) entrance channels
because of the hX =0 selection rule. On the other hand,
at long range the 1 intermediate state consists of 58%
X+(S=1, A=O, 2=+1), which is radiatively coupled to

the 2=+1 (gz ) entrance channels, only 2% Il (S =1,
A=+1, X=O), which is radiatively coupled to the X=O
(gD) entrance channel, and 40% ' II (S =0, A =+ 1,
X=0), which is not radiatively coupled to any of the en-
trance channels because of the ES=O selection rule.
Therefore (unlike the 0 state) the 1 state, which diverts
Aux from the 0 state, but does not lead to PAI, is
strongly coupled to the 2=+1 entrance channels and
very weakly coupled to the X=O entrance channel. This
di6'erence in the strengths of the radiative coupling be-
tween the entrance channels and the 0 and 1 inter-
mediate states is the key to interpreting the PAI spec-
trum.

Also seen in Fig. 2 are two attractive states of 2„and
0„+ symmetry that correlate at large separation to
S,/2+ P3/2 Transitions to these states from the X„+

entrance channels are forbidden by the electric dipole
selection rules and can occur only at very long range
(small detuning) where the dipole approximation breaks
down. Julienne and Vigue [12] have shown that at ul-
tracold temperatures the 2„state makes the dominant
contribution (94%) to the intermediate state fine-
structure-changing cross section. However, even if the
g~u selection rule breaks down, the 2„and 0„+ states do
not have any S=1, X=O component and therefore are
not coupled to the X„+,X=O entrance channel, which
makes the dominant contribution to the PAI cross sec-
tion. For this reason we feel that intermediate-state fine-
structure-changing transitions do not play an important
role in the trapping phase PAI mechanism. This is in
sharp contrast to Gallagher's model [ll] which assumes
that intermediate-state fine-structure-changing transi-
tions decrease the PAI rate coe%cient by several orders
of magnitude.

Concerning the nuclear statistics, only 0 states with
even J are antisymmetric with respect to the exchange of
the nuclei, whereas for the 1 state, which is doubly de-
generate (0=+1), half of the states are symmetric and
half are antisymmetric for both even and odd J. The
long-range potentials go as C3/R for the 0~ and 1~
states with C3 = —6.48 and —10.0 a.u. , respectively [36].
At short range the 0 potential is represented by a repul-
sive exponential„and the 1 potential is joined to a spline
fit of the 'lI potential of Konowalow, Rosenkrantz, and
Olson [26].

C. 1„doubly excited state

Because the trap laser is detuned slightly to the red of
the Na (3 S,&2)~Na(3 P3&2) transition, the doubly ex-
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V, (R)=4E[(o./R )' —(o./R ) ]+Ep (36)

where Ep +p is the asymptotic energy, c. is the well
3/2 3/2

depth, and o. is related to c. and the C5 coefficient by

cited state must be attractive and correlate with
Na (3 P3/2)+Na(3 P3/2) at large separation. Also, the
doubly excited state must have ungerade (u) symmetry
because the intermediate state has gerade (g) symmetry.
A third requirement is that the doubly excited state must
correlate at small separation to a state that autoionizes.
One state of l„symmetry (possibly) satisfies all these re-
quirements.

Shown in Fig. 5 are the potential-energy curves of the
doubly excited 1„states, which were obtained by di-
agonalizing the matrix in Table EV at each R. The
dashed curves were calculated using the long-rang theory
of Sec. EE, i.e., quadrupole-quadrupole plus van der Waals
interaction, and the points connected by the solid curves
were calculated by Krauss [42] using effective core poten-
tial methods with full two-electron configuration interac-
tion (CI) [43]. Although the two sets of curves are simi-
lar in appearance, the upper three curves calculated using
the long-range theory correlate at small separation to
difFerent case (a) states than do the curves calculated us-
ing the CI theory, because the latter accounts for the ex-
change interaction which is important at R & 22 a.u. The
CI theory predicts the existence of an attractive 1„state
that correlates to P3/2+ P3/2 at long range, passes
through and avoided crossing at R =22ao to a state that
correlates at short range to a state of X„(ocr) symmetry,
which on the basis of high temperature experiments
[21,22] and theoretical calculations [19] is believed to au-
toionize with fairly high probability. However, we stress
that these curves are of only qualitative value and more
accurate calculations are needed in order to put the
theory on a more quantitative footing.

The long-range theory also predicts the existence of an
attractive 2„state, shown in Fig. 3, which correlates to
P3/z+P3/z, but this state is inaccessible from the 0 in-
termediate state because it violates the case (c) dipole
selection rule AQ=O, +1, and it does not correlate at
small separation with a state that autoionizes at low tem-
perature.

Due to the uncertainty concerning the exact doubly
excited-state potentials, we use in most of our calcula-
tions a single attractive 1„potential which is taken to be
of the form
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FIG. 5. The 1„doubly excited state potentials from the full
CI calculation of Krauss (points connected by solid curves),
along with those calculated using long-range theory (dashed
curves). The term symbols indicate the Hund's case (a) states
with which the potentials correlate at small separation. Note
the avoided crossing of an attractive curve correlating at long
range to I'3/2+ P3/2 and a repulsive curve correlating to
P), /2+P3/2 The zero of energy is E3p+3p.

o =( —C, /4E)'/. The spacing of the vibrational levels
near the dissociation threshold is determined by the
long-range part of the potential [44], which in turn is
determined by its C5 coefficient. C5 is taken to be
—e (r ) 12/25= —730 a.u. for most calculations, al-
though we perform one calculation with C5 = —430 a.u.
to determine how varying the long-range 1„potential
affects the PAI spectrum. The positions of the 1„vibra-
tional levels can be altered by changing the well depth c:
the choice E.=0.0353 a.u. (along with C = —730 a.u. ) re-
sults in vibrational levels being located 20.5, 9, and 2.7
GHz below the dissociation threshold. The 9-GHz vibra-
tional level is responsible for the cutoff in the calculated
PAI spectrum at —5-GHz detuning ( —9 GHz divided by
two photons, plus width).

