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We present ab initio calculations of the screened self-energy and vacuum polarization for the res-
onance transitions of Li-like, Na-like, and Cu-like ions, for a degree of ionization of about 10 or
greater. The direct part of the Dirac-Pock potential is incorporated to all orders in the radiative cor-
rections, and exchange effects are added in leading order. When combined with previous calculations
of correlation and nuclear effects, our results agree with experiment at the level of experimental un-
certainty with only a few exceptions, most notably the low-Z part of the Cu isoelectronic sequence.
The calculations agree well at low Z with phenomenological estimates of the @ED terms based on
scalings of the known hydrogenic values but deviate slightly at high Z. We discuss the leading
omitted two-photon @ED terms.

PACS number(s): 31.20.Tz, 12.2G.Ds, 31.30.Jv

I. INTRODUCTION

The calculation of radiative corrections in many-
electron systems is an outstanding problem in theoretical
atomic physics. The need for rigorous calculations has
been highlighted by the development of high-precision
spectroscopy for ions of increasingly high charge state.
For example, Schweppe et al. [1] have measured the
resonance transition in Li-like U with an accuracy of
0.1 eV, about 0.2%%uc of the radiative corrections to the
transition energy, and comparable accuracy has been
achieved by Cowan et al. [2] in Na-like Pt (Z = 78),
and by Seely et aL [3] in high-Z Cu-like systems. A
partial theoretical treatment of such measurements is
provided by relativistic many-body perturbation theory
(RMBPT), which Johnson, Blundell, and Sapirstein [4—7]
have used to calculate highly converged relativistic cor-
relation and Breit corrections for one-valence-electron
ions. However, the estimation of the large @ED contri-
butions to the spectra has in most cases relied on scaling
the accurately known hydrogenic values through plau-
sible, though strictly untested, phenomenological pre-
scriptions. An ab initio calculation of the many-electron
@ED terms allows one to use the experiments to test
the bound-state @ED formalism itself rather than to test
theoretical approximation schemes. Since for high-Z ions
the intense nuclear Coulomb field must be included non-
perturbatively in the radiative corrections, such a test of
@EDcomplements the many existing tests in weak exter-
nal fields, such as the "g —2" experiment, the hyperfine
structure of muonium, or the @ED terms of neutral he-
lium.

In this paper we present a rigorous evaluation of a sub-
set of @ED terms that, when combined with RMBPT
energies, agrees well with experiment for one-valence-
electron ions over a large range of the Periodic Table,
from ions with a degree of ionization of about 10, the low-
est Z value we calculate, up to Z = 92. The agreement
with experiment is within one to two experimental stan-

dard deviations with only a few exceptions, most notably
the Cu isoelectronic sequence at low Z. We speculate
that here the disagreement is due to missing high-order
correlation diagrams.

Until recently, precise values for the self-energy in ex-
cited states of high-Z ions were known only for point-
nucleus hydrogenic systems through the work of Mohr
[8—10] and Mohr and Kim [ll]. Here we wish to consider
the modification, or "screening, " of the hydrogenic @ED
terms in many-electron systems due to correlation eKects.
A possible approach to this problem is to use perturba-
tion theory, expanding about the bare nuclear potential
V„„,(r) and treating the entire electron-electron inter-
action as a perturbation [12]. This perturbation series,
however, converges rapidly only for few-electron systems
at high Z, for which the electronic mean field V„,„(r) is
small compared to the nuclear Coulomb field. Although
such systems provide some of the most interesting tests
of @ED in intense fields, we wish here to consider as well
ions in which the number of core electrons N is a large
fraction of the nuclear charge Z. Then, as we will see,
convergence of perturbation theory improves significantly
if the perturbation series is developed instead about a
"reference potential" V(r) = V„„,(r) + V„,„(r).

To adopt this second approach, we require an algo-
rithm for evaluating the lowest-order self-energy in a gen-
eral potential V(r). Since the screening potential V„,„(r)
is ideally some form of self-consistent potential defined
numerically on a radial grid, one cannot make use of the
special analytic properties of the Coulomb potential that
have led to such high accuracy for hydrogenic ions. A
fully numerical procedure for a general potential has been
developed by Cheng, Johnson, and Sapirstein [13], who
extended the algorithm of Brown, Langer, and Schae-
fer [14]. This algorithm suffers, however, from a quite
slowly converging partial-wave expansion with asymp-
totic form 1/Is. After taking the partial-wave expansion
to L 100, already hard for a numerically defined po-
tential, Cheng, Johnson, and Sapirstein [13] still achieved
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a numerical precision worse than the best experimental
precision at high Z.

A central feature of the present work is a recently in-
troduced algorithm [15—17] for evaluating the self-energy
in an arbitrary local potential, which has an improved
partial-wave convergence as 1/Is. As shown in [17], this
more rapid I convergence, combined with a cancellation
of the high-I contributions in a transition, permits calcu-
lation of the lowest-order self-energy in a transition with
a numerical precision of at worst 0.003 eV for Z & 70,
much better than the best experimental precision at high
Z. We use this technique for low Z also, Finding a nu-
merical precision that becomes comparable to the exper-
imental precision at a degree of ionization of about ten.
By a suitable choice of V„,„(r), we can account for the
bulk of the screening effect, as was done in Ref. [13].
We consider also other screening effects that can be ex-
pressed as off-diagonal matrix elements of the self-energy
or vacuum polarization.

By comparing the ab initio self-energy with the scaled
hydrogenic value for a given model potential, we can also
test quantitatively the phenomenological schemes com-
monly used to obtain screened QED corrections. Such
schemes can be usefully incorporated in production codes
for problems where high precision is not so important.
Most existing schemes follow the prescription of scaling
the hydrogenic QED according to the probability den-
sity at the origin, or through some closely related proce-
dure. Our results show that these methods give excellent
approximations for s states for low to medium Z. At
Z = 92, the deviations are small, though just significant
at the level of experimental error for Li-like U.

The paper is organized as follows. In Sec. II we de-
scribe the subset of Feynman diagrams included in our
treatment of QED screening. Numerical results are given
in Sec. III, and compared to experiment and other calcu-
lations. Section IV discusses the dependence of the QED
screening on the normalization at the origin. Finally, in
the conclusions, we discuss the prospects for evaluating
omitted QED terms and speculate on their likely size.

II. FORMALISM

A QED perturbation expansion about a general ref-
erence potential U(r) may be developed by adopting a
Furry representation of QED in the potential V(r) and
applying, for example, the theorem of Cell-Mann and
Low [18—20]. As discussed in [21], this perturbation the-
ory contains consistently both the relativistic correlation
terms of RMBPT and the radiative corrections of inter-
est here. Our QED treatment is then a natural extension
of the RMBPT work, which we now brieHy describe.

