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Modes of angular motion in intrashell +'S' states of four-valence-electron atomic systems
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A model with all the radial degrees of freedom frozen is used to simulate the intrashell states of four-
valence-electron atomic systems. By inspecting the two- and three-body densities, and by inspecting
directly the eigenfunctions in appropriate subspaces, the features of geometric structure and of internal
motion have been obtained. The effect of the spatial permutation symmetry has been emphasized. Al-

though the interactions are spin independent, the correlations are found to be strongly spin dependent.
All odd-parity states under consideration prefer the conjugate circles (CC) structure (two circles have a
common diameter and have their planes vertical to each other). Two modes of motion are found in this
structure, namely, the four-body head-on collision mode and the double two-body collisions mode. It is
confirmed that the modes found in the quantum states are closely related to periodic solutions of classi-
cal mechanics.

PACS number(s): 31.50.+w, 03.65.Ge, 31.20.Tz, 31.20.Di

I. INTRODUCTION

This paper is dedicated to the investigation of
electron-electron (e-e) correlation of four valence-
electron systems. The physics involved is expected to be
much richer than that of two-electron systems. Besides,
the four-valence-electron atom (e.g., carbon) is particular-
ly important in atomic physics because it is a typical
model of nonmetal elements. Hence, though the correla-
tions would be very complicated, it is worth analyzing
them.

In general, particle-particle correlations can be re-
vealed by correlation-density functions. First, the two-
body correlation can be described by two-body densities.
However, the character of correlation in few-body sys-
tems is collective; the correlation between a pair of parti-
cles may be strongly affected by the disturbance of other
particles. Hence, the understanding of two-body correla-
tions alone is not sufficient. In addition, the understand-
ing of three- and four-body correlation is also necessary.
Owing to the collective correlation, the description based
on independent-particle motion fails. Instead, the inter-
nal motion is of collective nature, and it appears as
specific modes. In [1], a procedure for the calculation
and the analysis of the one-, two-, and three-body densi-
ties was proposed, where the information from the one-
body density serves as an input in analyzing the two-body
density, and the information from the two-body density
serves as an input in analyzing the three-body density.
This procedure was found to be effective for understand-
ing the geometric structures and internal motions of a
four-body nuclear system. In [2—6], e ecorrelations a-nd

the geometric behavior of intrashell states of two- and
three-electron atoms have been studied by multi-
configuration Hartree-Pock (MCHF) methods; average
radii and average angular separation have been calculat-
ed; in particular, two-body densities have been explicitly
shown. An outcome of [5] shows that the average radii

of different MCHF orbitals (4p, 4d, and 4f) are nearly
the same. This finding supports the r-frozen approxima-
tion (all r, are given at an optimal value), which was used
in [7] to investigate the moleculelike rotational manifold
structure of the triply excited lithium states.

Recently, the r-frozen model has also been used in
[8—10] to investigate the internal collective motions in
the triply excited states, where different modes of motion
have been discovered. In the present paper, the same ap-
proximation and the same procedure as in [8—10] have
been adopted to investigate the quadruply excited intra-
shell states. The main concern is also the features of
internal motions. The reader is reminded that the topo-
logical structure of the nodal surfaces of the wave func-
tion determines the basic feature of the system. In realis-
tic intrashell states, when the valence electrons move in a
broad region of the main (outermost) shell, there is no no-
dal surface arising from radial motion (unless an electron
occasionally leaves the main shell); all nodal surfaces, if
there are any, are related to angular motion. Hence, the
intrashell states will be characterized by their angular
motion and not by their radial motion. For this reason,
the r-frozen model is acceptable in the qualitative sense.
Furthermore, the degrees of freedom of inner electrons, if
there are any, are also considered as frozen. In general
this assumption is poor. However, if the inner shells are
filled up, there is no room for the inner electrons to alter
their status (e.g., the two ls electrons have to couple to
L =0 and S =0), unless one of the valence electrons oc-
casionally comes in. In this case, this assumption is also
acceptable in the qualitative sense.

