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QED effects associated with the electron self-energy and vacuum polarization are calculated in
non-Coulomb potentials for atomic states with principal quantum numbers 1 and 2. We consider the
Coulomb potential with finite nuclear size incorporated and using the core-Hartree potential, a local
version of the Hartree-Fock potential. The calculations are carried out for ions with nuclear charges
in the range Z=60-90. For the Coulomb potential with finite nuclear size, substantial discrepancies
with an earlier tabulation are found. Radiative corrections are calculated for lithiumlike uranium
using the core-Hartree potential and comparison with experiment is made.
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I. INTRODUCTION

The study of the spectra of highly charged ions with
more than one electron presents a fundamental challenge
to the understanding of the relativistic many-body prob-
lem and its proper setting in the framework of quan-
tum electrodynamics (QED). While this problem could
be posed for the energy levels of any atomic system, the
effects of interest, relativistic and QED corrections, are
generally much smaller than the wave-function uncer-
tainties arising from approximations in the solution to
the Schrédinger equation. In highly charged ions, how-
ever, the QED corrections are enhanced by powers of
the nuclear charge Z at the same time that the 1/Z ex-
pansion [1] allows for a rapidly convergent many-body
perturbation-theory (MBPT) solution to the Schrodinger
equation. Because of considerable progress in the ex-
perimental measurement of the spectra of a number of
isoelectronic sequences, a new set of systems in which
precision tests of QED can be made is becoming avail-
able. The standard tests of QED, from the study of lep-
ton anomalous magnetic moments, the spectra of one-
electron atoms, and the spectrum of neutral helium, can
now be extended to highly charged ions, which test the
theory in intense Coulomb fields.

After closed-shell ions, the simplest many-electron ions
are alkali-metal-like, with one valence electron outside a
closed shell. Application of MBPT to such ions results in
a clear pattern of convergence [2]. When MBPT calcula-
tions are compared with experiment, systematic discrep-
ancies result that are identified as QED effects. These
discrepancies can be compared to the predictions of QED
for the case when the electrons in the core are not present,
as this reduces the problem to the well understood one-
electron Lamb-shift calculation [3]. The one-loop Lamb
shift scales as Z%a?® a.u., and comes from the evaluation
of the Feynman diagrams of Figs. 1(a) and 1(b), which
are associated with the electron self-energy and vacuum
polarization, respectively. When the one-electron Lamb-
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shift is included, it is seen that the bulk of the experi-
mentally inferred QED effect is accounted for, but this
effect is systematically smaller than the one-electron pre-
diction. This result is intuitively obvious, since the ne-
glected core electrons should act to reduce the effective
nuclear charge seen by the valence electron, thereby re-
ducing the one-electron Lamb shift. It is possible to intro-
duce various phenomenological methods of incorporating
this effect by interpolating the one-electron Lamb-shift
tables [4]. However, a more fundamental approach is
to calculate the effect directly from QED. This can be
done using S-matrix techniques [5]. These techniques
employ the symmetric extension of the Gell-Mann-Low
formalism (6] derived by Sucher (7] to express atomic en-
ergy levels directly in terms of Feynman diagrams in the
Furry representation [8]. For highly charged ions only
a limited set of diagrams need be considered because of
the 1/Z expansion. We illustrate in Fig. 2 representative
diagrams involving two-photon exchange. Some of these
diagrams can be shown to directly correspond to MBPT,
and others are directly connected with the Lamb shift
[9]. However, the electron propagators in these diagrams
are not necessarily Dirac-Coulomb propagators, but are
rather propagators in the local potential used to define
the Furry representation. This potential can be chosen
to be the Coulomb potential of a point nucleus, in which
case the diagrams of Fig. 1 have already been evalu-
ated and attention can be focused on the diagrams of
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FIG. 1. (a) Electron self-energy diagram. (b) Vacuum
polarization diagram.
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Representative two-photon diagrams.

