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The time-independent Hamiltonian version of QED provides a foundation for a relativistic description
of atomic structure and scattering, with virtual-pair effects treated in a consistent manner. Since the
spectrum of the Hamiltonian is bounded from below, the problem of “variational collapse,” associated
with the existence of negative-energy solutions of the Dirac equation, does not arise. For the same
reason, extremum principles of the Rayleigh-Ritz type may be applied. These features are illustrated
here in the context of a system consisting of two electrons in an external Coulomb field. An effective
Hamiltonian describing this system is constructed in a ladder approximation that accounts for the virtu-
al creation and annihilation of electron-positron pairs. It is shown that this pair contribution to the
effective Hamiltonian satisfies a maximum principle and that, consequently, a minimax principle is avail-
able for the approximate evaluation of the binding energy of the heliumlike ion. The relation between
the present treatment of virtual-pair effects and that based on the Bethe-Salpeter equation in the ladder

approximation is clarified.

PACS number(s): 31.30.Jv, 11.10.Qr

I. INTRODUCTION

Relativistic effects can be significant in the analysis of
heavy atoms. The theory of such effects is often formu-
lated by setting up a multielectron generalization of the
Dirac equation. The potential difficulties of such an ap-
proach, associated with the appearance of negative-
energy solutions, has been discussed in detail in the con-
text of bound-state calculations [1,2]. It is clear that
similar difficulties arise, in principle, in the scattering
problem. Indeed, the difficulty is compounded since the
possibility of the creation of a virtual pair having a com-
bined energy anywhere in the continuum implies that in-
termediate states in the scattering process will appear
with such a range of energies. This will introduce spuri-
ous branch cuts in the scattering amplitude leading, for
example, to incorrect behavior near reaction thresholds.

It is to be expected [1,2] that the problems mentioned
above do not arise in a QED formulation (in which
negative-energy electrons are reinterpreted as positive-
energy positrons). Here we shall verify explicitly, in the
context of a particular model allowing for virtual-pair
creation, that variational collapse is avoided in the QED
formulation through the natural appearance of projection
operators. It will be shown that an infinite subset of con-
tributions to the effective Hamiltonian arising from se-
quences of pair-creation and pair-annihilation processes
may be summed in closed form and evaluated approxi-
mately with the aid of an extremum principle of the
Rayleigh-Ritz type.

The starting point of our analysis is a relativistic ver-
sion of the resolvent-operator formulation of time-
independent many-body perturbation theory [3]. To il-
lustrate the application of this theory in a relatively sim-
ple context we develop, in Sec. II, a formal expression for
the effective Hamiltonian for a two-electron ion. Radia-
tive corrections are ignored here; presumably they may
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be treated perturbatively once the wave equation contain-
ing the effects of the dominant instantaneous Coulomb
interactions has been solved. (This will be possible pro-
vided that a proper treatment of radiative corrections can
be given, surmounting the problem of renormalization
that remains in the noncovariant Hamiltonian formula-
tion.) An explicit approximation for the effective Hamil-
tonian is determined, in Sec. III, that allows for a class of
virtual-pair effects consistent with a generalized ladder
approximation of the type introduced some time ago [4]
in the context of the two-body Bethe-Salpeter equation.
It is shown that this effective Hamiltonian may be con-
structed variationally, with the aid of a maximum princi-
ple. The use of a minimax principle for the evaluation of
bound-state energies, analogous to that introduced previ-
ously for the one-electron Dirac equation [5], is then de-
scribed. Results are summarized briefly in Sec. IV.

