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Photoelectron-angular-distribution parameters for rare-gas subshells
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Formulas for the first-order corrections in e to the dipole form for the angular distribution for atomic
photoionization are derived within a nonrelativistic central-potential model. The results are expressed in

terms of two parameters y and 5 and simple expressions for the angular distribution for unpolarized, po-
larized, and partially polarized light are given. Calculations for a number of rare-gas subshells are
presented and compared with previous calculations.

PACS number(s): 32.80.Fb, 32.80.Hd

I. INTRODUCTION

In a previous publication [l], it was pointed out that
for incident photon energies of less than approximately 5
keV, the angular distribution of photoelectrons ejected
from atoms for both polarized and unpolarized light
could be adequately represented by two additional pa-
rameters in addition to the usual 13 parameter which,
along with the total cross section for a particular process,
completely describes the angular distribution within the
dipole approximation. Similar conclusions were reached
in recent nonrelativistic work on s and p subshells [2,3]
and in a relativistic treatment [4].

The fact that corrections to dipole approximation can
be expressed simply over a broad energy range has led to
recent interest in experimental studies that would mea-
sure the "dipole-breakdown" parameters, since at present
there are only two early experiments [5,6] which show de-
viations from dipole approximation at energies below 5
keV. It is the purpose of this paper to provide informa-
tion that will be useful in planning such experiments.
Specifically this includes (i) derivation of the relevant for-
mulas within a nonrelativistic central-field model, (ii) cal-
culation of parameters for typical experimental situa-
tions, and (iii) comparison of the calculations with previ-
ous work in order to access both their accuracy and the
importance of relativistic effects. The outline of the pa-
per is as follows. Section II contains the derivation of all
of the appropriate formulas; Sec. III is devoted to calcu-
lations for the s, p, and d subshells of the rare gases; Sec.
IV compares these calculations with previous calcula-
tions; and Sec. V gives suggestions for future theoretical
and experimental work.
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where p is the momentum operator, k is the photon
momentum, and e is the polarization vector. Assuming
that the photon direction is along the x axis and the po-
larization direction along the z axis as shown in Fig. 1,
the matrix element may be written as

(3)

Expanding the exponential, to first order in k=aco the
matrix element becomes
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As shown in Ref. [7], both terms in Eq. (4) can be con-
verted to the "length" forms of the matrix element via
the relations

II. DIFFERENTIAL CROSS SECTION

The starting point is the expression for the differential
cross section for photoionization of a single electron in
atomic units by a photon of energy co [7]:
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where the matrix element D,-f between initial and final

states is
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FIG. 1. Definition of the angles 0, p and 0 used here relative
to photon, electron, and polarization directions.

1841 1993 The American Physical Society



1842 J. W. COOPER

where L is the y component of the angular momentum
operator r Xp. The three terms shown in Eq. (5) are sim-

ply the electric dipole, electric quadrupole, and magnetic
dipole matrix elements used to describe spectroscopic
transitions between discrete states. Although the expres-
sions here are given only for a one-electron system, they
also apply to many electron systems if the operators z, xz,
and L are replaced by sums over all electrons, provided

and g, are exact eigenstates of the nonrelativistic
atomic Hamiltonian.

Equation (5) also shows that the electric quadrupole
and magnetic dipole terms are proportional to o,'. Thus
pure electric quadrupole or magnetic dipole transitions
are generally smaller than dipole transitions by a factor
of a, since they are proportional to the square of the ma-
trix element for that type of transition, and may be
neglected unless the electric dipole is vanishingly small.
However, as will be shown, in calculating the angular dis-
tribution of photoelectrons, the dominant term is an in-
terference term between the electric dipole and electric
quadrupole term which will be proportional to a. Also
note that the electric quadrupole term is proportional to
co, whereas the electric and magnetic dipole terms are
proportional to co, which means that the electric quadru-
pole term cannot be neglected at high photon energies.
Although both the electric quadrupole and magnetic di-
pole terms are of the same order of o. with respect to the
electric dipole term, the magnetic dipole term is expected
to be smaller at all energies for the following reason. The
operator L operates only on the angular part of the wave
function. In a single-electron approximation, this leads
to the selection rules AI =0 and Am =0, + 1 for the orbit-
al and magnetic quantum numbers l and m, but the radial
part of the wave function must change since energy is ab-

I
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If Eq. (1) is taken to represent all N„& electrons in a given
closed atomic subshell, the cross section for that subshell,
using the matrix element of Eq. (6), can be written as

sorbed. In a central-field model, one-electron radial wave
functions with the same value of I and different energies
are orthogonal and the magnetic dipole term vanishes. It
does not vanish if different potentials are used to describe
initial and final one-electron states, as is the case when
core relaxation of a many-electron atom is considered.