In one of the calculations of the PAI spectrum the
effect of the l„avoided crossing (shown in Fig. 5) is in-
vestigated by including a second 1„state which is repul-
sive and correlates to P$/2+P3/2 at long range. This
state's potential is chosen to be of the form

TABLE IV. H,&+ V, , matrix of the doubly excited 1„states.

3Q

X„+(o.o. )

X„+(~m.)

3Q

V3 (R)—A
Q

A /&2
—A /&2

A /&2

V3 (R)
ll

A/2

A /&2

A/2

—A /&2

A/2

Vi„(~)
fC—A /&2

A/2

X„+(o.o. )

A/&Z

—A /&2

v, (R)
X (pro )

Q

0

X„+(m.m)

A/2

v, (R)
X+(crier)

Q
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V, , (R ) = exp [ —0.928(R —22. 3 ) ]+EI +p (37)

in a.u. , where Ep +~ is the asymptotic energy, and
I /2 3/2

the coupling between this state and the attractive 1„state
is taken to be

V, , (R)=1.75X10 exp[ —0.025(R —32. 8) ],
u' u

(38)

also in a.u. The parameters of the repulsive potential and
the coupling term were chosen so that the energy at
which the curve crossing occurs (but not the distance),
the difference in the slopes of the potentials and the mag-
nitude of the coupling at the crossing are similar to those
predicted by the calculation of Krauss, for which
Landau-Zener theory [45] predicts that about a third of
the Aux will jump the gap.

The 1„avoided crossing can cause a fine-structure-
changing transition and therefore represents a trap loss
mechanism, because the increase in kinetic energy, equal
to the P3/2 P$/2 splitting, is greater than the depth of
the trap. The rate coe%cient for the fine-structure-
changing transition probably is comparable in magnitude
to the PAI rate coe%cient because they share the same
excitation pathway.

The attractive 1„state correlating to P3/2+P3/2 is
strongly coupled radiatively to the 0 state: at the inner
turning point of the long-range 0 state (R =60ao) where
the transition to the doubly excited 1„state occurs, the
0 state consists of 88% II (S= 1, A=+1, 2= + 1) and
12% X+ (S =1, A=O, 2=0) and the doubly excited 1„
state consists of 2% h„(S=1, A=+2, 2=+1), 51%
II„(S=1, A=+1, X=O), and 28& X„+ (S =1, A=O,

2=+1), which are optically coupled to the Og state, and
10% 'H„and 9% X„+, which are not optically coupled.
We mentioned earlier that the 1 intermediate state be-
comes chemically bound at small separation and, at least
for red detunings, never comes on resonance with the 1„
state. This may not be true for a two color red plus blue
experiment, however. As with the 1 intermediate state,
half of the 1„rotational-electronic states are symmetric
and half are antisymmetric with respect to the exchange
of the nuclei for both even and odd J.

D. Autoionization step

Onc of thc gI'catcst d1%cUlt1cs 1n fo1 IHUlat1ng a com-
plete theory of ultracold Na PAI is the inclusion of the
autoionization step [21]. The proper scattering theory
description is one of the incoming Na atoms and photons
reacting to form outgoing Na2+ ions and electrons.
However, due to the difriculties involved in performing
reactive scattering calculations several approximate
methods have been developed, such as the complex po-
tential method [21,46 —48] and the multichannel
quantum-defect method [21,49].

In this study we treat the autoionization step by a
different method, namely by coupling each doubly excited
1„rotational-electronic state to an artificial channel, such
as the one shown in Fig. 4, which are energetically open
at large separation. These artificial channels simulate
ionization by diverting Aux from the outgoing neutral

I

0.0 100.0 800.0 300.0 400.0 500.0 600.0
V'„, (crn ')

FIG. 6. The probability of crossing from the 1„state to the
artificial channel P«vs the artificial channel —1u coupling
strength V„C, .

u

channels. The potential-energy functions for the artificial
channels are chosen to intersect the 1, potential at its
inner turning point and are of the form

V~c(R,J") =exp[ —3.75(R —o +0.86) ]

—0.04+J"(J"+1)/mR (39)

in a.u. , where o is the same as in Eq. (37) and
J"(J"+1)/mR is a centrifugal potential.