The idea of spin-dependent correlation density defined
in [8] has been introduced in this paper and has been gen-
eralized to three-body density. This idea turns out to be
essential. Although the e-e interaction is spin indepen-
dent, the e ecorrelation is f-ound, as shown in [8] and as
we shall see, to be strongly spin dependent. Hence a
spin-dependent analysis is indispensable.
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The idea of successive analysis of the one-, two-, and
three-body densities of [1] and [8] has been introduced in
this paper. It is recalled that the wave function is far
from uniform but usually distributed mostly in a small re-
gion of the phase space due to correlation. The above-
mentioned way of analysis can direct us to select an ap-
propriate subspace to expose the main feature of the wave
function.

In [8—10] the effect of quantum-mechanical symmetry
on the structure and motion is particularly emphasized.
It turns out that this symmetry is a decisive factor in mi-
croscopic structure, as shown in [8—10] and as shown
below. Hence, the effect of symmetry is also emphasized
in this paper. In what follows the details of the pro-
cedure and the results will be presented; only the lowest
intrashell states of +'S' symmetry (S =2, 1, or 0) are
reported here.
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II. PROCEDURE

4, =A[[(Y1 (1)Y1 (2))1 (Yi (3)Y, (4))1 ]L

Xy, *, s(1234)] (2)

In the r-frozen model, the Harniltonian is
2H=, gP', +g

2mro; ~,.
&& r; —rj

where m is the mass of the electron, l, is the orbital angu-
lar momentum of the ith electron e,- relative to the nu-
cleus, and 8; is its operator, r; =ror;, and ro is the radius
of the sphere not sensitive to our qualitative results. In
this paper ro is given as 0.62 A [11] to simulate the car-
bon atom. The effect of ro will be evaluated in Sec. VI.

The Hamiltonian is diagonalized in a model space
spanned by basis functions

FIG. 1. Energy spectrum of the 'S', 'S', and 'S' states rela-
tive to the lowest 'S' state. This lowest state has energy 160.56
eV, which includes the kinetic energy of angular motion and e-e
repulsion.

tion is strongly affected by the spins, the antisymmetrized
4,. is further expanded as

f„„„ (1,2, 3,4)g„ (l)g (2)g'„ (3)g„ (4),
» )"2 J"3

(4)

where g„(i) is the spin state of e, , p; =
—,
' or

i

~4
——~,—~, —p, —p, .
From Eq. (4) we define the spin-dependent two-body

density as

where A is the antisymmetrizer; y, , s(1234) is the spin
1 2

part, where the spins of particles 1 and 2 are coupled to
s, and those of 3 and 4 are coupled to sz,' s, and s2 are
coupled to the total spin S, Mz is the Z component of S.
In our case, L, =0, l

&
+ l2+ l3 + l4 =odd, S=2, j., or 0. l;

is restricted such that l; ~1,„=2 (although the electrons
are supposed to stay in the N=2 shell, l, of intrashell
states may be higher than those allowed by the indepen-
dent electron model). The effect of altering l,„will be
also evaluated in Sec. VI, where we find that the effect is
small if only the lowest states of each +'S' symmetry
are concerned.

After the diagonalization, we obtained the energy spec-
trum shown in Fig. l. Among the three types of symme-
try, the lowest state of the S' symmetry has the lowest
energy, 160.56 eV (it is considered as the zero point of the
spectrum). Besides, this lowest state has an extraordi-
narily large energy gap with its Qrst excited state. Thus
the stability of the lowest S' state is remarkable.

The eigenfunctions are expanded as

~ =&&V~j. (3)
J

They will be analyzed in detail. Since the spatial correla-

where A labels the orientation of a body frame fixed at
the plane formed by ri and r2 (the details of how to fix it
are irrelevant), and 8,2 is the angle between r, and r2.
Furthermore, the weighted spin-dependent two-body
density is defined as

pp p (sln812)pp p (6)

In our case (L =0),f„„„is isotropic; thus we have»1"21"3

1= g J d0, 2li„„
P(P2

Equation (7) tells us that pi 1 is the probability density of
2 2

the two electrons under observation having angular sepa-
ration 0&2 and having their spins both up,
pi T+p» =2pi T is the corresponding density but hav-

2 2 2 2 2 2

ing one up and one down, and so on. The spin-dependent
density is related to the usual two-body density by

p, = g p„„and p, = g p„„
PI~92 » P2
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Similarly, we can define the spin-dependent three-body
density as

0.75
0.75'

p = dr4

fulfilling

1= g Jdr, dr2dr3p„„„
P)~82~83

(9)

(10)

P2

0.50'

0.25.
,

Pg

25

These densities have analytical expression; thus they
are conveniently calculated numerically. The derivation
of the analytical expressions is referred to the Appendix.
In what follows, two- and three-body densities will first
be analyzed to direct us into an appropriate subspace;
then the wave function will be directly inspected.