The parameter o. is used rather than Za, since it is as-
sumed that the Z dependence is contained in the radial
wave functions corresponding to 1(j; and gf, which are as-
sumed to be obtained numerically by a nonrelativistic
central-field calculation. Since it is well known that rela-
tivistic effects are important for large Z, some comments
are in order on their relative magnitude. In a relativistic
central-field model, the matrix element is modified in two
ways, namely, (i) the operator p is replaced by a Pauli
spin matrix and (ii) the initial- and final-state wave func-
tions are replaced by two-component solutions of a Dirac
central-field Hamiltonian. In addition, in evaluating the
matrix element, the exponential factor in Eq. (2) is ex-
panded in terms of electric and magnetic multiple mo-
ments. To first order in o. this expansion leads to the
same result as the simple expansion used here, and to this
order, relativistic effects are due only to differences in the
initial and final-state wave functions.

Neglecting the magnetic dipole term in Eq. (4) and sim-
plifying notation, the matrix element may be written as

d~„,(~,8,y) =4 ' X„, [( &( )'+ /2(( )& )*—
& && &")]+O( '), (7)

where each single-electron matrix element (xz ) and (z )
is to be evaluated between initial and final states.

Choosing the outgoing electron's direction as the axis
of quantization, the initial- and final-state wave functions
for an electron in the (nl)th subshell may be represented
as

z =r cos8=/4m/3rY, o(9,$. )

xz =r sin8 cos8 cosP

=2+2+/3Y) o(8 P)['Y) )(8 P)+ Y)+ )(8 P)]
=&2'/1 5r [Y2, ( 8, P ) —Y~, ( 8, P ) ] .

(10)

and

1(, =P„&(r)Y& (9', p') The mth component of the matrix elements for z and xz
can then be written as

&z &. =(4~'/3)' 'y (2i'+ I)'"(i)-'e' ' &P„,lrlP. , &

qf = g [4~(2i'+1)]'"(i)'e 'P„, (r)YI o(9', P') .

The factors z and xz appearing in the matrix elements
of Eq. (7) are represented in terms of r and the angles 8
and P shown in Fig. 1 as and

X & Ylm(8' 4''»io(9 4'»i*o(9' 4'') &

(xz) [32m /(15)]'~ g (21"+ I)'~ i e ' (P„Ilr lP„I-)x( YI (O', P')[Y2, (9,$)—Yz&(8, $)]Y~,o(8', P')),
II I

(12)
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where integration over the variables r, 8, and P is implied. Explicit expressions for the cross section are obtained by
inserting Eqs. (11) and (12) in Eq. (7) and carrying out the integrations and summations over m, I', and I". For the first
term of Eq. (7), this procedure leads to the usual dipole form for the differential cross section [8]:

d~nl ~nl
[1+PPz(cos8)],dQ 4m

(13)

where the total cross section for the (nl)th subshell is given in terms of the radial dipole matrix elements R &+i and
phase shifts 5l+&..

4~ a
cr„i = N„ico[IR „i, +(I+1)R (14)

and the P parameter is

I( I —I )R ~ ~, + (I + I )( I +2 )R „,+, 61( I +—I )R ~ i —,R ~~+ i cos(5, +,—5, , )

(2l+ 1)[IR~ i i +(I+1)R~ i+i ]
(15)

In order to obtain the angular dependence of the cross section from Eq. (7), the imaginary part of the sum of the
product of the matrix elements (z ) and (xz ) must be evaluated. This can be done by expressing the factors in Eq.
(11) and (12) that depend on 8 and P in terms of rotation matrices as was done in previous work on molecular systems
[9]. Writing

Y,o(8,$)= QYi (O', P')D "oi(a,g, y), (16)

where D "'(a,P, y ) is a rotation matrix [10],the dipole matrix element then becomes

(z) =(4' i3)'~ g(2I'+I)'~ R ~i'e '( Y& Yi Y&o)D"oi(a, P, y) . (17)

Similarly, by expressing Y2, (8,$) and Y2, (8,$) in terms of rotation matrices, Eq. (12) may be written as

(xz) =(32m. /15)'~ g (P„&r P, )(2I"+ I)'~ i ' e ' ( Y&M YzM YI o)[DM,'(a, P, y) DM', (a, l3, y)]—.
1",M

(18)

Taking the product of Eqs. (17) and (18), recoupling the rotation matrices, and evaluating the angular integrals yields

2

(z)* (xz) =16 ( —1) g (R &. )(P„&r P &-)i' ' e ' ' (21+1)(2L+l)(2l'+1)(2l"+1)
6 (I 1-L)

r

l' l 21"
X 0 0 0 m —m 0 0 0 0

2 l" 1 2 L
m —m 0 m —m 0

1 2 I
X 0 1 1

[Doi, i i(a, P, y)+DE, i i(a, P, y)] (19)

The sum of rotation matrices in Eq. (19) is real and may
be expressed in terms of spherical harmonics as

Do"', (a, I3, y )+Do"'*,(a,P, y)
1/2

4n
2L+1 [YI., i(P, ~)+ YL, —i(P, ~)] (20)

The rotation angles p and a are simply the angles 8 and p
as shown in Fig. 1.