In their RMBPT method [4—7], Johnson, Blundell,
and Sapirstein considered only the correlation-type Feyn-
man diagrams in which photons are exchanged from one
atomic electron to another. They chose the potential
Vsc,„(r) to be the nonlocal V Dirac-Fock potential for
the core, VDi;(r). For the photon propagator, they used
Coulomb gauge and neglected the frequency dependence,
that is, set ko in the momentum-space representation (see
the Appendix) equal to zero. For the electron propaga-

tor, they neglected negative-energy electron states in the
spectral decomposition. The resulting perturbation se-
ries generalizes the nonrelativistic one by replacing the
Coulomb interaction with the sum of the Coulomb and
Breit interactions, and by replacing Schrodinger electron
states with Dirac states belonging to the positive-energy
branch of the spectrum. This perturbation series can
also be thought of as arising in the "no-pair" approx-
imation of Sucher [22], using the Dirac-Coulomb-Breit
many-electron Hamiltonian projected on to positive-
energy states. Johnson, Blundell, and Sapirstein evalu-
ated terms up to third order in the Coulomb interaction,
as well as the first-order Breit interaction, and second-
order terms with one Breit and one Coulomb interaction.
They also evaluated the frequency-dependent part of the
one-photon exchange diagram, and estimated the small
nuclear recoil effect by using the nonrelativistic nuclear-
kinetic-energy operator. The effects they omitted, then,
include the self-energy and vacuum polarization, as well
as the neglected negative-energy effects, and the photon-
frequency-dependent (retardation) effects in two-photon
diagrams.

We now turn to the self-energy and vacuum polariza-
tion, given in lowest order by the Feynman diagrams in
Fig. 1. The "screening" corrections to these effects are
given in lowest order by diagrams in which an additional
photon is exchanged with another atomic electron. I et
us consider initially the perturbation expansion about
the bare nuclear Coulomb potential, in which the en-
tire electron-electron interaction forms the perturbation.
The first-order screening corrections are then given by
the diagrams in Fig. 2. [Note that we have not shown ex-
plicitly a set of "energy correction" or "derivative" terms
that make the vertex-correction diagrams 2(b), 2(f), 2(j),
and 2(m) finite [12].] We classify these diagrams accord-
ing to whether the radiative correction acts on a valence
line [diagrams 2(a)—2(h)] or a core line [diagrams 2(i)—
2(n)]. The valence screening terms dominate, but the
core terms, which represent the relaxation of the core
during the transition, are also significant. A further clas-
sification is into direct effects [diagrams 2(a)—2(d) and
2(i)—2(k)] and exchange effects [diagrams 2(e)—2(h) and
2(1)—2(n)], according to the relative alignment of the in-

going and outgoing states.
First we consider the direct valence screening terms

2(a)—2(d). Explicit calculation shows the sum of dia-
grams 2(a) and 2(b) to be roughly N/Z times the lowest-

FIG, 1. Feynman diagrams for the lowest-order bound-
state (a) self-energy and (b) vacuum polarization. v is the
valence state.
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FIG. 2. Feynman diagrams for first-order screening efFects

on the self-energy and vacuum polarization in a one-valence-
electron system. v is the valence state; c is the core state.
Diagrams lacking symmetry about a horizontal line, e.g. , Fig.
2(a) but not Fig. 2(b), are accompanied by their mirror-image
counterpart, Counterterms needed to make these diagrams
finite are not shown, nor are the "energy-correction" terms
that make the vertex-correction terms finite.

order self-energy, where N is the number of core elec-
trons; the vacuum-polarization diagrams 2(c) and 2(d)
are a similar fraction of the lowest-order vacuum polar-
ization. Thus for U + (Z = 92, N = 2), the diagrams
give a 3' reduction of the lowest-order radiative correc-
tions, while for Biss+ (Z = 83, N = 28) we find a much
larger reduction, about 40%. In the former example,
this perturbative treatment is probably adequate, since
second-order direct screening efFects are expected to be
of order 0.03 times the lowest-order efFect, that is, about

I

one-half of an experimental standard deviation. In the
latter example, however, the corresponding estimate sug-
gests a second-order correction of about 35 experimental
standard deviations. This simple type of estimate of the
likely size of second-order corrections gives results larger
than the experimental error for most of the Na-like and
Cu-like measurements considered here, and for the low-Z
Li-like measurements.

In these latter cases, it is useful to sum an infinite
sequence of screening diagrams, which can be done con-
veniently by modifying the potential used to calculate
the lowest-order radiative corrections. We separate the
V i Dirac-Fock potential into local direct and nonlo-
cal exchange parts, VDF = VDF,g;, + VDp, ,» and use the
direct part in the lowest-order radiative corrections, tak-
ing V(r) = V„«(r) + VDF,d;, (r). In this way, diagrams
2(a)—2(d) are effectively absorbed into the lowest-order
diagrams of Fig. 1, together with an infinite subset of
higher-order diagrams in which the core line is inserted
in all ways to all orders in the internal and external lines
of the lowest-order radiative corrections. An alternative
way of expressing this is to consider V(r) above as the ref-
erence potential for the perturbation series. Then, as dis-
cussed in Ref. [21], the screening diagrams of Fig. 2 must
be supplemented by extra diagrams involving a "poten-
tial counterterm" —VDF(r). These extra terms have the
effect of canceling diagrams 2(a)—2(d). After this shift of
reference potential, the first-order screening effects con-
sist of only the core and exchange terms, 2(e)—2(n).

The direct core terms Fig. 2(i)—2(k) can be evaluated
by adding a suitable "valence potential" to the poten-
tial experienced by a core electron. This approach is
described in detail in Ref. [17].

We next consider the exchange diagrams where the ad-
ditional photon is attached to the external leg of the self-
energy or vacuum polarization [Figs. 2(e), 2(g), 2(l), and
2(n)]. We refer to these diagrams as external exchange
diagrams. They reduce to ofF-diagonal matrix elements
of the self-energy or vacuum polarization operator. For
example, Fig. 2(e) may be expressed as

aZ 'l = 2 Re(vIpo[Z(s„) —bm] IP),

where Z(s„) is the bound-state self-energy operator, 6m
is the mass counterterm, and

I4') = —~ ) ) (icl(~p)i(~~)zD~ (sU sc' 12) Icv),
c (core)

(2)

and D""(s„—s, ; ri, rz) is the photon propagator in the
mixed representation [17]. We use the same reference po-
tential V(r) = V„„,(r) + VDF,d;, (r) for the electron states
that we use for the lowest-order radiative corrections.
The Appendix shows that (1) is finite for an arbitrary
state IP), and that it is gauge invariant over covariant

gauges (but not Coulomb gauge as well). The numerical
evaluation of an off-diagonal self-energy follows a simple
generalization of the technique for a diagonal self-energy.
Expressions for (1) and (2) after angular integration are
also given in the Appendix.