Fig. 2. However, if one is interested in calculating radia-
tive corrections in a many-electron atom, even at high
Z the Coulomb potential is not an appropriate starting
point. In addition, if one wants to account for the effect
of the finite size of the nucleus on radiative corrections,
a non-Coulomb potential should be used. Thus there
is considerable interest in evaluating the Lamb shift in
non-Coulomb potentials that incorporate this additional
physics. The purpose of this paper is to present such
calculations. We will see that when these calculations
are combined with MBPT for lithiumlike uranium, agree-
ment with experiment at the few tenths of an eV level is
found. However, the QED parts of the diagrams of Fig.
2 can contribute at the same level, and must also be cal-
culated before it can be claimed that this comparison is
testing QED: they will be discussed in the conclusion. It
should be emphasized that this paper is the first step in
a two-part process of evaluating the one-loop Lamb shift
in non-Coulomb potentials and then calculating in the
same non-Coulomb potentials the QED part of the dia-
grams of Fig. 2. The plan of the paper is as follows. In
Sec. II we describe the non-Coulomb potentials we use.
In Sec. III an overview of the self-energy calculation is
given, followed in Sec. IV by a detailed description of the
present calculation and a set of tables. Finally in Sec. V
we compare with other calculations and experiment, and
discuss directions of future progress.

II. CHOICE OF NON-COULOMB POTENTIALS

We consider two different non-Coulomb potentials in
this paper. The first is appropriate for one-electron ions
with the nuclear finite size taken into account. When this
finite size is modeled with a uniform charge distribution
or a shell of charge, analytic methods can be used to
treat the electron Green’s function. However, because
our approach is purely numerical, we can choose instead
the more realistic Fermi distribution, in which

Lo 1)

plz) = m,

where, following Ref. [10], we choose a=0.523 fm and ¢
so that the root-mean-square radius obeys

(r?)1/2 = (0.836A/3 + 0.570) fm (2)

if the radius was not explicitly measured, and the mea-
sured result otherwise.

For the case of one-valence electron ions, we want a lo-
cal potential that approximates the Hartree-Fock poten-
tial, which would significantly complicate the calculations
because of its nonlocality. A local potential that has ele-
ments of self-consistency and has the physical long-range
behavior appropriate to alkali systems is the core-Hartree
potential, defined by

Ven(r) = Vaue(r) + Y _(24a + 1)vo(a, a;7) 3)
where
w(a,air) = [ ar'=lad(r") + 20 (4)

Here a refers to a state in the core and g, and f, are
the upper and lower components of the associated Dirac
spinors. These states a are determined self-consistently
in the potential Vou(r). If there are N electrons in the
core, the long-range behavior of this potential will be
—(Z—N)/r, so that high-Rydberg valence-electron states
will see the correct potential.

III. ELECTRON SELF-ENERGY CALCULATIONS

The Lamb shift has two distinct contributions, vacuum
polarization and electron self-energy. These two effects
have been intensively studied for hydrogenic ions. Vac-
uum polarization is comparatively simple, and has been
treated by numerous authors [11]. The self-energy is con-
siderably more difficult to treat. For low Z, a perturba-
tive expansion in (Za) has been carried out [12] to order
Z8a®. For high values of Z, this expansion breaks down,
and numerical methods are needed to carry out the calcu-
lation nonperturbatively. The original approach to this
problem was introduced by Brown, Langer, and Schaefer
(BLS) [13] in 1959, and was used to calculate the 1s en-
ergy shift of mercury by Brown and Mayers [14]. Analytic
and numerical errors in these papers were later corrected
in Ref. [15]. For brevity we will refer to this calcula-
tional method as the BLS method in the following. This
method was used to calculate finite-nuclear-size effects
in Refs. [16] and [17]. A somewhat different method of
calculation was employed by Mohr [3] for the very-high
accuracy evaluation of the self-energy for the Coulomb
case for n = 1 and 2 states, and more recently by Kim
and Mohr [18] for n = 3, 4, and 5 states. In a recent
paper [19] we reported an extension of the BLS method
to n = 2, 3, and 4 states. This extension consisted of
including substantially more partial waves than in ear-
lier work and controlling the leading 1/12 behavior of the
partial wave expansion. An important improvement of
the method has recently been suggested by Snyderman
[20] and numerically implemented by Blundell and Sny-
derman [21], who found that it leads to a rapidly con-
vergent partial wave expansion. We have modified our
approach to incorporate this improvement, and find ex-
cellent agreement with the Coulomb results presented in
[21] and the non-Coulomb results recently presented by
Blundell [22].
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The electron self-energy (SE) of a state n is given by