The coupling between the 1„state and artificial chan-
nels is taken to be

V~c ~
(R)= Vpc ~ exp[ (R o') ] (40)

IV. PHDTDASSDCIATIVE H3NIZATB3N SPECTRUM

A. PAI rate coefficient

What we refer to as the PAI spectrum is the PAI rate
coe%cient Kp&& plotted as a function of the laser detun-

where VAc I is the coupling strength at the curve cross-
u

ing. The probability PAc of making a transition from the
1, state to the artificial channel is plotted as a function of
VAC &

in Fig. 6. Not only does V~c I (R) control the

probability of making a transition from the l„state to
the artificial channel, it also shifts and broadens the 1„
bound states as would autoionization. The choice of
magnitude of V~c i can be estimated from the isotropic

u

cross sections measured at high temperature [20—22]
which are in the range o. = 1 —4 A . A choice of
J „=85, based on the potentials calculated by Dulieu,
Giusti-Suzor, and Masnou-Seeuws [19], suggests that
V«, should be chosen such that PAc is in the range

u

0.15—0.6. The theoretical value of the high-temperature
cross section [19] 5 A, corresponds to P~c =0.75. One
of the things that we investigate in the next section is
how the magnitude of VAc, „affects the PAI spectrum.



1898 ROBERT W. HEATHER AND PAUL S. JULIENNE 47

ing b, from the Na(3 Si &2 ) ~Na(3 P3/2 ) resonance fre-
quency. Kp«, which is related to the AI rate by

d [Na2+]
=Kp~i [Na(3S) ]dt

(41)

where [Na2+] and [Na(3S)] are the densities of molecular
ions and ground-state atoms, respectively, is related to
the T-matrix elements connecting the entrance channels
(EC) and artificial channels (AC) by

level structure, which is illustrated in Fig. 7(a) for the

Na2( X„+;P,J,M, n Ace)

~Na2(0s ', P', J',M+1, (n —l)A'co)

—+Na2 *(1„;/3",J",M+2, (n —2)iiico} (46)

excitation pathway. This pathway corresponds to the
odd J, P= i/o entrance channel, which is very weakly cou-
pled to the 1 state. For the odd J, p=i)'jo+ entrance
channel one must include the transition

Na2( X„+;P,J,M, nA'co) —+Naz ( lg;P', J', M + 1, (n —1)A'co }

(47)

where U is the collision velocity, which is related to the
wave vector k=(mElfi )' by v=2fiklm, and the T
matrix elements are labeled by the entrance channel
p= i/o, i/o, or $0, the total angular momentum of the en-
trance channel J, its space fixed projection M
(M= —J, —J+1, . . . , J), and the total angular momen-
tum of the artificial channel J" (M" =M+2). The 3 in
the denominator is due to the threefold degeneracy of the
entrance channels, and only odd J contribute to the sum
for i/jo+ and i/0 entrance channels and only even J for the

entrance channel, due to the nuclear statistics. This
corresponds to summing over only even values of the or-
bital quantum number l, where / =1+1 for the i/0+ and $0
entrance channels and l =J for the ij'jo entrance channel.

The T-matrix elements are obtained by solving the cou-
pled equations [Eq. (6)] for F,, (R,E}, using the Gordon
algorithm [50] subject to the boundary conditions (in ma-
trix form)

(a) "up —only" level structure

J—2J—1 J J+1 J+2 Na"

J+1

Na~

in the excitation pathway, with J'=J,J+1. The pathway
for the even J, p=i/jo entrance channel includes both
Eqs. (46) and (47), but with J'=J for the 0 state andJ"=J,J+1 for the 1„state. In all cases each 1„rotation-
al level J" is coupled to an artificial channel.

One can include the effects of optical pumping by in-
cluding additional excitation pathways such as those

F(R,E)=0

as 8 ~0 and

(43)
(b) "up —down" level structure

F(R,E)=J(R ) A —N(R)B (44)
J—2 J—1 J J+1 J+2 Na2*

as R ~ oo, where J(R) and N(R) are diagonal matrices
related to the spherical Bessel functions of the first and
second kinds [51], and A and B, which are determined
by the calculation, are related to the T matrix by [51]

Na2

T= —2iBA '(1 iBA '}— (45)
J—2 J+2 Na,

where 1 is the unit matrix.

B. Simplifications of the model

Even though a large fraction of the Na2, Na2, and
Naz * electronic states have been eliminated due to our
choice of mechanism, additional simplifications can be
realized —this time with regard to the rotational (orbital)
motion of the colliding atoms. This is accomplished by
neglecting rotational branching due to optical pumping
of the Na2 Naz rovibronic transition, by using an
orientation averaged molecule-field interaction, and by
developing a model based on 6J=0 rather than
AJ =0, +1 selection rules.

In most of the calculations that follow, we neglect opti-
cal pumping effects and adopt what we call an "up-only"

(c) "up —down —up" level structure

J—4J—3J—2J—1 J J+1 J+2J+3J+4
ii &i n

J+1

FIG. 7. Level structure used in the calculations. (a) The
"up-only" level structure is used to calculate all of the AI spec-
tra. (b) The "up-down*' and (c) "up-down-up" level structures
contain additional rotational levels to account for the eAects of
optical pumping of the Na&~Na2 rovibronic transition.
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shown in Figs. 7(b) and 7(c). We refer to these as "up-
down" and "up-down-up" level structures. Normally one
would keep adding levels until the T-matrix element con-
verges [52]. However, this approach quickly becomes
computationally prohibitive because the computational
effort scales as N where 1V is the number of levels, i.e.,
the number of terms in the wave-function expansion [Eq.
(5)]. In the next section we show that optical pumping
leads to a broadening of the PAI spectrum, which can be
simulated by convolving the spectrum, calculated using
the up-only level structure, with a narrow Lorentzian.