II. EFFECTIVE HAMILTONIAN

The resolvent-operator formalism provides a con-
venient basis for the analysis of time-independent bound-
state and scattering problems. Following the procedure
outlined previously [3] we introduce the resolvent,

R(z)=(z—H)™'. 2.1
The Hamiltonian H is defined in terms of the matter-field
operator,

(+) (—)
Wx)=S A,u,(x)+ 3 Bl v, (x), 2.2)

where A, and B,, are electron and positron annihilation
operators with the property that their action on the vacu-

um state is given by
A4,|0)=B,,|0)=0. (2.3)

The anticommutation relations are
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{A,,A}}=8,,, {B,,B]}=5 2.4)

mm' >

with all other anticommutators vanishing. The spinors

u, and v,, satisfy

h(x)u,(x)=¢g,u,(x), g,>0 (2.5a)
and

h(x),,(x)=¢,v,(x), €,<0 (2.5b)
where, with i=c =1,

h(x)=a (—iV)+Bm+V, (x)=0. (2.5¢)

The external potential V,, is taken here to be the attrac-
tive electron-nucleus Coulomb interaction.

With the neglect of transverse-photon effects the Ham-
iltonian is just the sum H=H,+H., where H,, when
put into normal-ordered form, becomes

=(§8nAJAn+(glsmlB,LBm , (2.6)
n m
and the (instantaneous) Coulomb interaction is
=4[ v v | }wa)d}(x)dxd
2.7)

(Effects of the exchange of virtual transverse photons be-
tween electrons can be taken into account in an approxi-
mate manner by adding the Breit operator to the above
Coulomb interaction [1]; this will not be indicated explic-
itly here.)

We consider matrix elements of the resolvent of the
form (B|R(z)|a). Here |a) and |B) are eigenstates of
H, corresponding to a pair of electrons in the presence of
the external field of the nucleus (but unperturbed by self-
energy interactions [6]) with positive-energy eigenvalues
E,, and Ep, respectively. A perturbation expansion of
the matrix element of the resolvent may be obtained from
an iterative solution of the integral equation,

R(z)=Ry(z)+Ry(z)H-R(z) ,

where Ry(z)=(z—H,)~!. Terms in the expansion may
be represented diagrammatically in the usual way. Ac-
cording to the Hugenholtz factorization theorem [7] the
matrix element (BIR )la) may be expressed as the con-
volution [8] of {B|R (z)|a ), defined as the sum of all con-
nected diagrams, and (O|R(z)|0), representing the sum
of all disconnected vacuum-to-vacuum transitions. (Fig-
ure 1 provides an example of a fifth-order disconnected
diagram consisting of a second-order vacuum component
and a connected third-order scattering component.) The
factorization property is useful since it allows us to focus
our attention on the connected contributions, ignoring
the (in general divergent) vacuum graphs.

We now define the “two-electron irreducible” ampli-
tude,

Fﬁa(Z

(2.8)

)={(B|[Hc+HcRy(z)Hc+ -+ Vla) , (2.9

where the prime on the bracket enclosing the sum indi-
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FIG. 1. Disconnected diagram containing a vacuum-to-
vacuum component of second order, representing the virtual
creation and subsequent annihilation of two electron-positron
pairs, and a connected component contributing to scattering in
third order. The Coulomb interaction is represented by a
dashed line and solid lines represent electron or positron propa-
gation in the Coulomb field of the nucleus.

cates that only connected diagrams are included in the
perturbation expansion and no terms with two-electron
intermediate states are retained. Since the general term
in the expansion of (B|R(z)|a) is obtained by connect-
ing the irreducible components with two-electron propa-
gators we may write

(BIR(2)l@) =854z —Ep) ' +(z—Eqg) "
X 3 Fg,(2){7|R(2)a) , (2.10)
y
where we have used the relation o(z)|a)

=(z—Ey,) 'la), and where the sum is over two-
electron intermediate states.

By converting Eq. (2.10) to configuration space we may
deduce the form of the effective Hamiltonian and from
that the configuration-space wave equation that describes
the bound-state structure and scattering dynamics of
physical interest. Toward this end we introduce the ket,

|x1x2>—7 2 z ul (xpu) (x)4f 4l l0)y, @1p
n

describing a pair of positive-energy electrons at well-
defined positions. The matrix that brings about the trans-
formation to the coordinate representation is

1
(xyxy|nyny)=—=1lu,

e (xl)u,,z(xz)—

u,,l(xz)u,,z(xl)] .