d4k ezk(x-—x-
— 2 3,. 13,/
AE,(SE) = —ie /d rdr/(2 Y R e
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—5——Un(r)VuSr(r,1’; En — ko)y*¢n(r’) — 6m® / B rgn(r)Pa(r), (5)

where 6m(? is the ultraviolet divergent electron self-mass and the electron propagator in an external potential V(r)

satisfies the equation

Sp(r,r';E) = 5%(r,r’;E)+/d3$S%(r,X; E)vV (x)Sg(x,r; E)

+ / Bz d%y S (r, x; EYyoV (x)Sr(x, y; EYroV (¥)S2(y, r'; E) (6)

with S%(x,y; E) being the free-electron propagator. The
ultraviolet divergences of the self-energy are associated
with the first two terms of Eq. (6), with the third term
giving a finite contribution. We will in the following re-
fer to the first, second, and third terms of Eq. (6) when
put in the first term of Eq. (5) as the zero-potential, one-
potential, and many-potential terms, respectively. The
BLS method involves isolating the zero-potential term.
This is done by evaluating the first term in Eq. (5) by
explicitly subtracting S% from Sr in coordinate space,
and adding the S%, term evaluated in momentum space,
back in. However, whlle part of the latter term directly
cancels the second term of Eq. (5), an ultraviolet diver-
gence associated with the electron wave-function renor-
malization constant remains in that term even after that
cancellation. This divergence can be expressed as an in-
tegral over w of the form [ dw/w, where this variable is
the time component of the d*k integration after a Wick
rotation ko — iw. When the same Wick rotation is car-
ried out for the term involving the difference of Sr and
S%., a canceling J dw/w integral results, so that a finite
answer is obtained after combining all terms. This is be-
cause this difference still contains the one-potential term,
which has a divergent vertex renormalization constant
that cancels with the wave-function renormalization con-
stant by Ward’s identity. This answer, referred to here
as the main term, must be combined with the finite part
of the S} term and a term called the pole term com-
ing from the contour shift in the Wick rotation involving
the complete or partial encircling of more deeply bound
or degenerate states, respectively. By far the most diffi-
cult numerical problems of the BLS method arise in the
evaluation of the main term. This is because an infinite
partial-wave expansion must be carried out to get the in-
tegrand as a function of w, which for high w behaves as
1/w. After the canceling 1/w term from the S term is
included, the high-energy behavior of the integrand falls
off more rapidly with w. However, significant contribu-
tions to the Lamb shift come from high values of w, and
the fact that the partial-wave expansion can only be car-
ried out approximately becomes a problem here. That
is because the expansion does not become asymptotic at
the values of | we were able to control, about I = 100,
for high values of w. Therefore it was necessary to in-
troduce fits for the asymptotic w dependence of the inte-

—

grand using the relatively low values of w, on the order of
a few electron masses, where we retained control of the
calculation. Different fits gave consistent values for the
self-energy, but could differ by several thousandths of an
atomic unit. At this level of accuracy the BLS method
does allow the calculation of the electron self-energy in
non-Coulomb fields, but for higher accuracy some new
method is needed.