Pp
0

III. LOWEST S'STATE 0.25-

This state has all-antisymmetric spatial permutation
symmetry. For the convenience of analysis, M& is given
as 2. It implies that all electrons have their spins up. The
choice of M& is irrelevant here.

The (weighted) spin-dependent two-body densities are
shown in Figs. 2(a) and 2(a' ), respectively. There is a
peak at 8,2=103 =gtt in 2(a' ), where 8&t labels the
most probable angular separation of a pair of spin-
parallel electrons. If the electrons formed a shape other
than the equilateral tetrahedron (ETH), there might be
more than one peak in Pz=p ~ ~

. Hence, Figs. 2(a) and
2 2

2(a') suggest that the most probable shape may be close to
an ETH.

Let P&=/&=0', gt =90 —gt&/2, and 82=90 +8&&/2
(such that 8,2 is given at gt t), then p», as a function of

2 2 2

r3 is plotted in Fig. 3(a). There are two features:
(i) There is a peak at (8=90', /= 132 ) shown in the

figure; evidently (8=90', P= —132') is also associated
with a peak, but is not shown in the figure. e3 and e4
might both stay inside one of the two peaks or stay sepa-
rately in two peaks. However, from Fig. 2(a) we know
that two electrons are not likely to be close to each other;
hence the first possibility can be ignored. The second
possibility implies that e3 and e4 are situated in the X-Y
plane symmetric with respect to the X-axis, and thus the
most probable shape is an ETH as suggested. Since the
ETH is the best choice to reduce the e-e repulsion, this
explains why the energy of this state is the lowest.

(ii) If we ignore e3 but observe e4, then the distribution
is the same simply because the wave function is antisym-
metrized. In other words, both e3 and e4 prefer to have
83=84=90' and P3= —P4. Let us replot Fig. 3(a) with a
bigger or smaller 0&2. We find the feature of distribution
stays the same. Let us define a pair of circles of the same
size having a common diameter and having their planes
perpendicular to each other (e.g. , the X-Z plane and X-Y
plane) as conjugate circles (CC) and the common diame-
ter (the X-axis) the intersection axis. The above findings
show that the four electrons are in two pairs, and each
pair stays in one of the circles symmetric to the intersec-
tion axis. We call this a CC structure. It turns out that

0.75 ~

Pp

0.50 ~

0.

P2

0.25.

60 120

Q12~deg)

60 120
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the CC structure plays an important role in odd-parity
states.

Let us make some suggestions on the motion of the sys-
tem around the ETH. In the multidimensional coordi-
nate space the minima of the total potential energy
V= g~; & ~

V, arise at the ETH's. When the particles
leave a minimum, they would like to keep the geometric
symmetry as far as they can because in this way V can be
reduced. One possibility is shown in Fig. 4(a), where the
motions of particles are correlated such that, say,
8& =180 —82, pt =$2=0, 83=8&=90', $3= —p4, and
0[2 034 During this motion an ETH will transform to
another ETH via a square. In fact, this possibility is the
best choice because V would be kept in a deep valley dur-
ing the transformation, as shown by the solid curve in
Fig. 5. We call this an ETH-square-ETH (ETH-S-ETH)
mode.