(2.12)

The eigenstates of the system may be determined from
the residues of the poles in the resolvent operator, as de-
scribed in Ref. [3]. That formalism is readily adapted to
the two-electron system studied here, and rather than re-
peat the analysis we simply provide the result; with the
aid of the resolvent equation (2.10) we obtain a wave
equation of the form,
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[hl(Xl)+h2(X2)]\Il(xl,x2)
+ fd3y,d3y2M(x1,x2;y1,y2;E)‘I’(y,,yz)

=E¥(x,,x;) . (2.13)

The effective potential is identified as the coordinate rep-
resentation of the two-electron irreducible amplitude,
that is,
M(xy,%;%,,%,;E)={x,%,|[Hc+H-Ry(E)H
+ cc ]'|x1'x2'> . (2.14)

The restriction of the wave function to the two-electron
subspace is expressed in terms of projection operators as

fd3}’1d3}’2L(1+)(X1>Y1)ngﬂ(xz:Yz)‘I’(Ysz)=‘I’(X1’X2) ’
(2.15)

with

(+)
LP(xx)= 3 u,(x)u(x) . (2.16)
n

Since the effective potential is energy-dependent the ei-
genvalue equation (2.13) for bound states must be deter-
mined self-consistently, a feature familiar from standard
Brillouin-Wigner perturbation theory. The scattering
problem is simpler in the sense that the energy is fixed in
advance. The effective potential, to first order in the
Coulomb interaction and with a self-energy contribution
omitted [6], is

M(x,x,;%, x5, E) = fd3y1d3y2(x,n|Y1Y2)
2

—E—<Y1Y2|X1'Xz' ).
4mly,—y,l
(2.17)
Note that
(x1%|y1y2) =L (x,y )L (x,,5) (2.18)
in the space of antisymmetric wave functions.
III. LADDER APPROXIMATION
A. Diagram summation procedure
The wave equation (2.13) has the structure

(Hy+M)¥=EW. It will be convenient to rearrange this
to read (H,+Z)W=EVY, with H, =H,+M"
representing the two-electron Hamiltonian obtained by
neglecting virtual-pair effects and with Z=M—M'".
The resolvent associated with the “no-pair” Hamiltonian
is denoted as R .. We also introduce eigenfunctions o
of H_,, satisfying either outgoing-wave (+) or
incoming-wave (—) boundary conditions at infinity,
along with the corresponding eigenvalues E,. We shall
not enter at this time into a thorough discussion of the
scattering theory appropriate to the relativistic system
under consideration, which would include a precise
specification of the boundary conditions and a formal

definition of the transition amplitude Tp,. Rather, we
simply adopt from such a theory the result of use to us
here, which is the distorted-wave Born expansion [9],

Tp=THgrP"+(®y ) [Z+ZR Z+ -~ J0)  (3.1)

of the T matrix. If the first term on the right-hand side,
the T matrix in the no-pair approximation, is expanded in
powers of the interelectronic Coulomb potential a series
is generated the terms of which may be represented by
ladder diagrams of the type pictured in Fig. 2(b). We
look for an approximation for the very complicated
effective potential Z in the form of a generalized ladder
approximation that includes an arbitrary number of in-
teractions in which two electron-positron pairs are creat-
ed and are subsequently annihilated. The simplest term
of this type, involving a single creation-annihilation se-
quence, is shown in Fig. 2(a); the propagation of the two-
particle system under the influence of their mutual
Coulomb interaction and the field of the nucleus is pic-
tured in Fig. 2(b). We denote the contribution to the
effective potential shown in Fig. 2(a), of second order in
the creation-annihilation interaction, as Z‘?. Two of the
diagrams contributing to Z* are shown in Fig. 3. Not
shown there are the remaining three diagrams required to
provide all possible orderings of creation and annihilation
vertices consistent with the ladder approximation in
fourth order. Remarkably, the ladder diagrams
representing the terms in the expansion of Z, along with
those obtained from the iterative construction of the
transition amplitude given in Eq. (3.1), can be summed
formally to all orders, as will now be demonstrated. This
will lead us to a very much simplified form for the
effective potential that will be analyzed further, with the
aid of variational techniques, in Sec. III C.