If the atomic motion in the trap is isotropic, then dur-
ing the collision the molecular axis can have any orienta-

tion with respect to the electric-field vector. This is man-
ifested in the rate coefficient expression [Eq. (42)] as a
sum over M-dependent T-matrix elements. The M depen-
dence of the T-matrix elements arises from the M-
dependent Clebsch-Gordan coefficient C (J, 1,J',M, 1,M'
=M+1) in the molecule-field coupling term, Eq. (34).
We refer to the coupled equations with the M-dependent
interaction as the orientation-dependent model.

As suggested by Peploski and Eno [53], the orientation
dependence of the molecule-field interaction can be re-
moved by substituting for C(J, 1,J';M, 1,M +1) its root-
mean-square average times a phase factor:

J 1/2

C(J 1 J.M 1 M+ 1)— y C(J 1 J .M 1 M+1) /(2J+1) ( 1) I

— 'I+ + '

M= —J
(48)

for the Na2( J,M )~Naz (J',M + 1) transition and

C(J', 1,J";M + 1, 1,M +2)= J
C(J, 1,J'M, 1,M+1) C(J', 1,J";M+1,1,M+2)

M= —J
J 1/2

X y C(J, 1,J;M 1 M+1)'
M= —J

(49)

for the Naz (J',M+ 1)~Naz *(J",M +2) transition.
Equation (49) has this particular form to ensure that the
product of Eqs. (48) and (49) equals the root-mean-
square average of C (J, 1,J', M, 1,M + 1)C (J', 1,J";M
+ 1, 1,M +2), times a phase factor. Using Eqs. (48) and
(49) in the coupled equations results in an M-independent
T matrix, one can express the rate coefficient expression
as

Kpp i =(Uir/3k )g g g (2J + 1)I Tpc pc(/3 J J )I
P J

This results in J"=J'=J and a J"-and M-independent T
matrix, and the rate coefficient expression reduces to

Kp„,=(U~/3k')g g(2J + 1) I TEC „c(/3») I' .
P J

(52)

In our case this approximation reduces the dimensionali-
ty N of the coupled equations by up to a factor of 3. This
is probably a good approximation, at least for the absorp-
tion of the first photon which occurs at long range, be-

(50)

A very sizable reduction of computational effort is real-
ized by this approximation because the coupled equations
are solved only once per J (per detuning) rather than
2J+ 1 times per J (per detuning), with J,„=10 in our
case. We refer to this approximation Bs the orientation-
independent model.

The orientation-independent mode1 can be simplified
even further by replacing all Clebsch-Gordan coefficients
by their root-sum-square value [54], e.g. ,

C= QC(J, I,J', M, l M+1) ' =1

cause the rotational constant and hence the rotational
spacings are small. We find that a better approximation
is to sum Eq. (52) over both odd and even J for all three
entrance channels P and then divide Kpzi by 2. We call
this approximation the orientation- and J', J"-
i ndependent model.

In the next part of this section we test these orientation
averaging and level-structure approximations. In all cal-
culations we use an orientation- and J'-independent ap-
proximation for the Na2( X„+)~Naz(1 ) transition,
namely we use Eq. (51) in the matrix element coupling
these states, and we also assume that J'=J.

C. Entrance channel eÃects
and the role of bound-state structure

Shown in Fig. 8(a) is the PAI spectrum calculated us-

ing the orientation-dependent model and the up-only lev-
el structure. The electric-field strength is chosen to cor-
respond to a free-atom Rabi frequency of Az /2m=1. 5

0Hz, which is similar to the experimental conditions of
Lett et al. [16], and the collision energy is E/kii =0.75
mK. The parameters of the 1„potential were chosen so
that one of the vibrational levels lies 9 GHz below the
dissociation threshold. The artificial-channel —1„cou-
pling strength is VAC &

= 123 cm ', which corresponds

to PAc =0.3, and the PAI rate coefficient is calculated at
detuning intervals of 0.0125 CxHz, with J= 1 —10 contrib-
uting.

Resonance structure, consisting of five broad peaks and
numerous narrow peaks, is clearly evident in Fig. 8(a). In
Figs. 8(b) and 8(c) the PAI spectrum is separated into
contributions from odd and even initial J. Figure 8(b)
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rier for PAI to occur: the degree of attractiveness of the
1„state plays an important role in determining the cutoff
of the PAI spectrum. Features due to higher rotational
levels (higher J") of the l„vibrational level lying 20.5
GHz below the dissociation threshold do not appear in
the spectrum because the centrifugal barrier in the en-
trance channel is too large for high J. Peaks correspond-
ing to the lower rotational levels of the 1„vibrational lev-
el lying 2.7 GHz below the dissociation threshold make
only a small contribution to the PAI spectrum because
the sum over M in the rate coefficient expression tends to
weight the contribution from each J by 2J+1, and J is
small.

Flux that is rejected at c travels out through b to large
separation. Features due to 0 vibrational levels are not
seen in the PAI spectrum because Aux is not efficiently
trapped in the Og field dressed potential well, which is
another way of saying that the widths of the Og vibra-
tional levels are large due to power broadening. At de-
tunings beyond about —3 CxHz the 0 vibrational spac-
ing is sufficiently large compared to their widths to be
able to modulate the spectrum; the peak in Fig. 8 at—3.2 GHz is much smaller than the peak at —3.7 CsHz,
because this wavelength is not resonant with a 0 vibra-
tional level. The Og rotational constant is much smaller
than the 1„rotational constant due to the long-range na-
ture of the Og potential, and the 0~ bound states shift
only slightly with J'.