We have chosen for this new method a variation of
the method used by Blundell and Snyderman [21]. The
basic idea is to evaluate only the many-potential term
in coordinate space, using a partial-wave expansion, and
to evaluate the one-potential term explicitly in momen-
tum space. This isolation of both the zero-potential and
one-potential terms allows the direct cancellation of all
ultraviolet divergences at the cost of a more complicated
momentum space integration. However, the great ad-
vantage of this is the increased convergence of the main
term, which now for large ! falls as 1/13 rather than 1/12.
In addition, the integrand falls more rapidly at high w,
and no cancellation of individually logarithmically diver-
gent terms is required. Blundell and Snyderman chose to
evaluate this modified main term using the third term of
Eq. (6) directly, representing the free and bound prop-
agators as spectral representations based on finite basis
sets constructed from B splines. Here, however, we note
that the same result follows from subtracting the one-
potential term as well as the zero-potential term from
the bound-state propagator. Although the same basic
quantity is being evaluated, it should be emphasized that
the method of calculation is completely different, and
the good agreement between the two methods provides a
nontrivial cross-check. Recently a novel approach to the
calculation of the self-energy has been proposed [23, 24]
in which Eq. (5) is evaluated without any subtractions
other than the self-mass counterterm, which is evaluated
numerically. When applied to lithiumlike uranium, this
method gives good agreement [23] with the the results of
Refs. [19,22] and the present paper.

IV. CALCULATION

The calculation proceeds in detail as follows. For pur-
poses of illustration, the individual terms of a particu-



1820

lar calculation, the 2s;/, and 2p, /o self-energies of lithi-
umlike uranium in the core-Hartree potential, are given
in Table I. We first consider the zero- and one-potential
terms that were subtracted from the first term of Eq.
J
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(5). They are evaluated in momentum space after being
made finite with dimensional regularization. The zero-
potential term has two kinds of ultraviolet divergence,
and can be written

a8 = om® [ @pin(e1n(e) - 5= (S 41) [ @oidne) (= munle)

a 1—¢€2 +p?/m? -
2 [ [ o e g (p) - 41— 2/2)n(). ™
The constant C is
C = (4m)¥?’r(1 + €¢/2), (8)

where ¢ is a small positive quantity related to the dimension of space-time n by n = 4 — ¢, and is to be distinguished
from the energy of state n in mass units €, = E,/m. The self-mass counterterm is

sm® — T2 (£ + 1) )
™ 2e
The one-potential term can be reduced to
ARt = 2 (9 -1) | dapz/?n(pxzf— m)n(p)
s
d®pd d3pd3p’ N
47r3 / pdp/ dx/ B 2wn(p)vown(p )In ( ) + ——/ pdp/ dx/ p—pEA’ (10)
where
A = p*E2 — p’lzp + (1 — z)p'* + p(m® — E}) + pzp® + p(1 — 2)p (11)
and
N = —2[m? + EX(1 - p)*|9n(P)Y0¥n(P ) + 8ME.(1 — p)¥n (P )¥n(P’)
+2E,(1 = p)Pn(P)Y - (P+ P’ —2Q)¥n(p’) — 205 (P)a - (P’ — Q) - (P — Q)¥n(P), (12)

where

Q=plep+(1-2)p']. (13)

The zero- and one-potential terms can now be combined
with the self-mass counterterm to give an ultraviolet fi-
nite result. Thus the zero-potential term that is numer-
ically evaluated, which is denoted as E(®~F) is taken to
be Eq. (7) without the §m and C/e terms, and the one-
potential term, denoted as E(!"F)  is taken to be Eq. (10)
without the C/e term. While the zero-potential term is
relatively simple to evaluate, the multidimensional inte-
gration in the one-potential term presents more difficul-
|

[
ties, since even after carrying out the p integration ana-
lytically it is a four-dimensional integral. We evaluated it
numerically using Monte Carlo methods [25], as opposed
to the Gaussian techniques used in Refs. [21] and [22].