Figure 4(a) shows intuitively a classical trajectory.
However, the motion along a classical trajectory is not es-

FIG. 2. Spin-dependent and weighted spin-dependent two-
body densities as functions of 0». In the panels on the left-hand
side the dashed line is for p, , +p —, —, of spin-parallel pairs, the

2 2

dotted line is for p, —, +p —, , of spin-anti pairs, and the solid
2 2 2 2

line is for pz [in (a), p2=p, , ]. The panels on the right-hand
2 2

side are similar but for the weighted densities.
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FIG. 3. Spin-dependent three-body densities p» as functions of r3 when the positions of e& and e2 are fixed and marked by two
2 2)"3

S in the figures. The ordinate is for 83 form 0' (up) to 180' (down); the abscissa is for P, . The contours have p, , =ap, where p
2 2 "3

is the maximum in the figure; a=25% (outermost, dotted line), 80% (middle, dashed line), and 95% (innermost, solid line), respec-
tively. e& and e2 have their spins up. e3 and e4 are both up when I& is given at 2(a); they are both down when Mz is given at 0 (b)
and (c).

tablished in quantum mechanics. Nevertheless, if the
wave function is distributed along a classical trajectory,
then the motion of the system will have a specific mode
associated with this trajectory. In this sense the mode of
motion of a quantum state can be defined. Hence, wheth-
er the ETH-S-ETH mode exists in the S' state should be

c

(a}

subjected to a direct observation of the wave function.
On the other hand, the parity and the spatial permutation
symmetry may a6'ect the wave function seriously. A
striking feature of the odd-parity states is that the copla-
nar structure (CP), where all four electrons together with
the nucleus stay in a plane, is prohibited simply because a
reAection of a CP is equivalent to a 180' rotation; thus in
this configuration the wave function is equal to zero.
Hence, in the above ETH-S-ETH mode, the wave func-
tion appears as a node at the square configuration. The
reader is reminded that the number of nodes is a measure
of vigor of motion. With the above consideration, one
would suggest that the S' state may have an energetic
ETH-S-ETH motion. This suggestion will be confirmed
as follows.

Making use of the preceding findings, let us confine the
observation in the subspace of CC and assume the sym-
rnetry with respect to the intersection axis. f. . . as a

2 2 2

function of 6), and P3 is shown in Fig. 6(a). There is a

i (eV)
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FIG. 4. Intuitive expressions of internal motions. The four

electrons are in two pairs and move correlatively. (a) shows the
ETH-S-ETH mode where the two pairs move in reverse phase.
(b) shows the 4BHC mode where the two pairs move in phase.
(c) shows the D2BC mode which is a high-energy version of the
ETH-S-ETH mode; in (c) particles 1 and 2 (3 and 4) are much
closer to each other than in (a), resulting in energetic collisions.

1208040 1bo p (peg )

FIG. 5. The solid curve shows the variation of the total po-
tential energy ~ during the ETH-S-ETH mode (or DZBC mode);
the dashed curve shows that of the 4BHC mode. The electrons
are moving in correlation on the conjugate circles shown in Fig.
4. Let P; be the angle between r; and the ROC axis (shown in
Fig. 4); then in the ETH-S-ETH mode (or D2BC mode) the
abscissa P=P, =P2= 180—P3= 180—P4, in the 4BHC mode, all

P; are equal to P.
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FIG. 6. Imf, , (the real part is zero) as functions of 8, (ordinate) and P3 (abscissa) while e, is confined on the half circle ABC, as
2 2~3

shown in Fig. 4 (when e& goes from A to C, 0& changes as 90'~0 ~90 ), and e3 is confined on the conjugate half circle ADC, e& and
e2 (an also e3 and e4) keep the symmetry with respect to the ROC axis. e& and e2 always have their spins up; e3 and e& have their
spins up in (a) but have their spins down in (b) and (c). When Imf, , is positive, the contours are shown by solid lines; when

2 2 "3
Imf, , is negative, the contours are shown by dashed lines. The outer contour has Imf, , =af (f is the maximum in a

2 2~3

figure) with a =+20%%uo, the inner has a =+84%.

peak and a hollow associated with the most probable
configurations (the ETH's). These two configurations can
transform to each other by crossing the nodal line. An
evolution of the system along the line PQ with a node is
just the ETH-S-ETH mode. A mode with a node is more
important than those without a node (because more ener-
gy is concentrated in it). Hence, the ETH-S-ETH mode
as an important mode is established.

IV. LOWEST S'STATE

This state has mixed-symmetric [211] spatial permuta-
tion symmetry. In principle the frame of reference can be
arbitrary chosen; however, we choose the orientation of
the frame such that Mz =0. It was found that the physi-
cal picture is clearer in this choice. Thus we have two
spin-up and two spin-down electrons. The geometric
structure of this state would be quite different from the
S' state, because the ETH is now prohibited. This fact

arises because in the ETH configuration the interchange
of positions of any pair is equivalent to a reAection to-
gether with an appropriate rotation; hence the ETH is
only available in odd-parity all-antisyrnmetric states and
in even-parity all-symmetric states.