The dressed state potential curves shown in Fig. 9(b)
correspond to a radiative coupling appropriate for the
X=+ I ($0+ and $0 ) entrance channels, and are essential-
ly the same as those in Fig. 9(a) except for the large
avoided crossing a due to the strong radiative coupling
between the X=+1, X„+ entrance channels and the 1

state. Note the existence of a "shelf" state, which is Og-
like between c and b, X„-like between b and a, and lg-
like beyond a. This shelf state has a very small rotational
constant because the vibrating molecule spends most of
its time at the outer turning point. Also, the widths of
the levels are very narrow due to the strength of the
avoided crossing a. Since the colliding energy is only
slightly above the shelf, the positions of the resonances
are determined by the 0 potential because that is where
the phase of the vibrational wave function develops. One
expects to see narrow peaks in the PAI spectrum because
only at detunings for which the incident energy is reso-
nant with the narrow 0 levels can the Aux efficiently
jump the gap at a and proceed to AI.

The PAI spectrum in Fig. 8 can be interpreted with the
help of the field dressed potentials shown in Fig. 9. The
positions and widths of the peaks are determined by
whichever is narrowest: the 1„or0 field dressed levels,
and the heights of the peaks are sensitive to the degree of
overlap of the l„and 0 levels. The widths of the 1„lev-
els are determined primarily by the artificial channel cou-
pling, whereas the widths of the 0 levels are determined
by the radiative coupling, which depends on the entrance
channel. In the even J spectrum, Fig. 8(c), which corre-
sponds to the Po entrance channel and the field dressed
potentials of Fig. 9(b), the 0 levels are narrower than the

1„levels and one sees clusters of narrow peaks at detun-
ings one-photon resonant with the 0 levels. The
different peaks in each cluster correspond to different ro-
tational shifts, which are a function of J', and ac Stark
shifts, which are a function of M. On the other hand, in
the odd J spectrum, Fig. 8(b), which corresponds to the
go and go+ entrance channels, the $0 entrance channel
dominates, as it does in the total PAI spectrum, because
fiux is not diverted at a to the lg state. For the Po en-
trance channel the 1„ levels are narrower than the 0
levels and therefore they determine the positions and
widths of the resonances.

D. Orientation averaging and optical pumping eKects

0.8—

J=5 ~ J"=7

0.6—

0.4—

02—

ation-
ndent

0 ~ ~ ~ ~
I

I I ~ ~
I

~ I I ~
f

I

—2.4 —2.3 22 —2.1
DETUNlNG (GHz)

—1.9

FIG. 10. The role of orientation averaging in broadening the
PAI spectrum. The PAI probability Pp«(M) vs detuning for
the J=5~J"=7 transition is calculated using the orientation-
dependent model (solid curves) for M = —J, —J+ 1, . . . , J,
along with the probability calculated using the orientation-
independent model (dashed curve).

Much computational effort was required to calculate
the PAI spectrum shown in Fig. 8(a), using the
orientation-dependent model and "up-only" level struc-
ture, which accounts for orientation averaging but not
optical pumping effects. We now attempt to isolate the
role of orientation averaging and optical pumping in the
hope of simulating these effects while using the simpler
models. In Fig. 10 the role of orientation averaging is il-
lustrated by plotting the M-dependent PAI probability
PPAI(M) =

l TECAC(~= 4o J= 5 M J"=7 ) I

J=5~J"=7 transition from the $0 entrance channel,
calculated using the orientation-dependent model for de-
tunings in the range 6= —1.9 to —2.4 GHz. The M-
dependent radiative interaction results in an M-
dependent ac Stark shift of the bound states which shifts
the individual Pp~, (M). The PAI probability calculated
using the orientation-independent model is also shown
(dashed curve). The orientation-independent peak, which
should be multiplied by 2J + 1 = 11 in order to compare it
with the sum over M peak, overestimates the probability
for this particular transition, although the position of the
peak is reasonably accurate.

Since the probability summed over M is broader than
the individual Pp~&(M) and the Pp~& calculated using the
orientation-independent model, we conclude that the
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This broadened peak, also shown in Fig. 12, is (perhaps
fortuitously) very similar in height, width, and position to
the peak calculated using the more elaborate up-down-up
level structure. One must convolve the peak calculated
using the orientation-independent model with a slightly

orientation —independent model
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FIG. 11. PAI spectra calculated using (a) the orientation-
independent model and (b) the orientation- and J',J"-
independent model.

effect of orientation averaging, i.e., summing over M, is to
broaden the PAI spectrum. This conclusion is supported
by Figs. 11(a) and 11(b) where the total PAI spectrum
calculated using the orientation-independent model and
the orientation and J', J"-independent model are
plotted —the broadest features in these spectra are nar-
rower than the broadest features in the PAI spectrum
calculated using the orientation-dependent model [Fig.
8(a)]. It is pleasing to note that the spectra calculated us-
ing the different models are qualitatively similar—
especially considering that 6J=0 selection rules are used
in the orientation and J', J"-independent model. The ra-
tio of computational effort associated with the three mod-
els is approximately 50:5:1.