An explicit form of the angular distribution produced
by the second term in Eq. (7) is given in Appendix A.
The following are the important features.

(i) The usual dipole and quadrupole selection rules
l'=1+1 and l"=l, l+2 are implied by the 3j coefticients
in Eq. (19).

(ii) The added term will be proportional to cosP. The
L =1 term introduces a sinO dependence and I. =3 term

both a sinO and a sinO cos O dependence.
(iii) Only L =1 and L =3 terms are permitted by the

selection rules. This is obvious since dipole absorption
corresponds to transfer of one unit of angular momentum
and quadrupole absorption to two or zero units and
agrees with an analysis based on more general considera-
tions [11].

(iv) The summations over m to be carried out in
evaluating the cross section only extend over the value
0, +1.

As indicated in Ref. [1], the added term in the angular
distribution can be expressed in terms of two additional
parameters y and 5 and the cross section for linearly po-
larized light written as
d ~nl nl [1+PP2(cos8)+(5+y cos 8)sin8cosg] .

(21)
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Previous work on angular distributions [12,13] has
concentrated on expressing the angular distribution for
unpolarized light in terms of an expansion in Legendre
polynomials in the angle t9 with respect to the incident
photon direction as

QB„P„(cosO),
4m

(22)

Equation (21) gives the cross section for light polarized
in the z direction. If the z direction is taken as the princi-
pal axis of polarization and the fraction of light polarized
in the z direction is represented by P [15], the cross sec-
tion for partially polarized light is

and relativistic central-field calculations have been car-
ried out to determine the B„parameters. In Ref. [4], the
angular distribution for polarized light is shown to be to
good approximation expressed in terms of the three pa-
rameters Bj,Bz, and B3 and expressions for these param-
eters to first order in k =cow have been given previously
for the nonrelativistic case [14]. More recently [2,3] cal-
culations for E and I, subshells have been performed in a
nonrelativistic framework. To first order in a all of these
formulations lead to the same form for the angular distri-
butions for both polarized and unpolarized light. The re-
lationships between the parameters used by various au-
thors is given in Table I. In terms of the parameters P, y,
and 5 the angular distribution for unpolarized light is

dani o ni y
dQ 4m 2

1 P/2Pz( —csoO)+ —sin 0+5 cosO

III. COMPUTATIONS OF THE
ANGULAR-DISTRIBUTION PARAMETERS

Experiments that provide information on the angular
distributions of photoelectrons from specific subshells
will most likely be done on rare-gas targets using syn-
chrotron light sources at photon energies between 15 eV
and 10 keV. In order to identify those regions where
departures of the angular distribution from the usual di-
pole result, calculations have been made of the parame-
ters y, P, and 5 for electron energies between 100 eV and
5 keV and are shown in Tables II—IX for a number of
rare-gas subshells using a central-field model based on the
Herman-Skillman potential [15]. The calculations have
been limited to this energy range since at electron ener-
gies near threshold, the central-field model will be inaccu-
rate due to interchannel interactions, and at higher ener-
gies the cross sections are so low that it is unlikely that
angular distributions can be measured.

The method of calculation is similar to earlier work
[16]. In order to calculate the additional parameters y
and 5 using the equations given in Appendix A, the only
additional calculations that are necessary are those of the

Energy (eV)

Electron Photon

Cross
section

(kb)

TABLE II. Cross sections and 5 parameters for helium and
neon s subshells. Values of y from Refs. [2] and [3] are shown
in parentheses. The cross sections listed are in units of kb; i.e.,
10 'cm.

donI
dA

rrnt p 31+—+ Pi3 cos2O-
4m 4 4

+ y P cos O — (1—sin Ocos P)z

2

100
200
500

1000
2000
3000
4000
5000

123
223
523

1023
2023
3023
4023
5023

Helium 1s
202.90
41.19
3.24
0.37
0.04
0.01
0.00
0.00

0.18
0.28
0.51
0.74
0.92
1.79
1.32
1.93

+5 'sinO cosP . (24)

As shown in Appendix B, for s subshells only I =0
magnetic quantum numbers contribute. As a result, the 5
term in the angular distribution vanishes or 8& =B3 as
has been shown in previous work [2,3,14].