The p„„and p„„are shown in Figs. 2(b) and 2(b').
p)p2 P)P2

Evidently, the correlation between the spin-parallel pair
and that of the spin-anti pair are different. The latter has
a bigger chance close to each other. Figure 2(b') shows
that the spin-parallel pair prefer to be separated by
0& &

= 120, while the spin-anti pair prefer to be separated
by 0&&=87'. These angular separations suggest that the
most probable shape is a square with a diagonal connect-
ing the spin-up pair and another diagonal connecting the
spin-down pair, and with the distance between the center
of the square and the nucleus d = ro /2. This
configuration keeps all the electrons at one side of the nu-
cleus, resulting in higher e-e repulsion. This explains
why the energy of this state is higher. Incidentally, in the
odd state having two up electrons and two down elec-
trons, any two adjacent vertices of a square (or a rectan-

gle) are not allowed to have spin-parallel electrons. This
arises simply because an interchange of the positions of a
pair of adjacent spin-parallel electrons together with a
simultaneous interchange of the other two is equivalent
to a reAection together with a 180 rotation. Hence, the
spin-parallel electrons must stay at the two ends of a di-
agonal.

Let us fix P&=/&=0', 0&=90 —8t&/2, 82=90 +8t&/2
(such that 8,2 is given at 8& & ), then p, , —, as a function of

222
r3 is plotted in Fig. 3(b). This figure shows the distribu-
tion of a down electron relative to the two up electrons.
We found that the pair of down electrons are mainly dis-
tributed along 0=90. When the given 0,2 is changed,
this feature does not change. Hence the S' state prefers
the CC just as much as the S' state. However, instead of
staying at the opposite sides of the nucleus, the spin-up
pair together with the spin-down pair prefer staying at
the same side; this is consistent with the analysis from
Fig. 2(b').

Let us make some suggestions on motions around the
square. Since in the most probable shape the electrons
are concentrated at one side of the nucleus, the Coulomb
repulsion will push the electrons and make the square
"breathe" as shown in Fig. 4(b). In this way the
geometric symmetry is kept, and the small square trans-
forms to a large square, and again to a small square at the
opposite side. Since the contraction of a square implies a
four-body head-on collision, we shall call the breathing in
a sphere a 4BHC mode. In this mode successive four-
body collisions occur at the two sides of the nucleus in
turns.

Since this state prefers also the CC structure let us
confine the observation in the same subspace of Fig. 6(a);
then f» —, as a function of 8& and P3 is shown in Fig.

2 2 2

6(b). There is a peak 0' and a hollow 0 related to the two
squares at the two sides of the nucleus. Evidently, the
evolution from 0 to 0', forth and back, is the main mode
because a node (arising at the CP structure) is involved.
It is just the 4BHC mode. However, the wave function is
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also distributed smoothly along the lines PQ and P'Q',
which implies the possibility of deviating from the square
shape. If the electrons that move in the CC are exactly in
phase (the angles between all r; and the intersection axis
are the same), the square shape is exactly kept. However,
if two on a circle arrive at the left- (or right-) hand side
later than the other two on the other circle, there would
be a delay in phase; accordingly the diffusion along PQ
and P'Q' appears. Hence this state is dominated by the
4BHC mode. However, there is a remarkable diffusion in
phase. It is noticed that in the investigation of the three-
electron intrashell states [9,10], a similar mechanism,
namely, the three-body head-on collision (3BHC), was
found both in the S' and S' odd-parity states. Un-
doubtedly, this is a basic mechanism existing in atomic
systems. The 4BHC mode is a very energetic mode be-
cause ~ varies rapidly during the motion. This is shown
by the dashed curve in Fig. 5, where the steepness of the
curve is impressive.

Incidentally, if we make the choice Ms =1, the prefer-
ence of the CC structure remains. Now we have three up
electrons and one down electron. The up-down pair stay-
ing in one of the circles is found not to keep the symme-
try with respect to the intersection axis. Consequently, a
clear picture of internal motions cannot be obtained.