The role of optical pumping of the Naz~Naz transi-
tion is illustrated in Fig. 12, where Pp«(M) summed over
M is plotted for the J=—5~J"=7 transition, calculated
using the orientation-dependent model and either the
up-only, the up-down, or the up-down-up level structure
(see Fig. 7). The peaks calculated using the up-down and
up-down-up level structures are much broader than that
calculated using the up-only level structure, which indi-
cates that optical pumping is an additional source of
broadening. This broadening can be simulated by con-
volving PpAI calculated using the up-only level structure
with a Lorentzian of width I =0. 1 GHz:

P, (A)= Jdb, 'P, (b, ')(I /2~)/I(b, —b, ') +I /4] .
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FIG. 12. The role of optical pumping of the Na&~Na2 ro-
vibronic transition in broadening the PAI spectrum. The PAI
probability summed over M vs the detuning for the
J=5~J"=7 transition is calculated using the up-only (solid
curve), the up-down (small-dashed curve), and the up-down-up
(large-dashed curve) level structures. Also shown (solid curve)
is the up-only curve that has been broadened by convolving it
with a Lorentzian of width I =0. 1 GHz.
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FIG. 13. Broadened PAI spectra calculated using (a) the
orientation-dependent model, (b) the orientation-independent
model, and (c) the orientation- and J', J"-independent model.
The spectrum in (a) was obtained by convolving the spectrum in
Fig. 8(a) with a Lorentzian of width I =0. 1 GHz to account for
broadening due to optical pumping. The spectra in (b) and (c)
were obtained by convolving the spectra in Figs. 11(a) and 11(b)
with a Lorentzian of width I =0. 13 GHz to account for
broadening due to both optical pumping and orientation averag-
ing.
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broader Lorentzian, I =0.13 GHz, to account for both
optical pumping and orientation averaging.

One can also broaden the PAI spectrum in a similar
manner:

&ppt(~)= J d&'&ppt(&')(I /2~)/[(b, —6') +I /4] .

N
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The broadened PAI spectra, calculated using the
orientation-dependent model, the orientation-
independent model, and the orientation and J',J"-
independent model, are shown in Fig. 13. Comparing the
broadening spectra with the unbroadened spectra [Figs.
8(a), 10(a), and 10(b)] it appears that the broad "l„rota-
tional" peaks associated with the go entrance channel
survive, but the clusters of narrow "0 vibrational"
peaks associated with the $0+ and fo entrance channels
are either washed out or appear as bumps or shoulders on
the broad peaks. Note that we have ignored broadening
due to the hyperfine splitting, which is on the order of 0.1

GHz.
Each model predicts five peaks between 6= —0.5 and

—4.0 GHz at essentially the same positions, and also a
cutoff at 6= —5 GHz similar to experiment. Although
there are many similarities, the resonance structure in the
experimental spectrum is still broader than in our
broadened spectra, and additional resonance structure is
present. On a quantitative level, the calculated rate
coefficient in Fig. 13(a) at the peak maximum 6= —0.75
GHz is approximately an order of magnitude greater
than the experimentally determined value of
KpAi =2 ~

6+
& 2 X 10 ' cm /s measured at 6= —0.6

GHz, which corresponds to the same maximum in the ex-
perimental PAI spectrum.

E. Sensitivity of the PAI spectrum
to the parameters of the calculation

We now take advantage of the success of the
broadened orientation- and J', J"-independent model in
reproducing the features of the broadened orientation-
dependent model calculation —at a small fraction of the
computational effort —to study the sensitivity of the PAI
spectrum to the parameters of the calculation.

l. Artificial channel coupling

The first parameter that is varied is V~c, , the cou-
tt

pling between the artificial channel and the 1„state.
Plotted in Fig. 14 are PAI spectra calculated using
V«& =65.8 and 171 cm ', which corresponds to

P~c =0. 1 (weak coupling) and 0.5 (strong coupling), re-
spectively. These spectra, along with the one shown in
Fig. 13(c) for which PAc

=0.3, all display resonance
structure over a range of P&c similar to the uncertainty
(0.15—0.6) in the experimentally determined high temper-
ature AI probability. The 1„levels, and therefore the
resonance structure, are narrow for weak coupling, and
the l„rotational progression is evident in Fig. 14(a). In
the strong coupling example shown in Fig. 14(b), the 1„
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FIG. 14. Broadened (I =0.13 GHz) PAI spectra calculated
using the orientation- and J', J"-independent model for (a) weak
and (b) strong coupling between the artificial channel and the 1„
state.

rotational structure is less resolved and the bumps and
shoulders due to the 0 vibrational structure are visible.
Also, the integrated spectrum, i.e., the area under the
curve, is not proportional to P«.

2. 1„ long-range potential

Next, the PAI spectra is calculated using a less attrac-
tive 1„potential, with C5= —430 a.u. and c.=0.03427
a.u. [see Eq. (36)], where E has been adjusted so that there
exists a 1„vibrational level 9 GHz below the dissociation
threshold, as before. The resulting spectrum, show in
Fig. 15, is qualitatively similar to the spectrum in Fig.
12(c) in that there are five major peaks between 6= —0.5
and —4.0 GHz, although the positions of the peaks are
slightly different because the 1„rotational constant is
different. On the other hand, the envelope of the peaks is
considerably modified: the rapid falloff of the PAI rate
coefficient as a function of detuning is due to the avoided
crossing labeled c in Fig. 9 lying at energies greater than
the incident energy at smaller detunings than it would for
a more attractive 1„potential.

The 1„potential in Fig. 5 that correlates to P3&2+P3&2
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FIG. 15. Broadened (I =0.13 GHz) PAI spectrum calculat-
ed using the orientation and J', J"-independent model using a
less attractive 1„state with C, = —430 a.u.