100
200
500

1000
2000
3000
4000
5000

143
243
543

1043
2043
3043
4043
5043

Neon 2s
401.30
186.48
41.27
9.62
1.81
0.64
0.32
0.18

—0.021 ( —0.021)
—0.020 ( —0.020)

0.162 (0.160)
0.424 (0.420)
0.797 (0.789)
1.05 (1.06}
1.21
1.53 (1.60)

Parameter Ref. [3]

3/2b
a —1/2b

Ref. [4]

—B2/2—5B3
Bl +B3

Ref. [14]

—5coag
u(@+q)

TABLE I. Relationships between the parameters P, a, and b
used in Ref. [3], the parameters B„B„andB3 of Ref. [4], and
the parameters P, y, and rI of Ref. [14] with the parameters 13, y,
and 5 used in this paper.

100
200
500

1000
2000
3000
4000
5000

957
1057
1357
1857
2857
3857
4857
5857

Neon 1s
261.31
201.59
108.59
47.89
14.66
6.23
3 ~ 18
1.83

0.021 (0.021)
0.125 (0. 124)
0.343
0.584 (0.582)
0.921 (0.918)
1.176
1.390
1.579
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l, l+2 radial wave functions, and the evaluation of their
phase shifts and quadruple matrix elements with the ini-
tial nl ground-state orbitals.

In a central-potential model, calculations performed in
the "length" and "velocity" formulations are identical.
Comparison of the results obtained using alternative
forms for the radial dipole matrix elements thus serves as
a check on the numerical accuracy of the calculations but
gives no indication how good the approximation is. Al-
ternative forms have been used for the quadrupole radial
matrix elements as a check on the calculations and the
derivation of the "velocity" form is given in Appendix C.
All parameters are usually given to two decimal places,
which corresponds to the approximate numerical accura-
cy of the calculations based on agreement between the
length and velocity forms of the radial matrix elements.
Electron energies are energies above threshold. The
theoretical binding energies of each subshell [15] have
been used to obtain the relevant photon energies.

For s subshells as shown in Appendix 8, the 5 parame-
ter vanishes and in our approximation P=2. In Tables
II—V subshell cross sections and y parameters are listed
for all s subshells of the rare gases with the exception of

the 2s subshell of xenon and the 1s subshells of krypton
and xenon, which are not included since the binding ener-
gies of these subshells are too large for the approxima-
tions used here to be valid. Comparisons are also given
with the work of Refs. [2] and [3].

For the 1s and 2s subshells, the calculations show good
agreement with the results of Refs. [2] and [3] and show
the same energy dependence. The argon 1s and neon 2s y
parameters are negative at low energies due to the
difference in dipole p and quadrupole d wave phase shifts
and the y parameters increase at higher energies. The ar-
gon and krypton 2s y parameters are large at low ener-
gies and go through a negative minimum at higher ener-
gies.

The y parameters of the outer s subshells of argon and
krypton have the same energy dependence as the 2s sub-
shells and are approximately the same at equal electron
energies above 500 eV. This is not surprising since in a
central-field approximation the phase shifts are the same
for all ns subshells, and at higher energies the ratio of the
dipole and quadrupole matrix elements is determined
principally by the normalization of the continuum wave
functions as discussed in Ref. [2].

TABLE III. Argon s subshell cross sections and y parame-
ters.

TABLE IV. Cross sections and y parameters for krypton s
sub shells.

Energy (eV)

Electron Photon

Cross
section

(kb) Electron Photon

Energy (eV) Cross
section

(kb)

100
200
500

1000
2000
3000
4000
5000

3264
3364
3664
4164
5164
6164
7164
8164

Argon 1s
74.47
69.96
56.41
40.62
23.19
14.45
9.59
6.67

—0.16
—0.04

0.20
0.45
0.80
1.06
1.28
1.47

100
200
SOO

1000
2000
3000
4000
5000

1944
2044
2344
2844
3844
4844
5844
6844

Krypton 2s
68.79
63.85
51.06
36.65
21.37
13.89
10.56
7.74

0.83
0.59
0.19

—0.03
—0.03

0.11
0.30
0.48

(0.85)
(0.64)
(0.22)
( —.02)
( —.05)
(0.08)

(0.43)