The remaining screening diagrams are the znternat ex-
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change diagrams, 2(f), 2(h), and 2(m), in which the ad-
ditional photon enters the internal loop of the self-energy
or vacuum polarization. Grouped with these terms are
"energy-correction" terms that make them finite [12].
The internal exchange effects cannot be obtained simply
in terms of the lowest-order self-energy or vacuum polar-
ization operators, and require separate consideration that
we leave for future work. However, a key result of this pa-
per is the observation that the external exchange screen-
ing improves agreement with experiment to the level of
an experimental standard deviation in most cases (see
Sec. III). This provides some inference that the omitted
internal exchange screening terms are small at the level
of experimental accuracy. This point is discussed further
in the conclusions.

As mentioned above, in perturbation theory about a
reference potential V(r) = V„„,(r) + VDF g;, (r), the first-
order screening is described by just the core and exchange
effects in Figs. 2(e)—2(n). The explicit numerical evalua-
tion in Sec. III shows that these terms are quite small, of
order 1jZ times the lowest-order effect. For medium to
large N, the direct valence terms 2(a)—2(d) thus dom-
inate the core and exchange diagrams 2(e)—2(n). For
the direct valence terms, the core states tend to con-
tribute coherently to the classical core screening poten-
tial. The exchange terms, on the other hand, are sup-
pressed by the angular factor, and further by an over-
lap integral between core and valence states. The core
terms are suppressed by the large excitation energy for
core states. With the reference potential V(r) above,
second-order screening consists of second-order exchange
effects, or combinations of core and exchange effects. A
rough estimate of their likely size is P times the lowest-
order effect, where P is the ratio of first-order exchange
or core terms to lowest-order effects. Such an estimate
is below the experimental error for all transitions stud-
ied. While not rigorous, this estimate does show that
the shift of reference potential produces an improvement
in the convergence of perturbation theory that is signifi-
cant for systems with large N/Z. The improved conver-
gence is least satisfactory for low Z. For higher precision
work at low Z, especially for lower Z values than those
considered here, it may be important to incorporate ex-
change or core screening effects to higher order. We have
avoided including exchange effects in the reference po-
tential V(r), however, because in addition to destroying
gauge invariance in each order of perturbation theory, a
nonlocal reference potential spoils the formal cancellation
of divergences used in the self-energy algorithm.

Although the use of a different potential V(r) for the
RMBPT terms and the radiative corrections is inconsis-
tent, the discussion of the preceding paragraph implies
that the sum of all-order direct screening and first-order
exchange screening approximates the "self-energy for a
Dirac-Fock potential" well for those transitions consid-
ered. In future more-precise work, one should perhaps
calculate all parts of the @ED perturbation series consis-
tently in the same reference potential V(r).

Finally, we make the approximation for the lowest-
order vacuum polarization of evaluating rigorously only
the dominant Uehling term [23, 24, 17]. For the small

remaining Wichmann-Kroll (WK) terms, we use the hy-
drogenic value [25] scaled in the same ratio by which the
Uehling term scales. This phenomenological modifica-
tion seems justified in view of the discussion of screening
in Sec. IV, although the resulting screening correction
to the WK terms is negligible compared with the ex-
perimental uncertainty for all transitions considered. In
the exchange and core vacuum polarization diagrams of
Fig. 2, we neglect the WK terms entirely.

III. NUMERICAL RESULTS

As a preliminary, we give in Table I detailed exam-
ples for two particularly accurate high-Z measurements
on Li-like U [1] and Na-like Pt [2]. For Li-like U, the
RMBPT value includes a gross finite-nuclear-size contri-
bution based on the nuclear parameters of Zumbro et al.
[26]; the accuracy of these parameters implies a negligi-
ble uncertainty in the transition energy [7]. The RMBPT
also includes a nuclear polarization contribution [27]. For
Li-like U, the valence self-energy incorporates a finite-
nuclear-size correction of 0.80(1) eV and a direct screen-
ing correction of 1.77(1) eV [17]. The valence Uehling
term incorporates a finite-nuclear-size correction of —0.76
eV and a direct screening correction of —0.44 eV, in pre-
cise agreement with [28] and [13], respectively. Note that
we treat the core terms in a slightly different way for the
two ions. For Li-like ions, we evaluate Figs. 2(i) and 2(j)
as described in [17]. For Na-like (and Cu-like) ions, we
neglect 2(j) and evaluate 2(i) together with 2(1) as an
off-diagonal self-energy (1) with a suitable wave packet
~P). The small "higher-order" (HO) term represents the
two-loop radiative corrections for the hydrogenic ion to
lowest order in Zu [28—30].

The results in Table I show some interesting features.
The valence exchange screening, Figs. 2(e) and 2(g), has
the same sign as the valence direct screening, Figs. 2(a)
and 2(c), although for energies the direct and exchange
contributions have opposite signs. The sign of the @ED
corrections follows those of the changes in the normaliza-
tion at the origin as the direct and exchange Dirac-Fock
potentials are added to the valence Hamiltonian. Test
calculations show that local Slater-type approximations
to exchange, although reproducing the exchange energy,
can give the opposite sign for the change in normalization
at the origin and also for the exchange screening terms.
The dominant contribution to the exchange-screening di-
agrams at high Z is from the transverse part of the pho-
ton propagator in ~P).

For the core terms, the exchange terms are often more
important than the direct terms, and are again domi-
nated by the transverse components at high Z. For mul-
tishell ions, the dominant core contributions involve the
core s states, with roughly equal contributions from each
principle quantum number; the p states can also make
small contributions of up to 10%. Note that previous
calculations of the core terms [12, 17] considered only the
direct terms, and gave quite different results.

Finally, we note that the ratio of self-energy to Uehling
effects is very nearly the same for each analogous pair of
terms in Table I. For example, for Li-like U the ratio
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of the valence self-energy to the Uehling term is —4.1,
which is very nearly the same as the ratio of valence
exchange terms. The core terms have a slightly smaller
ratio, corresponding to the ratio of self-energy to Uehling
term for ls states. Such scaling principles are expected to
hold insofar as the self-energy and vacuum polarization
scale as the normalization of the external wave function
at the origin (see Sec. IV).

Tables II—VII give results for selected ions throughout
the Li, Na, and Cu isoelectronic sequences. The tables
include our screened @ED terms combined with previous
calculations of correlation and nuclear efFects. Experi-
mental values are also given where available. The @ED
terms for Z values not tabulated may be evaluated from
these tables by interpolation.

For the self-energy in these tables, we use a relativis-
tic basis set with M = 70 basis functions in both the
positive- and negative-energy branches of the spectrum
[17]. The errors given on our @ED terms are numerical
errors for the well-defined terms that we calculate, deter-
mined by varying the size of the basis set and other nu-

merical parameters. An interesting feature is that quite
reasonable numerical accuracy persists even at low Z,
where the present self-energy algorithm suffers from del-

icate eancellations of large, spurious, gauge-dependent
terms [15, 16]. One should obtain even greater accuracy
for low Z through use of the Coulomb gauge instead of
the Feynman gauge used here.