1904 ROBERT W. HEATHER AND PAUL S. JULIENNE

is less attractive than the C5 = —730 and —430 a.u. po-
tentials that have been used in the calculations of the PAI
spectra so far. This appears to be in disagreement with
the experimental PAI spectrum whose envelope is more
similar to that of the calculations using the more attrac-
tive potential, with C5 = —730 a.u.

3. lg bound states
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Although the role of the 0 and 1„bound-state struc-

ture has been discussed, nothing has been said so far
about the 1g bound states. The 1 bound states play an
important role in the PAI mechanism because Aux is
more efhciently diverted from the pathway leading to
PAI whenever the laser is on resonance with the field
dressed bound states. The spacing of the high-lying 1g vi-
brational states is determined by its C3 coefficient [44],
but the specific energies at which the levels occur are
determined by the potential as a whole. The uncertainty
in the short range potential, which is a fit to the 'H po-
tential of Konowalow, Rosenkrantz, and Olson [26], is
too great to determine the energies to high accuracy.
The effect on the PAI spectrum of shifting the position of
the 1 vibrational levels by modifying the short-range
part of the potential is shown in Fig. 16. The solid and
dashed curves were calculated using the modified and
unmodified potentials, respectively, and the positions of
the shifted and unshifted field-free 1 vibrational levels
are also shown. Interestingly, the spectrum calculated
using the modified potential displays a larger rate
coefficient over almost the entire range of detunings, and
especially at 6= —3.6 GHz. A 6= —3.2 GHz peak,
which is seen experimentally, is also visible. The posi-
tions of the peaks, however, are relatively unchanged.

4. l„avoided crossing

Finally, the role of the l„avoided crossing seen in Fig.
5 is examined. The avoided crossing is a result of the
coupling between a repulsive state correlating to
P)/2+P3/2 at long range, which crosses an attractive
state correlating to P3/2+P3/2 at long range and to the
autoionizing X„+ state at short range. In the mechanism
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FICi. 16. Broadened (I =0.13 GHz) PAI spectra calculated
using the orientation and J', J"-independent model using a lg
potential that has been modified at short range to shift the posi-
tion of the 1~ vibrational levels (solid curve), along with the
spectrum of Fig. 13(c) (dashed curve) corresponding to the un-

shifted levels. The positions of the shifted and unshifted field-

free 1g vibrational levels are also shown.

FIG. 17. Broadened (I =0.13 GHz) PAI spectra calculated
using the orientation and J', J"-independent model with (solid
curve) and without (dashed curve) the 1„avoided crossing.

proposed in this paper, Aux must jump this gap in order
for AI to occur. We model this avoided crossing by using
Eqs. (36) and (37) for the attractive and repulsive l„po-
tentials, and Eq. (38) for the coupling term. The parame-
ters of the repulsive potential and coupling term were
chosen to yield the same Landau-Zener curve crossing
probability (P =0.35) as the potentials calculated by
Krauss [42] using an effective core potential method with
full two-electron configuration interaction, which are also
shown in Fig. 5.

The PAI spectra calculated with and without the 1„
avoided crossing are shown in Fig. 17. The addition of
the 1„avoided crossing results in significant modification
of the PAI spectrum that cannot be explained in terms of
Landau-Zener theory [45], and is probably due to some
sort of interference effect. We find that the PAI spectrum
is sensitive to the range of the coupling term, which sup-
ports this interpretation. For

~
6

~
( 3 GHz the rate

coeScient is suppressed, bringing it more in line with the
experimental value, and the peaks appear as small bumps
on a broad background —similar to the experimental
spectrum. For

~
5

~

)3.5 GHz the spectrum remains
essentially unmodified, except for the appearance of addi-
tional structure.

Although the envelope of the spectrum calculated with
the avoided crossing is skewed toward larger detunings to
a greater extent than the envelope of the experimental
PAI spectrum, many similarities exist between the two
spectra: both have four major peaks between —0.5 and
—3 GHz, a minimum at —3 GHz, a large peak at —3.7
GHz with several smaller peaks on either side, and a
cutoff at about —5 GHz. The calculated rate coeScient
at —0.6-GHz detuning is too high by about a factor of 4.

V. PREDICTIONS BASED
ON THE PROPOSED PAI MODEL

Based on the theory presented in the preceding sec-
tions, we can suggest several experiments to test the pre-
dictions of our PAI model. The experimental verification
or lack of verification of these predictions will aid in
determining the applicability of the model, and in sug-
gesting possible improvements.

One prediction mentioned earlier concerned the pro-
duction of Na(3 P, &2) as the result of the avoided cross-
ing between two doubly excited 1„states (see Fig. 5). A
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simple Landau-Zener estimate, based on the potentials of
Krauss, suggest that this fine-structure-changing transi-
tion occurs with fairly high probability. Resonances
should be seen in the rate of Na(3 P, &2) production as a
function of trap-laser detuning, as in the PAI spectrum,
because both PAI and the process that produces
Na(3 P, &z) share the same excitation pathway. The pro-
duction of Na(3 P, &2) can be measured by resonant two-
photon ionization, for example.

A second prediction deals with the modification of the
envelope of the PAI spectrum as the temperature or
trap-laser intensity is varied. Due to several competing
factors, centrifugal barriers in the field dressed potentials
of the entrance channels are largest for values of J that
make the largest contribution to the central part of the
PAI spectrum. These barriers can be raised and lowered
by decreasing or increasing the laser intensity, which
determines how much of the attractive 0 state is radia-
tively mixed into the field dressed state. Preliminary cal-
culations show that as the temperature or laser intensity
is lowered the central peaks in the PAI spectrum are
suppressed due to reAection of the incoming Aux at the
centrifugal barriers.