100
200
500

1000
2000
3000
4000
5000

Argon 2s
411
511
811

1311
2311
3311
4311
5311

245.09
183.53
86.49
34.72
10.33
4.49
2.37
1.40

0.23
0.04

—0.04
0.12
0.46
0.74
0.98
1.19

100
200
500

1000
2000
3000
4000
5000

368
468
768

1268
2268
3268
4268
5268

Krypton 3s
176.57
134.07
66.96
29.53
10.33
5.04
2.91
1.87

0.41
0.35
0.14

—0.03
—0.06

0.07
0.24
0.41

100
200
500

1000
2000
3000
4000
5000

129
229
529

1029
2029
3029
4029
5029

Argon 3s
223.48
98.53
23.60
6.60
1.59
0.65
0.34
0.21

0.14
0.03

—0.03
0.10
0.42
0.68
1.00
1.04

100
200
500

1000
2000
3000
4000
5000

126
226
526

1026
2026
3026
4026
5026

Krypton 4s
138.48
64.00
17.43
5.64
1.62
0.73
0.40
0.26

0.20
0.23
0.12

—0.03
—0.05

0.08
0.22
0.37
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TABLE V. Cross sections and y parameters for xenon s sub-
shells.

Energy (eV)

Electron Photon

Cross
section

(kb)

100
200
500

1000
2000
3000
4000
5000

100
200
500

1000
2000
3000
4000
5000

Xenon 3s
1147'
1247
1547
2047
3047
4047
5047
6047

Xenon 4s
293
393
693

1193
2193
3193
4193
5193

80.49
71.42
51.76
32.98
16.51
9.79
6.41
4.49

167.46
118.02
52.21
21.34
7.16
3.54
2.09
1.37

0.77
0.64
0.39
0.15

—0.06
—0.11
—0.08
—0.00

0.35
0.36
0.28
0.12

—0.05
—0.10
—0.08
—0.01

100
200
500

1000
2000
3000
4000
5000

Xenon 4s
122
222
522

1022
2022
3022
4022
5022

111.58
49.57
13.50
4.35
1.25
0.58
0.34
0.22

0.20
0.26
0.24
0.12

—0.05
—0.08
—0.08
—0.00

The y parameters for the 3s, 4s, and 5s subshells of xe-
non show a different behavior. y is large at low energies
and goes through a negative minimum at approximately
3 keV for all three subshells.

Parameters for the p subshells of neon, argon, krypton,
and xenon are shown in Tables VI —VIII. Here all three
angular distribution parameters are listed in addition to
the subshell cross section and comparisons are made with
the data of Ref. [3] for argon and krypton 2p subshells.
The agreement with Ref. [3] is not as good as for the ns
subshells, but all parameters have the same energy depen-
dence.

The energy dependence of all parameters is the same
for the p subshells of neon and argon, /l decreasing with
increasing energy, and the other two parameters increas-
ing. The P parameters are approximately the same for
the 2p and 3p subshells of argon at higher energies, but
not for y and 5. For the krypton and xenon subshells the
key results are that the 6 parameter is small over the en-
tire energy range and the /l and y parameters show the
same energy dependence and are approximately the same
at higher energies for the krypton 2p and 3p and for the
xenon 3p and 4p subshells.

Results for the krypton 3d subshell and the 3d and 4d

subshells of xenon are shown in Table IX. For the 3d
subshells the /3 parameter goes through a maximum and
the y and 6 parameters increase with energy. The P pa-
rameter for the 4d subshell of xenon changes sign be-
tween electron energies of 100 and 200 eV. As is the case
with other subshells, the parameters for both the 3d and
4d subshells of xenon are approximately equal at the
higher energies.

IV. COMPARISON WITH OTHER CALCULATIONS

Comparisons have already been made in Tables II, IV,
VI, and VII with the results of Refs. [2] and [3]. In order
to provide an indication of the size of relativistic effects,
comparisons of the nonrelativistic calculations have been
made with the results of Ref. [4] for the 3d and 4d sub-
shells of barium and for all subshells of neon. The results
are shown in Table X. Several things are to be noted
from this comparison. First, the parameters are almost
exactly the same for the spin-orbit-split components of
each subshell. Second, the nonrelativistic cross sections
and angular distribution parameters agree reasonably
well with the relativistic calculations. The comparison
indicates that in this energy range the nonrelativistic cal-
culations may be used to provide an indication of the en-
ergy dependence of the parameters. Dirac-Fock calcula-
tions of f3 parameters and cross sections for photon ener-
gies for all elements in the photon energy range from 100
to 4500 eV have been performed at selected energies [17].
Comparisons of these data with nonrelativistic calcula-
tions generally show good agreement with nonrelativistic
results. An example of the typical agreement is shown in
Table XI. It should also be mentioned that the P parame-
ters and cross sections for many of the rare-gas subshells
listed here have been reported previously at the lower en-
ergies and compared with Hartree-Fock calculations [18].