Our results agree with the direct screening terms of
Cheng, Johnson, and Sapirstein [13] for Cu-like Au, Na-

like Pt, and Li-like U within their larger numerical errors.
We also agree quite well with the linearized direct screen-

ing calculations of Indelicato and Mohr [12] on Li-like U

for all but the 2p&~2 state. A detailed comparison of these
calculations is given in [17].

Figures 3—8 show a comparison of our results with ex-

periment. Since the @ED screening terms (Fig. 2) scale

roughly as Zs, we have divided the differences between

theory and experiment by this factor, so that missing

terms in this order should appear as a constant offset.

The agreement is generally very good, although the low-

Z results for Cu-like ions disagree systematically with

experiment, and isolated discrepancies appear elsewhere.

The low-Z Cu-like disagreement probably results from

uncalculated higher-order correlation, since the discrep-

ancy is somewhat smaller than the third-order Coulomb

energy, the highest-order term in the RMBPT calculation

[6]. The correlation is adequately converged for the Li

TABLE I. QED perturbation theory for Li-like U and Na-like pt. RMBpT,
many-body perturbation theory; SE, self-energy; Uehl. , Uehling term; WK, Wichmann-Kroll terms;
HO, higher-order two-loop radiative corrections. Units are eV.

Term

RMBPT

Figure Li-like U
2py/2-28

322.51(9)

Na-like Pt
3p3y2-38

658.76

Valence SE
Valence SE (ex)
Core SE (dir)
Core SE (ex)
Total core SE
Total SE

1(a)
2(e)
2(i) +2(j)
2(l)

—54.09(1)
0.36
0.23(l)

-0.73(2)
—0.51(2)

—54.24(2)

—6.80(l)
0.10

—0.09'
—6.79(l)

Valence Uehl.
Valence Uehl. (ex)
Core Uehl. (dir)
Core Uehl. (ex)
Total core Uehl.
WK
Total vacuum polarization

1(b)
2(g)
2(k)
2(n)

13.12
—0.08
—0.08(1)
0.21
0.12(l)

—0.60
12.56(1)

1.50
—0.02

0.02
—0.06

1.44

HO 0.01(4) 0.00

Total QED total
Experiment

280.83(10)
280.59(9)'

653.41(l)
653.43(5)

Blundell, Johnson, and Sapirstein, Ref. [7], with —0.08(8) eV for nuclear recoil [17], and 0.18(5)
eV for nuclear polarization [27].

Johnson, Blundell, and Sapirstein, Ref. [5].
'Sum of Figs. 2(i) and 2(l).

Sum of Figs. 2(k) and 2(n).
'Schweppe et aL, Ref. [1].
Cowan et al , Ref. [2]. .
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TABLE II. @ED contributions for the 2a-2pig2 transition in Li-like ions. SE, valence self-energy, Fig. 1(a); Uehl. , ~alence
Uehling term, Fig. 1(b); X, valence external exchange terms, Figs. 2(e) and 2(g); Other, Wichmann-Kroll plus two-loop radiative
corrections; C, core @ED, Figs. 2(i)—2(l), 2(n); @ED, total @ED. Units are eV.

10
12
15
18
20
30
32
40
42
50
54
60
70
80
90
92

SE
—0.0150(5)
—0.0300(5)
—0.070(l)
—0.139(1)
—0.205(1)
-0.884(2)
—1.113(2)
—2.46
—2.93
—5.45
—7.18

—10.52
-18.57
—30.91
—49.44
—54.09

Uehl.

0.0007
0.0016
0.004
0.009
0.014
0.075
0.097
0.25
0.31
0.65
0.92
1.48
3.08
6.07

11.57
13.12

0.0007
0.0011(1)
0.002
0.003
0.004
0.012(1)
0.014(1)
0.03
0.03
0.05
0.06
0.08
0.13(l)
0.19(1)
0.25(1)
0.27(1)

Other

0.0000
0.0000
0.000
0.000
0.000

—0.001
—0.001

0.00
—0.01
—0.02
—0.02
—0.04(1)
—0.11(1)
—0.24(2)
—0.49(4)
—0.59(4)

—0.0005(1)
—0.0009(1)
—0.002
—0.003
—0.004
—0.011(1)
—0.014(1)
—0.03
—0.03
—0.05
—0.06(l)
—0.08(1)
—0.14(1)
—0.23(2)
—0.35(3)
—0.38(3)

@ED
—0.0141(5)
—0.0282(5)
—0.066(1)
—0.130(1)
—0.191(1)
—0.810(2)
—1.016(2)
—2.22
—2.63
—4.81(1)
—6.29(1)
—9.08(1)

—15.61(2)
—25.12(3)
-38.45(5)
—41.68(5)

RMBPT

15.9026
19.8671
25.878
31.998
36.154
58.199
62.928
83.25
88.74

112.73
126.13
148.37
192.17
246.11
309.17
322.51(9)s

Sum

15.8885(5)
19.8389(5)
25.812(1)
31.868(1)
35.964(1)
57.389(2)
61.911(2)
81.04
86.12

107.92(1)
119.84(1)
139.29(1)
176.56(2)
220.99(3)
270.72(5)
280.83(10)

Expt.

15.8887(2)
19.8390(4)
25.814(3)'
31.866(l)
35.962(2)

61.902(4)'

86.10(l)'

119.97(10)

280.59(9)"

Terms from [4] recalculated according to [5].
B. Edlen, Phys. Scr. 28, 51 (1983).

'W. C. Martin, R. Zalubas, and A. Musgrove, J. Phys. Chem. Ref. Data 14, 751 (1985).
J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. No. 2 (1985).

'H. Hinnov et aL, Phys. Rev. A 40, 4357 (1989).
S. Martin et aL, Europhys. Lett. 10, 645 (1989).

slncludes —0.08(8) eV from nuclear recoil [17], and 0.18(5) eV from nuclear polarization [27].
"J.Schweppe et al. , Ref. [1].

and Na sequences, where the third-order Coulomb term
becomes comparable to the experimental error roughly
at the lowest-Z values tabulated. The theory for Na-
like Sn 3s-3piyz is four experimental standard devia-
tions smaller than the measurement, and the theory for
a group of high-Z Cu-like measurements is also system-

atically smaller than the measurements. These discrep-
ancies have also been noted by Kim et al. [31] in their
recent very complete study of Li-like, Na-like, and Cu-
like ions. These authors took relativistic correlation en-
ergies derived from the RMBPT calculations [4—7] to-
gether with phenomenological estimates of the @ED ef-

TABLE III. @ED contributions for the 2e-2p3g2 transition in Li-like ions. Acronyms are defined in the caption to Table II.
Units are eV.

10
12
15
18
20
30
32
40
42
50
54
60
70
80
90

SE
—0.0145(5)
-0.0289(5)
—0.067(1)
—0.132(1)
—0.193(1)
-0.822(2)
—1.032(2)
—2.27
—2.69
—5.00
—6.59
—9.68

—17.32
—29.56
—49.26

Uehl.