After these subtractions are carried out, we are left
with a finite integral we evaluate in coordinate space that
we call the modified main term, to distinguish it from
the main term in the BLS method. The Wick rotation
that takes kg — ‘w passes bound-state poles, however, in
exactly the same manner as in that original scheme, since
the one-potential term being subtracted has no bound
state poles. Thus the pole terms are still given by

d3z d83
At = o 3 [ IS 0na (<) Paly )1 e (y)e el

€a<E€n

+ Z /d zd y¢n(x)7uwa(x)¢a(y)’yuwn(3’)

€q =€n

The second term in the above equation enters only in the
Coulomb case where states can be degenerate. We evalu-
ate here only the real part of AEng: the imaginary part
either describes the decay rate of a one-electron system or

(14)

f
else cancels an imaginary part from the Breit interaction
for many-electron systems.

The modified main term is evaluated as follows. The
bound and free-electron propagators are evaluated nu-
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TABLE I. Breakdown of self-energy for the the 2s; /5 and
2py2 states of lithiumlike uranium: core-Hartree case with
finite nuclear size (in a.u.).

Term 2812 2171/2 2?1/2 - 251/2
Pole 10.2707 11.8932 1.6225
E®P —9.0694  —10.4575 —1.3881
EvFP 6.9313(5) 6.2110(4) —0.7203(6)
=0 —6.4389 -1.7112 4.7277
l=1 0.3727 —5.9712 —6.3439
l=2 0.1200 0.2077 0.0877
=3 0.0495 0.0687 0.0192
l=4 0.0244 0.0296 0.0052
l=5 0.0135 0.0151 0.0016
l=6 0.0081 0.0087 .0006
=7 0.0052 0.0054 0.0002
=38 0.0035 0.0036 0.0001
=9 0.0025 0.0025 0.0000
=10 0.0018 0.0018 0.0000
=11 0.0013 0.0013 0.0000
=12 0.0010 0.0010 0.0000
l=13-0 0.0056(2) 0.0056(2) 0.0000(1)
Self-energy 2.3029(5)  0.3153(4) —1.9876(6)
Uehling potential —0.5783 —0.0961 0.4822

merically in terms of solutions to the Dirac equation reg-
ular at the origin and infinity using a 4000-point radial
grid, and the main term is evaluated along the lines of
the BLS method. This leads to a table of results for
given values of w and [. Next the one-potential term is
evaluated for exactly the same values of w and [ and sub-
tracted from the previous table. At this point, because
the w integration is finite, we carry it out with Gaussian
integration. It is necessary to take care with this inte-
gration at low w when dealing with the finite-nuclear-
size case because a large contribution that is related to
the pole terms is present when w ~ €, — €,, where a is
a state nearly degenerate with n. The large w region,
which was the principal source of numerical difficulty in
the BLS method, can be directly integrated over with the
present method because low partial waves do not present
the same difficulties. Typically we integrated from zero
to five electron masses with a large number of Gaussian
points (isolating the very small w region for the finite nu-
cleus case) and then transformed the remaining integral
to infinity to a finite region which could be evaluated with
a smaller number of Gaussian points. Once the w integral
for fixed values of [ was carried out, we found a set of |
values that fell for high [ as 1/13. The result is dominated
by very low I, with the bulk of the contribution coming
from [ = 0,1, and 2. We have explicitly calculated up to
I = 12, and found that the partial wave expansion falls
almost exactly as 1/I3 for =10, 11, and 12. The coeffi-
cient was determined from the /=12 result, and used to
sum the remainder of the partial wave expansion, and
an error estimate made by carrying out the same pro-
cedure with a coefficient found from the /=10 and (=11
results. That error was typically 0.0001 a.u., and could

easily be reduced by either including more partial waves
or using a more sophisticated extrapolation procedure.
E©-P) EQ1-P) the pole term EP°€, and the partial wave
expansion of the modified main term are presented for
lithiumlike uranium in Table 1.