V. SUGGESTIONS FOR FUTURE %'ORE

No comparisons with experimental data have been
given here, principally because the only two experiments
which show deviations from dipole approximation [5,6]
were not performed with enough accuracy to extract ad-
ditional parameters, although a direct comparison of the
data with a relativistic calculation has been made [19].
The aim has been to provide data and simple formulas
useful for planning future experiments. In this regard, a
number of comments can be made.

First, in a sense, it is easier to observe dipole break-
down with unpolarized sources than with polarized light,
since only one angle is involved and, in fact, the earlier
measurements used unpolarized sources. In those mea-
surements, made on neon 2p and krypton 3s, 3p, and 3d
subshells, the angular distributions all peak at 0=90' and
slight shifts of the peak from the 90' due to the added
terms are easily detected. Second, as has been pointed
out previously [2—4], corrections to dipole approxima-
tion are by no means negligible at lower energies. How-
ever, as was pointed out previously [1], provided elec-
trons are detected in the plane of polarization; i.e., per-
pendicular to the photon direction, the correction terms
vanish. In order to observe dipole breakdown, the angu-
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TABLE VI. Cross sections and P, y, and 5 parameters for argon 2p and 3p and the neon 2p subshells.
Data from Ref. [3] is shown in parentheses.

Electron Photon

Energy (eV) Cross
section

(kb)

100
200
500

1000
2000
3000
4000
5000

348
448
748

1248
2248
3248
4248
5248

2047.44
1164.39
305.07
70.03
11.24
3.35
1.35
0.64

Argon 2p
0.01 ( —0.02)
0.07
0.24 (0.27)
0.42 (0.48)
0.61 (0.71 )

0.71
0.77
0.81 (0.96)

1.26 (1.26)
1.43
1.46 (1.46)
1.32 (1.32)
1.07 (1.04)
0.90
0.77
0.68 (0.55)

0.01
0.01
0.03
0.05
0.09
0.13
0.17
0.21

(0.01)

(0.02)
(0.03)
(0.07)

(0.17)

100
200
500

1000
2000
3000
4000
5000

114
214
514

1014
2014
3014
4014
5014

896.16
360.22

55.54
9.80
1.35
0.40
0.14
0.08

Argon 3p
0.00
0.02
0.19
0.39
0.46
0.73
1.19
1.36

1.44
1.62
1.55
1.36
1.07
0.89
0.72
0.69

—0.01
0.00
0.02
0.04
0.07
0.14
0.26
0.35

100
200
500

1000
2000
3000
4000
5000

120
220
520

1020
2020
3020
4020
5020

2322.74
530.87
44.37

5.03
0.47
0.11
0.04
0.01

Neon
0.08
0.15
0.29
0.40
0.49
0.44
0.35
0.64

2p
1.48
1.46
1.19
0.87
0.55
0.43
0.43
0.20

0.01
0.02
0.04
0.08
0.15
0.17
0.15
0.36

TABLE VII. Cross sections and fi, y', and 5 parameters for krypton 2p and 3p subshells. Data from
Ref. [3] is shown in parentheses.

Electron Photon

Energy (eV) Cross
section

(kb)

Krypton 2p
100
200
500

1000
2000
3000
4000
5000

1777
1877
2177
2677
3677
4677
5677
6677

476.12
420.11
284.64
163.12
67.57
33.91
21.19
12.96

—0.07 ( —0. 18)
—0.10
—0.01 ( —0.06)

0.20 (0.19)
0.51 (0.57)
0.73 (0.83)
0.87
1.04 (1.17)

0.99 (0.96)
1.18
1.37 (1.38)
1.44 (1.46)
1.42 (1 ~ 43)
1.35 (1.35)
1.28
1.22 (1.57)

0.01
0.03
0.05
0.08
0.10

(0.03)
(0.03)
(0.03)
(0.06)

0.13 (0.09)

—0.02 (0.00)
—0.01

100
200
500

1000
2000
3000
4000
5000

307
407
707

1207
2207
3207
4207
5207

710.72
607.89
302.85
115.03
30.54
12.17
6.57
3.66

Krypton 3p
0.24
0.24
0.01
0.04
0.32
0.55
0.71
0.89

0.88
1.31
1.58
1.61
1.51
1.41
1.32
1.24

0.04
0.00

—0.01
0.01
0.03
0.05
0.07
0.10
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TABLE VIII. Cross sections and P, y, and 5 parameters for xenon 3p and 4p subshells.