0.0007
0.0016
0.004
0.009
0.014
0.075
0.099
0.25
0.31
0.67
0.95
1.56
3.33
6.81

13.62

X
0.0007
0.0012(1)
0.002
0.004
0.005
0.014(1)
0.016(1)
0.03
0.03
0.05
0.07
0.09
0.14(1)
0.21(1)
0.32(2)

Other

0.0000
0.0000
0.000
0.000
0.000

—0.001
—0.002
—0.01
—0.01
—0.02
—0.03
—0.05(1)
—0.12(1)
-0.28(2)
—0.61(4)

—0.0005 (1)
—0.0009(1)
—0.002
—0.002
—0.003
—0.009(1)
—0.010(1)
—0.02
—0.02
—0.02
—0.03
—0.03
—0.03(2)

0.00(2)
0.06(2)

—0.0135(5)
-0.0269(5)
—0.062(l)
-0.122(1)
—0.178(l)
-0.743(2)
—0.929(2)
—2.00
—2.37
—4.31
—5.62
—8.11(l)

—13.99(2)
—22.82(3)
—35.87(4)

16.1066
20.3593
27.267
35.161
41.206
87.777

101.984
185.12
214.37
379.00
497.84
737.31

1359.55
2393.15
4060.98

@ED RMBPT Sum

16.0931(5)
20.3324(5)
27.205(1)
35.039(1)
41.028(1)
87.033(2)

101.055(2)
183.12
211.99
374.68
492.22
729.20(1)

1345.56 (2)
2370.32(3)
4025.10(4)

Expt.

16.0932(2)
20.3318(4)
27.206 (3)
35.037(1)
41.029 (2)

101.043 (12)'

211.94(7)'

492.34(62)

Terms from [4] recalculated according to [5].
B. Edlen, Phys. Scr. 28, 51 (1983).

'H. Hinnov et al. , Phys. Rev. A 40, 4357 (1989).
T. E. Cowan et al , Ref. [2]. .
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TABLE IV. @ED contributions for the 3s-3pig2 transition in Na-like ions. Acronyms are defined in the caption to Table
II. Units are eV.

20
30
40
50
64
78
80
82
90

SE
—0.0288 (4)
—0.167(1)
—0.536(1)
—1.27
—3.28
—7.08
—7.82
—8.63

—12.58(1)

Uehl.

0.0019
0.014
0.054
0.15
0.49
1.33
1.52
1.74
2.93

X
0.0014(1)
0.005
0.011(l)
0.02
0.05
0.08
0.09
0.10
0.13(l)

Other

0.0000
0.000

—0.001
0.00

—0.02
—0.05
—0.06
—0.07
—0.12

—0.0024(2)
—0.008(1)
—0.018(2)
—0.03
—0.07(1)
—0.14(1)
—0.14(l)
—0.15(2)
-o.2i(2)

@ED
—0.0279 (5)
—0.157(l)
—0.491(2)
—1.14
—2.83(1)
—5.85(l)
—6.41(2)
—7.01(2)
—9.86(2)

RMBPT

21.6277
43.182
65.994
90.85

130.76
179.36
187.19
195.28
229.84

Sum

21.5998(5)
43.025(1)
65.503(2)
89,71

127.94(1)
173.51(l)
180.78 (2)
188.27(2)
219.98(2)

Expt.

21.5997(4)'
43.024(1)
65.504(3)'
89.75(1)

J. Reader et al. , J. Opt. Soc. Am. B 4, 1821 (1987).
J. F. Seely et at , At..Data Nucl. Data Tables 47, 1 (1991).

TABLE V. @ED contributions for the 3s-3psy2 transition in Na-like ions. Acronyms are defined in the caption to Table II.
Units are eV.

20
30
40
50
64
78
80
82
90

SE
—0.0275(4)
—0.156(1)
—0.497(1)
—1.18
—3.06
—6.80
—7.56
—8.40

—12.69(1)

Uehl.

0.0019
0.014
0.055
0.16
0.52
1.50
1,73
2.00
3.52

0.0014(1)
0.005
0.011(l)
0.02
0.05
0.09
0.09
0.10(l)
o.i3(i)

Other

0.0000
0.000

—0.001(1)
0.00

—0.02
—0.06
—0.07
—0.08
—0.16

-0.0022(2)
—0.008(1)
—0.016(2)
—0.03
—0.05
—0.07(1)
—0.07(1)
—0.08(1)
—0.08(1)

@ED
—0.0264(5)
—0.145(1)
—0.449(2)
—1.03
-2.55(i)
-5.34(i)
—5.88(l)
—6.46(l)
-9.2S(1)

RMBPT

22.2554
48.507
87.244

151.00
319.57
658.76
728.55
805.22

1193.72

Sum

22.2290(5)
48.362(1)
86.795(2)

149.97
317.01(l)
653.41(1)
722.67(1)
798.76(1)

1184.44 (1)

Expt.

22.2289 (4)
48.361(2)
86.800(6)'

149.98(3)
317.30(16)b

653.43(5)'

798.65(18)

'J. Reader et al. , J. Opt. Soc. Am. B 4, 1821 (1987).
J. F. Seely et al. , At. Data Nucl. Data Tables 47, 1 (1991).

'T. E. Cowan et aL, Ref. [2].
A. Simionovici, D. D. Dietrich, R. Keville, T. Cowan, P. Beiersdorfer, M. H. Chen, and S. A. Blundell (unpublished).

TABLE VI. @ED contributions for the 4s-4pi~2 transition in Cu-like ions. Acronyms are defined in caption to Table II.
Units are eV.

40
50
60
70
74
82
83
90
92

—0.0776 (4)
—0.255(l)
—0.613(1)
—1.24
—1.59
—2.50
—2.63
—3.76
—4.15

Uehl.

0.0075
0.031
0.086
0.20
0.28
0.50
0.54
0.88
1.00

0.0014(1)
0.006
0.012(1)
0.02
0.02
0.03
0.04
0.04
0.05

Other
—0.0003
—0.001
—0.003
—0.01
—0.01
—0,02
—0.02
—0.04
—0.04

—0.0047(5)
—0.012(1)
—0.023(2)
—0.04
—0.05
—0.07(1)
—0.07(1)
—o.io(i)
—0.10(1)

@ED
—0.0736(6)
—0.231(2)
—0.541(3)
—1.06
—1.34
—2.05(l)
—2.15(l)
—2.98(1)
—3.25(1)

RMBPT

25.5010
45.129
66.097
89.02
98.89

120.05
122.84
143.30
149.45

Sum

25.4273 (6)
44.898(2)
65.556 (3)
87.96
97.54

118.01(1)
120.69(1)
140.32(1)
146.20(1)

Expt.