We now turn to a discussion of vacuum polarization.
Because this is dominated by the Uehling potential, we
incorporate screening in this potential only, leaving the
screening corrections to the higher-order terms of the
Wichmann Kroll expression for a later work. The Uehling
potential for a distributed charge density p(z) is

a? [ . e f2 1
= 212 (24 =
U(r) 371'/0 dt( 1) <t2 + t4)
—2mt|r—x|
r

X / d3zp(x) E—‘———_— .

X (15)

We evaluate this with an adaptive Gaussian integra-
tion scheme. The charge density is taken to be the
nuclear charge density alone for the one-electron case,
and that density reduced by the electronic charge den-
sity of the core electrons for the core-Hartree case. As
we found very good agreement for the finite-nuclear-size-
case (FNS) with the tabulation in Ref. [10], only the
core-Hartree Uehling potential results are given below.

V. RESULTS AND DISCUSSION

It is now a straightforward matter to calculate the
Lamb shift in any local non-Coulomb potential desired.
We will not present the point-Coulomb results here, as
they have already been accurately determined in Refs. [3]
and [18]. However, for each state considered here they
were calculated and found to equal the known results
to within the estimated numerical precision. We first
present the self-energy results for the finite-nuclear-size
case. In Table II the self-energy of the 1s; /; state for this
case is presented for Z = 60, 70, 80, and 90 and compared
to the previous calculation of Johnson and Soff [10]. It is
seen that the previous results are consistently too large
by about 40%, which is presumably due to the numerical
difficulties of the BLS method described above. An in-
terpolating formula that is valid at under the 0.001 a.u.
level for intermediate values is

AE(SE)rns(1s1/2)

= —(Z Rrms/a0)?7[986Z3 +0.0642°)a3 /7 (16)

where Ryms is the root mean square radius tabulated in

TABLE II. Finite-nuclear-size corrections to the electron
self-energies of the 13/, states of hydrogenlike ions (in a.u.).
Z Present calculation Ref. [10]
60 —0.0030(1) —0.0048(13)
70 —0.0107(1) —0.0181(30)
80 —0.0366(2) —0.0598(56)
90 —0.1249(2) —0.1880(110)
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TABLE III.
self-energies of the 2s;/; states of hydrogenlike ions (in a.u.).

Finite-nuclear-size corrections to the electron
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TABLE V. Core-Hartree self-energy for n = 2 states of
Li-like ions (in a.u.).

Z Present calculation Ref. [10] z 28172 2p1/2 2p3/2
60 —0.0004(1) —0.0007(3) 60 0.3952(5) 0.0078(5) 0.0386(5)
70 ~0.0017(1) ~0.0029(6) 70 0.7180(5) 0.0351(5) 0.0807(5)
80 ~0.0065(2) —0.0103(13) 80 1.2402(5) 0.1040(5) 0.1534(5)
90 ~0.0239(4) ~0.0343(30) 90 2.0801(5) 0.2641(5) 0.2703(5)

Ref. [10] and v = /1 — (Za)?. In Table III the same
calculation is presented for the 2s,/, state. In this case
the results of Ref. [10] are again seen to be about 40%
too large. It is possible to interpolate intermediate values
to an accuracy of 0.001 a.u. by using

AFE(SE)rns (281/2)

= —(Z Rims/a0)*7[84.92°% 4 0.0252% /7. (17)

In Table IV the self-energy for the 2p,,, state is pre-
sented. In this case the overestimate of Ref. [10] is
about a factor of 2.5, and an interpolating formula good
to 0.0001 a.u. is

AE(SE)rns(2p1/2)

= (Z Rims/20)*(Z)?[11.623 — 0.008Z%)a3 /7. (18)