Finally, we would like to suggest an interesting two-
color experiment involving a second laser of weak intensi-
ty that is detuned slightly (e.g. , 0.3 GHz) to the blue of
resonance. The idea is to turn off PAI and the fine-
structure-changing process by exciting to a repulsive in-
termediate state with the blue detuned laser before (i.e.,
at larger separation) the red detuned trapping laser ex-
cites to the 0 state. In Fig. 2 one sees that there are
repulsive intermediate states of 0+, 1, and 2 symmetry
that correlate at large separation to S»2+P3/2 Based
on the transition dipoles calculated from the long-range
wave functions we find that the 1 state is strongly radia-
tively coupled to the X=O entrance channel and the 0
and 2g states are strongly radiatively coupled to the
2=+1 entrance channels. Colliding atoms that are ex-
cited by the blue detuned laser will be refIected by these
repulsive potentials back to large separation before ab-
sorption of a second photon can occur. Experimental
evidence of this effect would be a decrease in the rate
coefficient for Naz+ and Na(3 P&&z) production, and pos-
sibly an increase in fluorescence from the trap due to an
increase in the density of trapped atoms, because trap
loss due to PAI and fine-structure-changing transitions is
suppressed. Of course the blue detuned laser must be
su%ciently weak to keep it from disrupting the trapping
force.

VI. CONCLUSION

In this paper we studied the PAI reaction of ultracold
Na in an optical trap by using close-coupling quantum
scattering theory to calculate the PAI rate coefficient as a
function of the laser detuning from the Na( Si&2,
F =2)~Na( P3&2,F=3) transition. We first calculated
the long-range potentials of the intermediate and doubly
excited states, and using a knowledge of these potentials
and of the nature of the free-atom optical pumping
process —as well as information obtained from high-

temperature experiments [20—22] and theoretical studies
of the autoionization step [19]—we proposed a sequential
excitation mechanism involving the X+ ground state, 0
and 1~ intermediate states, and a 1„doubly excited state.
We found that fine-structure-changing transitions played
a role in the doubly excited state, because of the 1„avoid-
ed crossing, but not in the intermediate states as assumed
by Gallagher [ll], because the intermediate states in-
volved in the trapping phase PAI have gerade symmetry
and the only intermediate states that have been shown to
undergo fine-structure-changing transitions with high
probability have ungerade symmetry [12].

Three models differing in complexity were developed:
the most accurate model used a molecule-field interaction
that was molecular orientation dependent; a second mod-
el used an orientation-independent molecule-field interac-
tion; and the simplest model used an orientation-
independent interaction and was based on AJ=O rather
than AJ =0, +1 selection rules. The detunings were large
enough to neglect spontaneous emission, and the autoion-
ization step was stimulated by coupling the l„state to an
artificial channel. The PAI spectra (PAI rate coefficient
versus laser detuning) calculated using the three models
displayed broad peaks, which occurred at detunings two-
photon resonant with the lower rotational levels (J"( 11)
of a 1„vibrational level lying 9 GHz below the dissocia-
tion threshold, and narrow peaks, which occurred at de-
tunings one-photon resonant with the 0 vibrational lev-
els. The ratio of computational effort associated with the
three models was found to be about 50:5:1.

We also studied the effects of orientation averaging and
optical pumping by calculating the PAI probability for a
particular transition over a small range of detuning using
the most accurate model and different level structures.
We found that these effects led to a broadening to the
spectrum, which we simulated by convolving the calcu-
lated spectrum with a narrow Lorentzian. When this was
done the broad peaks due to two-photon resonances with
the 1„rotational levels survived and the narrow peaks
due to one-photon resonances with the 0 vibrational
levels were either washed out or appeared as bumps or
shoulders on the broad peaks. We found that the
broadened spectra calculated using the three models were
in good agreement with each other, which allowed us to
use the simplest model to study the sensitivity of the PAI
spectrum to features of the 1„excited-state potentials and
to the strength of the artificial channel coupling.

Qualitatively, the broadened spectra were in fairly
good agreement with the experimental spectrum of Lett
et al. [16]: all displayed a series of broad peaks between
—0.5 and —4 GHz detuning, as well as a cutoff in the
PAI signal at around —5 GHz. Quantitatively, the rate
coefficient calculated using a single 1„state was about an
order of magnitude too high. Better agreement between
theory and experiment, about a factor of 4 too high, was
obtained when a 1„avoided crossing, similar to the one
in the l„potentials of Krauss [42], was added to the
model.

Finally, we would like to mention several possible
sources of inaccuracy which may account for why the
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calculated PAI rate coefficient is too high. First, there is
a need for a more quantitative understanding of long-
range curve crossings (20ao or larger) in the doubly excit-
ed state that can modify the AI probability as the temper-
ature goes to zero. Second, Dulieu, Giusti-Suzor, and
Masnou-Seeuws [55] have shown that the AI probability
versus energy shows complex resonance structure due to
interference between "direct" and "indirect" autoioniza-
tion mechanisms. Therefore we may not be justified in
using the high-temperature AI probability, which was
based on the high-temperature isotropic cross section, to
determine our choice of the coupling strength between

the doubly excited 1„state and the artificial channel.
And third, approximations associated with simplifying
the full three-dimensional aspects of the collision problem
might be at fault. These possible sources of error warrant
further investigation.
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