25.4418(4)'
44.906(1)
65.562 (1)
87.97(l)'
97.63(l)

118.15(2)'
120.90(2)'

146.39(37)'

J. Reader and N. Acquista, J. Opt. Soc. Am. 69, 1659 (1979).
J. Reader, N. Acquista, and D. Cooper, J. Opt. Soc. Am. 73, 1?65 (1983).

'D. R. Kania et al. , J. Opt. Soc. Am. B 7, 1993 (1990).
J. F. Seely, C. M. Brown, and W. E. Behring, J. Opt. Soc. Am. B 6, 3 (1989).

'J. F. Seely et a/. , Ref. [3].
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TABLE VII. QED contributions for the 4s-4p3rq transition in Cu-like ions. Acronyms are defined in the caption to Table
II. Units are eV.

40
50
60
70
74
82
83
90
92

SE
-0.0728(4)
—0.237(1)
—0.571(1)
—1.17
—1.51
—2.43
—2.57
—3.79
—4.23

Uehl.

0.0077
0.032
0.091
0.22
0.31
0.58
0.62
1.05
1.22

0.0014(l)
0.006
0.012(l)
0.02
0.03
0.04
0.04
0.05
0.05

Other
—0.0003
—0.001
—0.003
—0.01
—0.02
—0.02
—0.03
—0.05
—0.05

—0.0042 (4)
—0.010(1)
—0.018(2)
—0.03
—0.03
—0.04
—0.04
—0.04
—0.04

QED
—0.0682 (6)
—0.210(1)
—0.489(2)
—0.96
—1.22
—1.88
—1.98
—2.78
—3.05(1)

RMBPT

28.2812
56.823
98.947

164.39
200.11
294.42
308.81
430.00
472.27

Sum

28.2130(6)
56.613(1)
98.458(2)

163.43
198.88
292.55
306.84
427.21
469.22(1)

Expt.
28.2222(4) '
56.616(1)
98.463 (4)

163.47(4) '
198.99(5)
292.65(10)'
306.94(11)
427.68(22)
469.53(25)'

J. Reader and N. Acquista, J. Opt. Soc. Am. 69, 1659 (1979).
"J.Sugar et aL, J. Opt. Soc. Am. (to be published).
'D. R. Kania et al. , J. Opt. Soc. Am. B 7, 1993 (1990).
J. F. Seely, C. M. Brown, and W. E. Behring, J. Opt. Soc. Am. B 6, 3 (1989).

'J. F. Seely, C. M. Brown, and U. Feldman, At. Data Nucl. Data Tables 4$, 145 (1989).
J. F. Seely et al , Ref. . [3].

feets, and made a smoothed fit to the resulting difference
between theory and experiment. Our theory is in very
good agreement with their smoothed predictions. We re-
fer the reader to this work for a thorough discussion of
the trends in the available experimental data.

We also agree with the 2p3yq-2pq/q splitting measured
by Simionoviei et al. [32], who found 372.15 + 0.50 eV
to be compared with our theoretical value 372.38(1) eV
from Tables II and III.

To give some idea of the role of external exchange
screening in these calculations, Figs. 3—8 also show the
values that would result if exchange screening terms (va-
lence and core) were omitted. For the Li and Na se-
quences, a trend appears in which theory is systemati-
cally larger than experiment; for the Cu sequence, the
results at low Z no longer tend to experiment at medium
Z. Inclusion of the external exchange screening improves
agreement to within one to two experimental standard
deviations for the Li and Na sequences. A similar system-
atic disagreement between theory and experiment would
result if core terms were omitted.

It is also interesting to compare our ab initio calcula-
tion with other estimates of @ED effects. Figure 9 shows
a comparison of @ED theories for the 2s-2pig2 transition
in low-Z Li-like ions, including the @ED from the "Wel-
ton method" [30] and the "p method" [31]. Also shown
is the "extended Kabir-Salpeter" result of McKenzie and
Drake [33]. All calculations agree at the level of experi-
mental error. Similarly good agreement is found with the
Welton and p methods for Na-like and Cu-like transitions
[31]. Since these methods clearly give some insight into
the @ED screening mechanism, we examine them in more
detail in the next section.

IV. DISCUSSION OF THE SCREENING EFFECT

To investigate the accuracy of phenomenological ap-
proaches, we compare calculations of the self-energy in

a local model screening potential with phenomenologi-
cal calculations for the same model potential (the direct
part of the V~ Dirac-Fock potential). We consider the
"screening correction" AE(Z) = E; „(Z) —Ehyd(Z), de-
fined as the difference between the self-energy of a many-
electron ion and that of the hydrogenic ion with the same
finite nucleus. Phenomenological values for LE can be
obtained by multiplying Mohr's hydrogenic result [8, 9],
corrected for finite nuclear size [28], by various screening
factors. If the screened self-energy scales as the relativis-
tic normalization N at the origin, we would have

+@norm = (~ion/+hyd I)+hyd ~ (3)

This scaling assumes that the self-energy operator is lo-
calized near the origin, and is a function of the nuclear
charge Z only. A normalization scaling is made in one of
the @ED terms, AEL, i, in the "extended Kabir-Salpeter"
approach of Drake and collaborators [34, 33]. These au-
thors use nonrelativistie probability densities, however,
and add the leading correction to this procedure in the
1/Z expansion, as well as other @ED terms to lowest or-
der in Za. The procedure in (3) is also quite close to the
p method of Kim et aL [31], in which relativistic point-
nucleus wave functions are integrated over a small region
of space around the nucleus.

Another approximation method is the "Welton
method" of Indelicato, Goreeix, and Desclaux [35, 30],
which assumes

&&Weii = ((T Vion) / (7' Vhyd) —I) Ehyd. (4)

This form follows from the leading term i.n the nonrel-
ativistic limit of the self-energy [36—38]. Since 7' V(r)
is proportional to the charge density, this estimate is
very close to the normalization estimate when the nuclear
charge density dominates. However, the electron screen-
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FIG. 3. Scaled differences between theory and experiment
for 2s-2pzy2 transition frequencies in selected Li-like ions.
Open diamonds with experimental error bars indicate the
complete theory; full diamonds indicate the theory with ex-
ternal exchange terms omitted.

FIG. 6. Theory minus experiment for 3s-3p3jq transition
frequencies in selected Na-like ions. See the caption to Fig. 3.
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tween experiment and the RMBPT calculation [4], is sub-
tracted from all values. The error bars shown on one set of
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+@g—2 ((Po' ~+ion) / (P~ ' ~+hyd) 1) @hyd ~ (5)

Since the expectation value here involves a product of
the upper- and lower-component radial functions, the es-
timate is also quite close numerically to the normalization
method.

Figure 10 shows the screening correction for a 2s state
in Li-like ions. At low Z, our ab initio calculation agrees
within numerical error with the Welton estimate from
(4) for the model potential. The two methods deviate at
high Z, however, by about three experimental standard
deviations [1] at Z = 92.