The finite-nuclear-size effect for 2ps/, states was found
to be entirely negligible and is not tabulated here. We
note in passing that in Ref. [19] we estimated the finite-
nuclear-size effect for the 2p;/2-251/; splitting in uranium
to be 0.6 eV. Although not explicitly quoted, an error of
0.2 eV was associated with this calculation. With the
present more accurate method and a Fermi distribution
with ¢ =7.140 fm, a=0.523 fm, we now obtain a splitting
of 0.794(4) eV, which is consistent with the results of Ref.
[22] and a recent calculation of Mohr and Soff [26].
Tables V and VI present the core-Hartree results for
the electron self-energy and Uehling potential part of
vacuum polarization, respectively, appropriate for the
lithiumlike isoelectronic system. Recently a rather com-
plete calculation of these results has been made by Blun-
dell [27]: the present calculation is in excellent agree-
ment with his. However, the only experimental result in

TABLE IV. Finite-nuclear-size corrections to the electron
self-energies of the 2p,,, states of hydrogenlike ions (in a.u.).

Z Present calculation Ref. [10]
60 —0.00001 —0.00002
70 —0.000 06 —0.00015
80 —0.00036(1) —0.00095
90 ~0.00193(4) —0.00467(10)

this range is the measurement of the 2p; /2-2812 split-
ting in lithiumlike uranium [28], which was found to be
280.59(10) eV. Our present result for the contribution to
this splitting from the sum of the self-energy and Uehling
potential part of vacuum polarization given in Table I is
—1.5054(6) a.u., and is consistent with, but more accu-
rate than, our previous result [19] —1.504(3) a.u. We
note that while this result is in agreement with Refs.
[22] and (23], a discrepancy with the calculation of Indel-
icato and Mohr [29] remains to be explained. However,
the theoretical situation has changed slightly because of
a sign error made in Ref. [30] in the nuclear polariza-
tion contribution. This contribution to the 2p;/2-2s1/2
splitting was given as —0.126 eV, when it should have
been +0.126 €V. The magnitude of this number was ob-
tained by scaling the 1s;/, calculation presented in Ref.
[31]: however, the calculation for the n =2 states was
later carried out explicitly in Ref. [17], and the direct
calculation gives 0.18(5) eV. This changes the non-QED
contribution to 322.55(6) eV, which leads to an experi-
mentally inferred QED effect of —41.96(12) eV. Adding
the self-energy and Uehling potential results from Table I
to the Wichmann-Kroll, higher-order, and relativistic re-
coil corrections of —0.024(5) a.u. obtained from Ref. [10],
the theoretical QED effect calculated here is —41.58(14)
eV, which leaves a 0.38(18)-eV discrepancy. However, as
emphasized in the introduction, the QED parts of the
graphs of Fig. 2 remain to be calculated. While cer-
tain sets of these graphs have been considered [27, 29],
until a complete calculation has been carried out, one
can only observe that evaluation of the Lamb shift in
the core-Hartree potential accounts for the bulk of the
experimentally inferred QED effect.

In conclusion, we have presented in this paper a set
of one-loop Lamb-shift calculations in non-Coulomb po-
tentials. Higher accuracy than possible with the BLS
method has been achieved by adopting the improvements
of Refs. [21] and [22]. Even though entirely different nu-

TABLE VI. Uehling potential part of core-Hartree vac-
uum polarization for n =2 states of Li-like ions (in a.u.).

Z 2s1/2 2p1/2 2p3/2
60 —0.05765 —0.00318 —0.000 27
70 —0.12329 —0.01000 —0.000 73
80 —0.25187 —0.02874 —0.001 68
90 —0.50415 —0.078 77 —0.003 49
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merical methods are used, there is excellent agreement
between the results of the two groups. Large discrepan-
cies with a previous tabulation of finite-nuclear-size ef-
fects on the self-energy have been found, and the theoreti-
cal status of lithiumlike uranium updated. The 0.4(2)-eV
discrepancy now present in that system presents an out-
standing challenge to relativistic many-body theory, and
the complete evaluation of the Feynman graphs of Fig. 2
is now a central problem for the physics of highly charged
ions.
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