The amplitude represented in Fig. 2(a) is determined by

(a)

(b)

FIG. 2. Diagram (a) is a schematic representation of the con-
tribution to the transition amplitude arising from the virtual
creation of two electron-positron pairs and their subsequent an-
nihilation. The line with two arrow heads pointing to the left
represents the propagation of a pair of electrons subject to their
mutual Coulomb interaction and the Coulomb field of the nu-
cleus. This propagator can be pictured as a sum of ladder
graphs, as indicated in diagram (b). The diagonal line in (a)
represents the propagator, in the ladder approximation, for a
pair of positrons.
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summing over intermediate states consisting of two elec-
tron pairs and a positron pair, each pair under the
influence of their mutual Coulomb interaction and the
external Coulomb field of the nucleus. (Interactions be-
tween particles in different pairs are excluded in the
ladder approximation.) The propagation of each pair is
described by a resolvent operator that may be expanded
in terms of the appropriate eigenfunctions. The two-
electron eigenfunctions ®, of H, have been introduced
earlier. There is a corresponding configuration-space
Hamiltonian H _ describing the two positrons whose|
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eigenfunctions and eigenvalues we denote as ©, and E,,
respectively, with E, >0. [We adopt the convention that
two-electron states are labeled by the indices
a,B,v,..., and the indices «,A,u,..., label two-
positrons states. In addition, we temporarily drop the su-
perscripts (+) and (—) that distinguish between the
different boundary conditions satisfied by the continuum
eigenfunctions.] The explicit form taken by H _ is deter-
mined (by examination of the ladder approximation for
the positron-pair propagator) to be

H_ (%1, %35%) %)= = [ (%)) +hy(x) IL Ty, %, )L T (x,%))

+ [, d%,L 7 (x,y L T (50, 3,0V e (v, 9L Ty x, )L T y,x,0)

Here V(x,,X,) is an abbreviation for the Coulomb poten-
tial e?/47|x,—x,| and
(—)
LTxx)=3 v, (x)v] (x") (3.3)
m
is the projection operator onto negative-energy solutions
of the Dirac equation (2.5b). The contribution to the
transition amplitude corresponding to diagram 2(a) may
be written as
(@5 Z P(E)P,)=— S TR E—(Eg+E,+EJ)] Ty,
K

(3.4)

(b)

FIG. 3. Diagrams (a) and (b) each represent contributions to
the transition amplitude of fourth order in the interaction that
creates or annihilates two electron-positron pairs. Not shown
are the three additional diagrams that complete the set of
fourth-order contributions with all possible orderings (along the
horizontal direction in the diagram) of creation and annihilation
vertices.

(3.2)

[
where

L= [ d°x,d%%,00(x1,%,) Ve (%1, %) Pyl x,,X,) (3.5)
represents the vertex for the annihilation of an electron-
positron pair and f‘ﬁK=F 5 Tepresents the creation ver-
tex. [The dagger in Eq. (3.5) denotes the adjoint of a six-
teen component spinor.] Since we are calculating the
physical scattering amplitude we shall impose the on-
shell condition E=Ez=E, in each order; this leads to
important simplifications. For example, in summing the
five ladder diagrams that constitute the fourth-order con-
tribution to the on-shell scattering amplitude we may
combine energy denominators to arrive at the relatively
simple form,

(®p,Z VP ,)+(Pp, Z YR . ZPD )
=3 S STRIE+E,)"'Ty,[E-E, ]!
Yy k A

XL, [E+E,] 'T,, . (3.6)

This expression, along with the on-shell version of Eq.
(3.4), suggests (the proof is given below) that the expan-
sion (3.1) of the scattering amplitude is equivalent to one
of the same form, but with Z replaced by the much
simpler potential Z ¢ [the on-shell version of Z'?], where