A similar analysis is presented in Fig. 11 for the 2pq/2

-3.0
Li-like

I I [ I I I
J

I I I
f

I

)
CD

co -3.5
I

C)

N

-4.0
LLj
&I

ing charge density also contributes an extended operator
that makes a small contribution.

Finally, Indelicato, Gorceix, and Desclaux have pro-
posed using the "g —2" term in the self-energy [36] for
states with f & 1,

FIG, 11. As for Fig. 10 but for the 2pq/2 state.

state. We lose numerical control over the calculation for
Z & 35, but our ab initio result appears to follow the
"g —2" result at low Z. (The 2pqg2 screening correction
is in any case smaller than the experimental error for
Z ( 35.) For Z ) 80, the Welton estimate gives closer
agreement. This is presumably due to the growth with
Z of the probability density at the origin, which vanishes
for p~yq states as Z ~ 0. The deviation between the
ab initio and the "g —2" result at Z = 92 is about two
experimental standard deviations.

Table VIII shows results for low-Z transitions. Our
calculated hydrogenic values agree with those of Mohr
[9] (the nuclear-finite-size correction present in our result
is negligible). Furthermore, we find excellent agreement
with the Welton prediction for our model potential in
the screened case. For low and medium Z, the exter-
nal exchange screening terms also scale closely with the
change in normalization at the origin when the nonlocal
exchange part of the V Dirac-Fock potential is added
to the valence Hamiltonian.

In conclusion, then, the phenomenological methods
give excellent agreement with ab initio calculations, al-
though caution is required for the most precise work at
high Z. We note finally that the "(r) method, " which is
the default screening algorithm in the GRAsp computer
code [39], gives predictions for one-valence-electron sys-
tems in significant disagreement with experiment, as is
evident from the plots in [31].

TABLE VIII. Calculations of the valence self-energy cor-
rection to the 2s-2pq/2 transition of H-like and Li-like ions.
The "phenomenological" estimate for Li-like ions uses the
Welton method with the potential the same as that used in
the ab initio calculation. Units are eV.

-4.5
20 40

Z
60 80 100

@SE
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Present

@SE
(H-like)
Mohr

ESE
(Li-like)
ab initio

@SE
(Li-like)
Phenom.

FIG. 10. The scaled screening correction to the self-energy
of the valence 2s state in Li-like ions, calculated by the ab
initio method of this paper, and by two phenomenological
methods.

10
20

—0.0214(5)
—0.243(l)

—0.0211(1)
—0.242

P. J. Mohr, Ref. [9].

—0.0150(5)
—0.205(1)

—0.0148
—0.204
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V. CONCLUSIONS

We have seen that the combination of the RMBPT
terms with the subset of @ED terms considered here
provides a very complete ab initio description of Li-
like, Na-like, and Cu-like spectra, generally reproducing
the experimental data within one or two experimental
standard deviations, apart from the Cu-like sequence at
low Z. Although this agreement is good, it should be
emphasized that the evaluation of two-photon @ED ef-
fects is incomplete. The missing eff'ects can be classi-
fied into three broad categories: (i) @ED screening dia-
grams, that is, the omitted internal exchange-screening
diagrams; (ii) @ED efFects contained in correlation-type
diagrams, omitted in the approximate RMBPT evalua-
tion of these diagrams; (iii) two-loop radiative correc-
tions (also present in hydrogenic systems). In category
(ii) we include in particular efFects associated with the
two-photon box and crossed-box diagrams, speeifically
Breit-Breit terms, retardation terms, and effects asso-
ciated with virtual negative-energy electron states. It
is important to evaluate all these missing @ED efFects
because by power-counting arguments they enter in the
same nominal order, (Za)s Ry, as the @ED screening
effects evaluated here. This applies to the terms in (i),
and to some of those in (ii). The two-loop radiative cor-
rections (iii) enter in order (Zn)4 Ry, and may also be
important at high Z.

An important empirical result of this paper is that, in
spite of the incomplete treatment of two-photon @ED ef-
fects, the calculation appears to account well for @ED
effects at the level of experimental error, at least for the
Li and Na sequences. The implication is that the omit-
ted @ED terms are either separately small at the level of
experimental error, or else that they are larger but hap-
pen to cancel throughout each isoelectronic sequence. We
speculate that the former situation may hold.

This speculation is based on the following arguments.
An estimate of two-loop radiative corrections (iii), based
on the lowest-order terms in Zo, [28—30], appears as HO
in Table I, and as part of the column "Other" in Ta-
bles II—VII. These contributions are small, less than
or comparable to an experimental error for all transi-
tions considered. The omitted higher-order terms in Za
should be of the same order of magnitude or less. As to
the effects in category (ii), one may make the following
order-of-magnitude estimates, which suggest that they
may also be small. The effect of virtual negative-energy
states has been estimated for ls states by Sapirstein [40];
estimates for other principal quantum numbers follow by
scaling according to the probability density at the origin.
The Breit-Breit terms may be estimated as (Za)2 times
the Breit-Coulomb terms given in Refs. [4—7]. The omit-
ted retardation terms, by power-counting arguments, are
comparable to or smaller than the Breit-Breit terms. In
each case, the resulting estimates are comparable to or
smaller than the experimental error for all transitions.

This leaves the internal exchange screening terms of
category (i), which are hard to estimate and nominally
enter at the same level as the calculated external ex-
change effects. However, it is not unreasonable to sup-

pose they may be small through the following argument.
There is some degree of analogy between the direct dia-
grams in Figs. 2(a) and 2(b) and the exchange diagrams
of Figs. 2(e) and 2(f), because in the former an additional
potential is inserted into a diagonal matrix element of the
self-energy, and in the latter into an off-diagonal element.
Our calculations show the internal direct effect 2(b) to
be a small fraction, (5—20)%, of the external direct effect
2(a). The dominance of external effects for direct terms
partly explains the close dependence of screening correc-
tions on the normalization at the origin, since this scal-
ing considers just the modification of the external wave
function. If external terms dominate for the exchange
diagrams as well, this could explain the observed agree-
ment with experiment.

The situation for Li-like U deserves special considera-
tion because of the high accuracy of that measurement.
The small size of the two-loop radiative corrections (HO
term) in Table I results from cancellations between terms
of order 0.5o, where o is an experimental standard devia-
tion. The omitted higher-order terms in Zn may enter at
a similar level; this possibility is allowed for by the error
in parentheses in the table. The estimates above for the
omitted terms of category (ii) are for this transition com-
parable to an experimental standard deviation. As to the
internal exchange efFects, a conservative estimate is that
they may be of the same order as the external exchange
effects, which reach 8o for the core terms; taking 20%
of the external exchange terms still gives a (1—2)cr efFect.
Thus, the present 2.5o discrepancy between theory and
experiment is entirely reasonable pending evaluation of
the remaining two-photon @ED terms.