V. LOWEST 'S' STATE

This state has mixed-symmetric [22) spatial permuta-
tion symmetry. Since M& has to be zero, there are two up
electrons and two down electrons.

The p„„and p„„are shown in Figs. 2(c) and 2(c').
P1P2 PlP2

These figures are very different from 2(b) and 2(b') be-
cause the p» +p —, —, is peaked at the left-hand side with

2 2

0&& =69'. It implies that now the two spin-parallel elec-
trons prefer to be close to each other.

Let $, =$2=0, 8, =90'—8&&/2, 82=90'+8&&/2; then

p, , —, as a function of r3 is plotted in Fig. 3(c). This
2 2 2

figure also shows the distribution of a down electron rela-
tive to the two up electrons. Just as in Figs. 3(a) and 3(b),
the system prefers the CC structure; however, Fig. 3(c) is
closer to 3(a) but quite different from 3(b) because the
spin-up pair and the spin-down pair are separated at op-
posite sides of the nucleus.

In order to inspect the correlated motions in the CC,
we confine the observation in the same subspace as Fig.
6(a); then f, , —, as a function of 8, and P3 is shown in

2 2 2

Fig. 6(c). This figure reveals a very strong oscillation as-
sociated with the trajectory AB connecting the rnaxirnum
A and the minimum B. In fact, this is the same trajecto-
ry as in Fig. 6(a) but it has two more nodes. The nodes P
and Q appear at the ETH shape. This shape is prohibited
due to the reason stated in the first paragraph of Sec. IV.
The node 0 appears at a CP structure. This structure is
prohibited in all odd-parity L =0 states. These three
nodes imply a very vigorous oscillation with a large am-
plitude; this explains why this state is much higher in en-
ergy. During this oscillation two-body collisions occur
simultaneously at the opposite sides of the nucleus, as

shown intuitively in Fig. 4(c), where 1 and 2, and simul-
taneously 3 and 4, have just undergone collisions. After
the collisions, all four electrons move back along the CC
to undergo the successive two-body collisions. This mode
is a high-energy version of the ETH-S-ETH mode, and is
called a double two-body collisions (D2BC) mode. In the
D2BC mode, the ETH is no longer the most probable
shape but associated only with a node in the oscillation.
Instead, now the most probable shape [associated with
the maximum A and minimum 8 in Fig. 6(c)] is a pro-
longed ETH (PETH) stretching along the intersection
axis of the CC, as shown in Fig. 4(c). A pair of spin-
parallel electrons is at the one end of the PETH while the
other pair is at opposite end. Incidentally, the diffusion
in phase is also observed in this mode.

VI. FINAL REMARKS

( 4;(ro =0.62, 1,„=2)
~ 4; (ro =0.62,1,„=3)) (12)

are equal to 0.9991, 0.9844, and 0.9485 for i =1, 2, and 3,
respectively. If we change I,„ from 2 to 1 (but keep
ro =0.62 A), the energy is changed to 161.67 eV (instead
of three, now there is only one state). The overlap

(Vi(ra=0. 62, l,„=2)~%'i(ro=0.62, I,„=1) ) (13)

is equal to 0.9942. Evidently, the efFect of l,„ is explicit.
However, if only the lowest state is concerned, the
change is quite small. This holds also for other +'S'
states. Hence, the above results on angular motion of the
lowest states are not sensitive to l,„.

Since our model is insensitive to inherent parameters, if
only the lowest +'S' state are concerned, the qualita-
tive findings of this paper are general to angular motion.
It was stated that the intrashell states are characterized
by the angular motion and not by the radial motion.
Hence, the above findings are expected to provide a quali-
tative description of the lowest intrashell states. In fact,
a work on 'S' states of four-electron atoms [12] supports

(i) There are two parameters in our model, ro and l,„.
Let us examine how these parameters affect the results.
In the case of S' states, if we change ro from 0.62 A to
0.7 A (but keep 1,„=2), there is a great change in ener-
gies; E; (in eV, i = 1 —3) are changed from 160.56, 256.03,
and 314.26 to 136.09, 213.26, and 258.34, respectively.
However, the change in wave functions is very small.
The overlaps of the two wave function (the angular part)
with different ro,

(4;(ro =0.7,l,„=2)~%, (ra=0. 62,1,„=2)),
are equal to 0.9997, 0.9991, and 0.9995 for i = 1, 2, and 3,
respectively. The great overlap appears not only in the
S' states but also in other +'S' states. Hence, the

above results on angular motion do not depend on r, in
the qualitative sense.