Energy (eV)

Electron

100
200
500

1000
2000
3000
4000
5000

Photon

1024
1124
1424
1924
2924
3924
4924
5924

Cross
section

(kb)

Xenon 3p
382.75
342.27
243.06
145.85
63.77
33.34
19.52
12.35

0.37
0.44
0.21
0.01
0.06
0.24
0.43
0.61

0.92
1.20
1.48
1.59
1.60
1.56
1.51
1.47

0.10
0.05
0.00
0.00
0.01
0.02
0.03
0.05

100
200
500

1000
2000
3000
4000
5000

249
349
649

1149
2149
3149
4149
5149

Xenon 4p
470.94
381.60
1.88.59

77.43
23.94
10.71
5.73
3.42

0.05
0.27
0.23
0.02
0.03
0.19
0.37
0.54

0.63
1.20
1.60
1.70
1.67
1.61
1.55
1.49

0.02
0.01

—0.01
—0.01

0.00
0.01
0.03
0.04

TABLE IX. Cross sections and P, y, and 5 parameters for krypton 3d and xenon 3d and 4d sub-
shells.

Energy (eV)

Electron

100
200
500

1000
2000
3000
4000
5000

Photon

197
297
597

1097
2097
3097
4097
5097

Cross
section

(kb)

Krypton 3d
5738.10
3542.55
728.06
126.17
15.14
3.82
1.42
0.67

0.00
0.02
0.14
0.32
0.56
0.70
0.79
0.84

0.48
0.90
1.19
1.18
1.00
0.86
0.75
0.68

0.01
0.02
0.04
0.07
0.13
0.19
0.24
0.29

100
200
500

1000
2000
3000
4000
5000

793
893

1193
1693
2693
3693
4693
5693

Xenon 3d
2411.22
1829.46
910.76
351.62
87.43
31.59
14.05
7.16

—0.02
—0.04
—0.01

0.16
0.46
0.67
0.82
0.93

0.45
0.68
1.04
1.19
1.18
1.10
1.02
0.95

—0.01
—0.01

0.02
0.05
0.09
0.13
0.17
0.21

100
200
500

1000
2000
3000
4000
5000

172
272
572

10?2
2072
3072
4072
5072

Xenon 4d
472.25
919.09
482.78
141.91
27.12

8.92
3.96
2.13

—0.12
0.17
0.00
0.08
0.37
0.58
0.76
0.82

—0.83
0.42
1.18
1.33
1.25
1.14
1.04
0.96

0.10
0.00
0.00
0.02
0.06
0.10
0.15
0.18
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TABLE X. Relativistic (Ref. [4]) and nonrelativistic (this paper) cross sections (in kb) and angular-
distribution parameters for neon 1s, 2s, and 2p subshells and barium 3d and 4d subshells at 3-keV pho-
ton energy. The sum of the spin-orbit-split components of each subshell should be compared with the
nonrelativistic results.

Subshell

Ne 1s

Ne 2s

12.8

0.64

NR

13.0

0.67

fR

0.95

1.04

7NR

0.96

1.04

1.96

1.95

PNR

2.0

2.0

0.002

0.002

~NR

0.00

0.00

Ne 2p, /2

N2 2p3/2
sum

0.039
0.076
0.115

0.114 0.61
0.61

0.41 0.35
0.35

0.45 0.16
0.16

0.16

Ba 3d3/p
Ba 3d4/z
sum

31.8
44.9
76.7

76.7 0.52
0.54

0.49 1.20
1.17

1.17 0.087
0.087

0.095

Ba 4d3/2
Ba 4d g/p

sum

5.0
7.0

12.0

12.0 0.61
0.62

0.54 1.22
1.17

1.17 0.076
0.079

0.094

lar distribution must be measured outside of the plane of
polarization.

While in principle, dipole breakdown could be ob-
served in any of the rare-gas subshells, the 4d subshell of
xenon seems to be the most interesting case. The P pa-
rameter for this subshell has been measured [20] and goes
through a negative minimum, and is zero at approximate-
ly 180- and 240-eV photon energy. At these energies the
angular distribution in the dipole approximation would
be isotropic and any anisotropy observed must be due to
dipole breakdown.

On the theoretical side, while the calculations reported
here provide a first-order estimate of the eFects of dipole
breakdown, further work is needed to extend the calcula-
tion of the angular distribution parameters to cases where
intershell coupling is expected to modify the single-
electron results.

TABLE XI. A comparison of relativistic (Ref. [17]) and non-
relativistic (this paper) cross sections (in kb) and P parameters
for the xenon 4d subshell at selected energies. The listed relativ-
istic cross sections are the sum of the spin-orbit-split

2
and 2

cross sections. P parameters are shown only for the 3d3/2 com-
ponent and a 2.5-eV adjustment was made in the 4d binding en-

ergy in order to compare at equal electron energies.
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APPENDIX A

In order to obtain explicit expressions for the parame-
ters y and 5 in terms of phase shifts and dipole and quad-
rupole radial matrix elements, summations over m, I', l",
and 1. must be performed over the product given in Eq.
(19) of the dipole and quadrupole matrix elements, where
the selection rules limit the values of I' and l" to I'=l+1,
l"=I,l+2. Defining the quadrupole radial matrix ele-
ment