(Pp, Zg®Po)= 3 T4[E+E,] 'T,,. (3.7

The sum over states in this expression can be evaluated
implicitly with the introduction of the Green’s function,

GE)=(E+H_)"'. (3.8)
This leads to the representation
Zop(X1,%03¥ 1, Y5 E)=Ve(x,%)G (X, X551, Y5, E)
XVelyy,y,) - 3.9

The suggestion just advanced concerning the form of
the effective potential implies that in calculating the on-
shell scattering amplitude in the ladder approximation we
may assume an effective Hamiltonian,
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Hge=H,+Zy, (3.10)

with Z 4 given by Eq. (3.9). This latter expression is very
similar to the form of the effective Hamiltonian for a sin-
gle Dirac electron in a static potential [10,5], an observa-
tion that may in fact be used to provide a simple (if some-
what indirect) justification of the result shown in Eq.
(3.9). Thus let us consider the Born expansion of the
one-electron scattering amplitude in a hole-theoretic for-
mulation in which the field operator is expanded in a
basis of free-particle solutions of the Dirac equation.
This problem was analyzed [10] as a pedagogic exercise;
the form of the effective potential that emerges from the
calculation is known in advance to be that derived much
more directly, without the use of field theory, from the
first-quantized Dirac equation. That calculation becomes
relevant to our present concerns, however, when we real-
ize that the diagram-summation procedure which led to
the expression for the effective potential in the one-
electron problem may be adopted, formally, to carry out
the verification of Eq. (3.9). For example, the algebra
that led to Eq. (3.6), involving the regrouping of the set of
all terms contributing to the scattering amplitude in
fourth order, is identical to that encountered, in the cor-
responding order, in the one-electron problem. The ver-
tex functions are different but the energy denominators
are the same, and that allows us to put the two calcula-
tions in one-to-one correspondence. In general, the terms
in the expansion are of the same form, order-by-order,
with different meanings given to the vertex functions in
the two cases. In this way the justification of Eq. (3.9) is
achieved.

B. Salpeter equation

It is of interest to observe that an alternative derivation
of the effective Hamiltonian shown in Eq. (3.10) follows
from the Salpeter equation [4], or rather its external-field
version, obtained by imposing the ladder approximation
on the Bethe-Salpeter equation for the two-electron sys-
tem in the presence of the nuclear Coulomb field. In the
present notation, the external-field Salpeter equation is of
the form,

[E—h,—h,]|¥)=[L,—L_]V:|¥) . (3.11)
We have introduced the simplified notation
L (xyX,5,y,y,)=L{"(x},y;) L5 (x,y,), along with an
analogous definition of L_. We write Y=V +V¥_,
where (with integration variables suppressed) L ., W=V,
and L _WV=W_. With the aid of the projection operators
we may decompose the equation (3.11) for ¥ into two
coupled equations for the components ¥, and ¥_. Then
¥_ may be eliminated, in the standard way [11]. This
leaves us with an equation for W, alone. The result is

[E—h,—h,—L_ VL, 1|V¥,)
=L+ VCL—[E_hl—hZ

+L_VcL_17'L_Ve|v,) . (3.12)

The effective potential appearing on the right-hand side is

just that defined above in Eq. (3.9). In this way we have
established a correspondence between the covariant
Bethe-Salpeter approach and that based on the use of a
time-independent Hamiltonian formulation. This latter
method may be more tractable for the study of mul-
tielectron systems.