In the S' states if we change I,„ from 2 to 3 (but keep
ra=0. 62 A), the energies of the three lowest states are
changed to 160.31, 253,83, and 310.89 eV. The change is
small, particularly in the lowest state. The overlaps
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this suggestion. However, all of the above findings have
to be checked in the future by direct realistic calculation.

(ii) There are two essential factors in determining the
structure: one is the geometric symmetry; the other is the
quantum-mechanic symmetry (e.g. , the parity, the spatial
permutation symmetry with respect to the interchange of
positions). The system prefers having better geometric
symmetry as far as possible; because in this way the total
potential energy V can be reduced, and periodic motion
may be preserved (as shown below). On the other hand,
there are nodal surfaces arising from quantum-mechanic
symmetry appearing in the multidimensional coordinate
space. They can be called inherent nodal surfaces because
they have to appear at the exact locations for all the
states of a given +'L symmetry. These inherent sur-
faces strongly affect the structures; because they impose
strict restrictions on the choice of the most probable
shape (in order to reduce kinetic energy the most prob-
able shape would not be close to these surfaces) and be-
cause they direct the system to undergo a specific mode
of motion by evolving across these surfaces.

For example, the ETH has the best geometric symme-
try, and it turns out to be the most probable shape of the
S' state. However, this favorable shape is prohibited in

the S' and 'S' states, resulting in higher energies. In-
stead, the S' state chooses the square, and the 'S' state
chooses the PETH. One more example is the CP struc-
ture which is prohibited in all odd-parity L =0 states; it
associates with an inherent nodal surface. It turns out
that all modes found in this paper are related to this sur-
face by crossing it.

(iii) Although it is clear that the odd-parity states hav-
ing different spatial permutation symmetries have
different structures, they have a common feature: they
all prefer the CC configuration. This is a striking feature.
In CC, the two electrons on a circle have their spins
parallel to each other, and when they move they keep the
symmetry with respect to the intersection axis. While
they move forth and back along the circles, two-body col-
lisions occur. There are two cases. In the first case the
two-body collisions occur simultaneously in one side of
the nucleus, such that these two collisions constitute a
four-body head-on collision, i.e., the 4BHC mode of the
S' state shown in Fig. 4(b). In the second case the two-

body collisions occur in opposite sides, i.e., the D2BC
mode of the 'S' state shown in Fig. 4(c) (the ETH-S-ETH
mode of the S' state is a low-energy version of this
mode). In the first case, the four electrons are kept at the
same side of the nucleus; in the second case, two pairs of

electrons are mostly kept at opposite sides. Recall that in
the doubly excited helium states, a quantum number K
was introduced to specify the angular correlation
[13—15]. Since strong angular correlation has also been
found in the states of four-electron atoms, this correla-
tion results also in remarkable geometric character; thus
a quantum number similar to E can be introduced to
classify the quadruply excited states.

(iv) We have investigated only the L =0 states where
the spatial part of the wave function is isotropic. Howev-
er, if LAO, it will be interesting to see how serious is the
effect of the collective rotation on the modes of internal
motion and how the intersection axis of the CC chooses
its direction relative to L. Another quantum number
similar to I of doubly excited states may be introduced to
specify the relative orientation of L and the intersection
axis.

(v) We have used a spin-dependent procedure in
analyzing particle correlations. This is necessary; other-
wise we would have an ambiguous picture. Figure 2
shows clearly that the correlation of the two spin-parallel
particles and that of the two spin-anti particles are com-
pletely different. In fact, the up electron and the down
electron play different roles in constituting the structure.
For example, it is the spin-parallel electrons staying at
one end of the PETH. Similarly, in Sec. IV, each diago-
nal of the square has two spin-parallel (but cannot be
spin-anti) electrons at its two ends.