Qcu!" ( R

nlrb

R col" ~ (A 1 )

3coA

2[lRt, + (I + 1)R(+, ]

the y and 6 parameters may be expressed in terms of the
radial dipole matrix elements R I+, and the quadrupole
radial matrix elements as

3cocKy=
2[lRi i +(l+ 1)Ri+i ]

X g A i t-R t Q„ i cos(5i- —5(.),

Photon energy
(eV)

IBN R X +Bi', i'R~, i'Q~ i cos(oi —6, ) . (A2)

132.3
151.1
184.0
676.5

1041.0
1486.6
4509.0

773
399
531
354
148
64
2.6

845
405
546
365
152
65
2.0

1.83
0.34

—0.83
1.07
1.31
1.35
1.10

1.83
0.16

—0.72
1.25
1.33
1.31
1.01

The coefficients in Eq. (A2) are given in Table XII. Note
that for s subshells all terms vanish except I'=I+1 and
I"=l+2 and that for p subshells there is no term for
l"=I —2. The equations agree with the previous work of
Refs. [2,3,14]. If individual contributions in terms of the
parameters B, and B3 of Eq. (22) are required, they may
be obtained using the relations B, =5 —y /5:



1850 J. W. COOPER 47

TABLE XII. The coeScients AI t- and BI I- of equation (A2).

AI I- B&
t

1+1

1 —2

1+2

1 —2

—(I (I —1)(1—2)
(21+ 1)(21—1)
21(l —1)(l + 1)
(21+3)(21 —1)

—51(l +2)(l + 1)
(21+3)(21+1)

—sl (1+1)(1—1)
(21+ 1)(21—1)

—21 (I + 1)(l +2)
(21+3)(21 —1)

(1+1)(l +2)(l +3)
(21+1)(21+3)

—I (I+ 1)(l —1)
(21 + 1)(21—1)

I (1 + 1)
(21+3)(21 —1)
1(l + 1)(l +2)

(21+3)(21+1)
—I (1—1)(1+1)
(21+ 1)(21—1)

1 (I + 1)
(21+3)(21 —1)
1{1 + 1)(l +2)

{21+1)(21+3)

83 = —y/5. Similar coefficients are given in Ref. [14].

APPENDIX B

D",'(a, P, y) [D",'(a, P, y) —D"I,(a,P, y)] . (81)

For s subshells only m =0 terms contribute. The product
in Eq. (81) then reduces to

Do'o'(a, P, y)[Do& (a P y) Do —i(a, P, y)]

For s subshells, the selection rules limit the outgoing
waves to p waves for the dipole term of the matrix ele-
ment of Eq. (17) and to d waves for the quadrupole term
of Eq. (18). As shown previously [2,14] and is apparent
from Eq. (26), 5=0 and y=3acog 2/R, cos(52 —5, ), or
alternatively 8, = —83. The result can be obtained by
considering the angular part of the product of Eqs. (17)
and (18), which is

for two radial orbitals at different energies. Multiplying
each orbital equation by r~ times the other orbital and in-
tegrating over r yields

X (RTr~ R„I )[l(1+1)—l(l+1)]

d R d R„—I+ r r — — r~R„I
d d

(C3)

Integrating by parts, the derivative terms reduce to

d R„I d R„—IrI'R —
I

— r I'R„I
=&6cos psinpcosa, (82)

where p=8 and a=/. This result shows that the m =0
component of the sum over the values of m =0, +1 in Eq.
(19) only contributes to y. Nonzero values of 5 are due
to the m =+1 components [21].

R„—I p p —l r~ R„l +2pr~
—2 i dR„I

(C4)

APPENDIX C

The "velocity" and "acceleration" forms of the radial
dipole matrix element for an electron moving in a central
potential have been derived previously [16]. The same
procedure can be used to obtain alternative forms for the
radial matrix elements corresponding to higher mul-
tipoles. Consider the radial equations

For p =1 Eq. (C4) reduces to the integral over the prod-
uct of one radial wave function and the derivative of the
other radial wave function and with Eq. (C3) yields the
velocity form for the dipole radial matrix element. For
p =2 the velocity form for the quadrupole matrix ele-
ment is

(R„,r'R )=-1
nl n( (E

n

d R ni l( l + 1 )
(C 1)

X (R —(R„() [l(l + 1)—l(l + 1)—2]

dn„,
] (C5)

GjR—
+ V( )— +E R —=0,

dr .2 n nl

Since nl may represent either the initial- or final-state or-
bital there are two forms of the velocity matrix element.
Both were evaluated in the calculations reported here.
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