C. Extremum principles

With the expression (3.10) now established, we next
turn our attention to the problem of setting up an ap-
proximation procedure—specifically, one based on a
maximum principle—for the construction of the effective
potential Z =V -G(E)V.. Here we make use of an ap-
proach developed previously [S] in the context of the
one-electron Dirac equation. The physics of the present
problem is quite different since it is based on hole theory,
but the mathematical procedure is essentially identical to
that described in Ref. [5]. The essential point is that the
operator E +H _ is positive definite in the space of func-
tions W _ satisfying L _ W _ =W _. This is the case since
the potential ¥V in Eq. (3.2) is positive as is the operator
—(h,+h,)L_. (In the scattering problem, which we
consider first, the energy parameter E takes on a specified
positive value. Bound states are considered below.) It
follows [5] that the Green’s function G (E) defined in Eq.
(3.8) may be approximated with the aid of a maximum
principle. Thus with G'(E) representing a trial Green’s
function satisfying L _ G'=G'L _ =G, we have the iden-
tity

G=G'+G[1—(E+H_)G'] . (3.13)

We now replace G on the right-hand side by G'+AG to
obtain

G=G’"+AG(E+H_)AG , (3.14)
where
G'=G'+G'[1—(E+H_)G'] (3.15)

is a variational approximation whose error, according to
Eq. (3.14), is positive. Consequently, the choice of the
variational parameters in the trial Green’s function may
be optimized by maximizing a diagonal expectation value
of the variational approximation,

(Zg)’=V:GE)Ve , (3.16)

of the effective potential. To put this prescription in
more specific terms, consider the separable approxima-
tion G'=c|W" ){ W' | and let the variational parameter
¢ be determined by requiring that the expression (3.15) be
stationary with respect to variations in this parameter.
This leads to the form

1
(W-_[(E+H_)|w.)

(Zg)'=VcIWL) (W |ve .

(3.17)

One may be guided by the maximum principle in the
choice of the trial function W* .
To satisfy the requirement that the function W' lie in
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the negative-energy subspace one may adopt the form

N N
W(x,%)= 3 3 a;w(x)w;(x;) .

i=1j=1

(3.18)

The set of negative-energy basis functions {w;} may be
constructed with the aid of the generalized Hylleraas-
Undheim theorem [12], which has been shown [13] to be
valid for the one-electron Dirac equation when the exter-
nal potential is of the Coulomb form. In this procedure
one diagonalizes the Hamiltonian h(x) in a 2N-
dimensional space. The 2N eigenvalues split into N posi-
tive and N negative eigenvalues. The positive eigenvalues
behave exactly as if the Dirac Hamiltonian were a
positive-definite operator. The N negative eigenvalues all
lie below —mc? and move progressively toward —mc? as
the basis dimension is increased. The eigenfunctions as-
sociated with these negative eigenvalues may be taken to
constitute the basis {w;} from which the trial function
W' is formed. There is in addition the positive-energy
constraint, of the form L W, =¥, that must be im-
posed on the scattering wave function. One method for
eliminating the constraint, through a transformation to a
set of reduced equations of the Schrodinger-Pauli form,
was discussed in Ref. [1].

We have thus far focused our attention on the scatter-
ing problem. The effective Hamiltonian may also be used
to determine bound states. The maximum principle for
the effective potential may be combined with the stan-
dard Rayleigh-Ritz minimum principle for the energy ei-
genvalues; the minimax principle that emerges from these
considerations may be formulated, in parallel with the
analysis given in Ref. [5], as follows. Let E represent the
ground-state energy determined by the equation
H.(EYW,=EW_. A trial ground-state energy E’ is
chosen, and its value is fixed in the initial stage of the
process leading to a variational approximation to the
ground-state energy. (As will be seen later, one may ulti-
mately have to perform iterations to improve the estimate
of the energy.) The variational approximation for the en-
ergy is taken to be

E'=(W' |H |W' )+{(W' |V IW.)
H W VW )W |H_+E'|W.),
(3.19)

where W' and W' are trial functions satisfying
L, W'Y =W and L_W" =W", respectively. These
trial functions are to be determined with the aid of the
minimax procedure. Thus for a given choice of W' and
E' the variational parameters contained in W' are deter-
mined by maximizing the energy E’. The maximum
value is achieved when W™ is an exact solution of

L_(H_+EYW_)=L_V:|W'\). (3.20)

Note that were it possible to satisfy Eq. (3.20) exactly,
thereby making available a solution that may be
represented formally as W' =G(E" )V W', Eq. (3.19)
would reduce to the Rayleigh-Ritz estimate,