Perhaps the best way at present to address the possible
problem of convergence of RMBPT at low Z for Cu-like
systems is to use relativistic all-order procedures such as
described in [41] or [42]. While these procedures do not
pick up the entire fourth-order Coulomb interaction in
a strict perturbative sense, they do sum infinite subsets
of diagrams that are known to be dominant in neutral
alkali-metal atoms [43,44] or the infinite electron gas [45].

As to the remaining two-photon @ED efFects, we be-
lieve they can all be evaluated by relativistic basis-set
methods similar to those used in the RMBPT method
and in the self-energy algorithm for this work. The com-
pletion of this program should permit a rigorous @ED
evaluation of the structure of high-Z ions at the 0.1-eV
level.
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APPENDIX: OFF-DIAGONAL SELF-ENERGY

Consider the general o6'-diagonal matri~ element of the
self-energy plus the corresponding matrix element of the
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mass counterterm,

&& = (Al»Z(&~) l4) —(Al»bml4) . (Al)
Here IA) is a single-particle state in a potential V(r); its
eigenvalue z~ forms the evaluation energy of the bound-
state self-energy operator Z for V(r). The state IP) is
completely general. To investigate the cancellation of
divergences, we decompose Z into zero-, one-, and many-
potential terms according to the number of potentials
appearing in the internal electron propagator [46, 15]

for the diagonal self-energy IP) = IA).
The energy shift from Fig. 2(e) satisfies

AE~'~ = 2 Re (ul»[Z(e„) —bm] I4),

where, after angular reduction,

(AS)

(AO)
Z(e~) = Z'"(.~) + Z'"(.~) + Z'" (.~). (A2)

Here Z~ l(s~) is just the free-electron self-energy, which
in momentum space satis6es

Z«~(.„,p) = bm+ (pAp, —m)g+ Zfl"„'(.~, p),

(A3)

with Rg(cu; abed) a generalized frequency-dependent
Slater integral given in Feynman gauge in [17]. The sym-
bol 6(j„L,j„) is unity if the three angular momenta
satisfy a triangular condition, and zero otherwise. The
factor of 2 in (AS) caters for the mirror-image diagram.

Likewise, the core term Fig. 2(1) satisfies

where p& = (s~, p), y is a divergent wave-function-
renormalization constant, and Zfl„ is finite. Similarly,
Z~ l(s~) is constructed from the free-electron vertex
function I'& and the local potential A" = (V, 0). In mo-
mentum space,

(&Qpz, scapi) = A„(pz —pi)I "(s~pz, ~~pi), (A4)

with

AZi'l = 2Re ) (cl»[Z(s, ) —bm]lg, ),
c {core)

( 1)j +L—2v

x b(K;, r,„).
2/v +

(Alo)

(All)

(&Ap s'Ap ) = —gp +1„„(s' p, E p ),

where I'fl„(ewp2, s'&pi) is finite. The many-potential
part Z~ +l(s'~) of the self-energy is finite.

After substituting (A2)—(A5) into (Al) and using the
identity

(Al»(s~~& —m)I4) = (Al(~~ —~ p —Pm) 14)

(A6)

The exchange-screening terms for the vacuum polar-
ization are evaluated as off-diagonal matrix elements of
the Uehling potential with the same states lg) above.

In evaluating Z and IP), we take V(r) = V«c(r) +
VDF,g;, (r) for valence terms, and V(r) = V«, (r) +
VDF ~;,(r) —V, (r) for core terms, where c is the core state
under consideration in the sum over c in (Alo), and where

the terms involving the divergent constants bm and y
cancel leaving

&& = (Al»zfl~". (s~) I4) + (Al»zfln(s~) I4)

+(Al»z&"&( ~) l~) (A7)

Our numerical technique for evaluating this expression
follows a simple generalization of that described in [17]

I

and g, (r) and f,(r) are radial eigenstates for the V
Dirac-Fock potential. The inclusion of V,(r) corresponds
to a small approximate higher-order term that removes
a spurious self-interaction between the core state c and
itself.

Finally, we consider the gauge dependence of the ex-
pression (Al). The self-energy matrix element can be
written {with k:—ko —k ),

(Al»Z(~~)I&) = in
d4k 6"'(k) (Aln„e '"'Ii)(iln e'"'I@)

(2')4 k2+ib - s~+ ko —s, Rib {Ala)

where we have used the momentum-space representation of the photon propagator,

D" (ko, r2, ri) = d k 4""(k)
(2~)' k'+ib (A14)

and the spectral decomposition of the electron propagator. In the exponential e'"'~ in (A13), r is the position operator,
and the momentum k is a parameter. The quantity 4" (k) is gauge dependent,

—gi'" (Feynman gauge)
4+ (k) = —g&" + (1 —A)ki'k /k (General covariant gauge)

g&" —ki'k /k + ko—(ki'i7" + k g")/k (Coulomb gauge).
(A15)
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and similarly,

k"(aIn„e '"'Ib) = (ko+s —sb)(aIe '"'Ib) . (A17)

These expressions hold only if the reference potential
V(r) is local (as in this work), for the use of the com-

I

In the Coulomb-gauge expression, rl"—:(1,0, 0, 0). The
matrix elements appearing in (A13) satisfy the following
useful identities:

k" (aIa„e'"'Ib) = ko(aIe'"'Ib) —(aIcr ke'"'Ib)
= ko(aIe'"'Ib) —(aI [ho, e'"'] Ib)

= (ko —za + s'i, )(aIe'"'Ib), (A16)

mutator in (A16) is valid only in that case.
Now, the extra term (1—A)k~k" /ks in Ei' (k) for gen-

eral covariant gauges leads to the following extra term
when substituted in (A13):

AEg = in(l —A)
d4k 1

)4 (ks)g ( I~ I4') ' (A18)

We have here used (A17) and completed the sum over i.
This term vanishes because the integrand is an odd func-
tion of k, showing that the covariant gauges give equal
matrix elements for a fixed, arbitrary state IP).

The state IP) itself is in principle gauge dependent,
however. For valence exchange terms, it has the form

(A19)

with ko = rA —e', . The extra term (1 —A)k"k /k2 in
6"~(k) then gives a vanishing contribution by virtue of
(A17). A similar conclusion holds for IP, ) for core ex-
change terms. Thus, since the free-e1ectron mass shift
bm is gauge invariant, the external exchange terms are
seen to be gauge invariant over covariant gauges.

Repeating this discussion for Coulomb gauge, one finds
that the second and third terms in Ai' (k) for Coulomb
gauge give vanishing terms for the above reasons, but

that the fourth term kok t'ai" /k gives a nonvanishing con-
tribution in both (A13) and (A19) (unless 14') = I&)
which establishes gauge invariance for the diagonal seif-
energy). The external exchange terms thus have a partial
gauge dependence. The explicit Feynman gauge calcula-
tion of external terms given here, however, shows that
the covariant gauges give results with the expected or-
der of magnitude as well as the expected approximate
Zs dependence.
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