E'=(W' |H E" W' ) . (3.21)

In practice, with the parameters in W’ determined by
the maximization process, and with E° still fixed, the op-
timum choice of the variational parameters in W', is that
which minimizes E°. If necessary one would repeat the
process with different choices for E‘ and search for a
more self-consistent solution. If it were possible to make
a complete search for the optimum choice of trial func-
tions the minimax value thus obtained would coincide
with the ground-state energy of H.g(E’). The above
analysis may be extended to the variational determination
of excited-state energies, as discussed in Appendix B of
Ref. [5] for the analogous treatment of the one-body
Dirac equation.

We remark, finally, that since Z .4 in Eq. (3.10) is a pos-
itive operator its presence can only raise the energy ei-
genvalues above those determined by the Hamiltonian
H__ . It follows that an exact determination of the energy
levels of H, provides rigorous (nonvariational) lower
bounds on the eigenvalues of H 4.

IV. SUMMARY

The time-independent Hamiltonian formulation of
QED provides a general basis for the analysis of relativis-
tic effects in atomic bound-state and scattering problems.
In the presence of strong interparticle Coulomb interac-
tions nonperturbative methods are required and in many
cases the Hamiltonian approach will provide the most
effective calculational procedure. The version of this for-
mulation outlined here, leading to the construction of
effective Hamiltonians in configuration space, is an exten-
sion of that described in Refs. [1] and [2]. The effects of
virtual-pair creation has been included here in a particu-
lar model, the ladder approximation for a two-electron
ion, and the infinite series of terms generated by this ap-
proximation have been summed. The resultant expres-
sion for the effective potential is of the form that allows
for the use of a maximum principle as an aid in its evalu-
ation. Since the spectrum of the effective Hamiltonian is
bounded from below (no variational collapse difficulties
arise) it has been possible to formulate a minimax pro-
cedure for the approximate determination of binding en-
ergies. This provides a hole-theoretic generalization of
the development of extremum principles in the analysis of
the one-electron Dirac equation [5].

The configuration-space wave equation derived here in
the ladder approximation represents an external-field ver-
sion of that obtained some time ago [4] from the Bethe-
Salpeter equation. It is noteworthy that while the sum-
mation of ladder diagrams is more difficult using nonco-
variant propagators—the Feynman procedure allows one
to sum many diagrams corresponding to different time
ordering in a very efficient manner—it has been possible
to perform the sum in the model considered here. The
possibility of carrying out such sums for a wider class of
problems, combined with the calculational benefits of the
Hamiltonian method, suggests that this method deserves
further consideration in the search for a practical, and
very generally applicable, basis for the study of relativis-
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tic multielectron systems.

It may be appropriate, in conclusion, to take note of
some earlier work concerned with relativistic effects in
high-Z atoms which has some overlap with the subject
addressed here, though not with its methodology. Con-
sideration of virtual-pair effects is central to the analysis
of the decay of the unstable neutral vacuum in supercriti-
cal fields [14,15]. Extensive theoretical studies of this
process, taking into account the dynamic effect of the
motion of the pair of heavy ions which momentarily
coalesce to form the superheavy nucleus, have been per-
formed [16]. With regard to the study of two-electron
ions, it should be mentioned that relativistic bound-state
calculations for such systems have been carried out in the
no-pair approximation using many-body perturbation
theory [17]. The high accuracy of these calculations
compares with that obtained from a nonrelativistic varia-
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tional treatment with QED corrections included pertur-
batively [18]. The multiconfiguration Fock-Dirac pro-
cedure also provides satisfactory results in may cases of
interest [19-21]; a version of that method has recently
been applied to a high-Z two-electron system as part of
an investigation of parity-violation effects in atoms [22].
There has clearly been a great deal of progress made in
the relativistic treatment of heliumlike ions. A search for
alternative formulations that allow for the systematic im-
provement of calculational accuracy, with relativistic
correlation and virtual-pair effects included, would still
appear to be worthwhile.
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