(vi) It was mentioned that both the all-symmetric S'
states and the all-antisymmetric S' states are allowed to
have the ETH structure. In our model, if we keep the dy-
namics but change the parity and the spatial permutation
symmetry, then the lowest all-symmetric S' state has a
much lower energy (122.85 eV), and has the most prob-
able shape, an ETH, as it should be. One may ask why
the two similar geometric structures of the odd and even
states differ greatly in energy. This arises because in the
even-parity case the inherent nodal surface at the CP
configuration disappears, resulting in a much more stable
structure. This example shows how the inherent surface
affects the motion and increases the kinetic energy.
Though the all-symmetric S' symmetry is not realistic in
four-electron systems it is very important in four-
valence-nucleon systems.

(vii) It is notable that the two basic modes found in this
paper, namely, the 4BHC and D2BC modes, are closely
related to periodic solutions of classical mechanics.
When four electrons are confined on a sphere with radius
r0, the classical set of eight Lagrange's equations read

2

mrpg;=mrpg, sing, cosg; — — g (cosg, cosg,.sing cosP +cosg, sing, .sing sing —sing, cosg )(1—cosg; )
2 2rp

2

mr p [(sin 0; )(P; )+(sin20; )(0;P,. ) ] = — — g ( —sing;sing;sing. cosg +sing, cosg;sing sing~ )(1—cosg~ )
~0 j (Ai)

(14)



47 MODES OF ANGULAR MOTION IN INTRASHELL +'5'. . . 1759

where i is from 1 to 4. Though the general solution is
difficult to obtain, it turns out that the solution

$)=0, $2=90', $3=180', $4=270

Evidently, this periodic solution is just the 4BHC mode
shown in Fig. 4(b).

Furthermore, it turns out that the next solution

with 8(t) satisfying

8, =82= 83 =84= 8(t}, (15)
p):0 (52=90 $3=180 $4=270

cosg 4mr03

sin g (2V 2+ 1)e
(16)

8, =180'—8~=83=180'—8~=8(t), (19)

is an exact solution of Eq. (14). In fact, Eq. (16) belongs
to the same type of equation that we have found in the
3BHC mode of three-electron atomic systems [9]. Equa-
tion (16) can be integrated; then we have

with 8(t) satisfying

yO= cosO sinO
(1 —cos28) i

2 1 1
O =—

P singo sing
(17)

(1 +cos 8)

+2ml'o
2

1

sinO0

1

sinO
v =&zpf dO.

It implies a periodic collective oscillation back and forth
between O0 and 180 —O0. The period of oscillation is

—1/2

(20)

is also an exact solution of Eq. (14). Equation (20) can be
integrated; then we have

~ 2 1 1 1
O =—

y v'2 sin go

1 1 1

(1+cos 80)' (1+cos 8)'
(21)

It also implies a periodic collective oscillation back and forth between O0 and 180 —O0. The period of oscillation now is

180'—0
V=2&y

V'2 singo

1 1

(1+cos'8, )
'"

I

—1/2

dO.
(1+cos 8)' (22)

Evidently, this periodic solution is just the D2BC mode shown in Fig. 4(c). Now it is clear that the basic modes of
motion in quantum states correspond to periodic solutions of classical mechanics.

AppENDIx

The following two formulas are used to obtain analytical expressions of two- and three-body densities for carrying out
the numerical calculation.

(1) Let ( YI (r, ) Y& (r2))& be denoted as (l, ( 1 )l~(2))&. Let &2l + I be denoted as l. Then the first formula is as follows:
a b

dr3dr~[(l, '(1)l&(2)),, (l,'(3}ld(4)),, ]& ~[(I,(1)lt, (2))& (l, (3)ld(4))1 ]~~

I

=6, , 5, , 5, , ( —1) ' 'X QA, JY(l, l', XX, A, l~)C+~~~~

l,
x g l, l, A,,A.„U I,'

a

lb l l'l'
a b I 0 1b0

4
b

kb

(A 1)

(2) The second formula is as follows:
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fdr&[(l'(1)lb(2)), (1,'(3)ld(4)) ]~~[(l,(1)lb(2))~ (l, (3)ld(4))i ]~~

d d

X& g ( —1 )~ (2A, + 1)(2A,'+ I ) QAoW(AA, 'XX, Roid )Cg o ~~

Ib
k 0 k 0 k 0

kb k)

X[(Yk (rt)Yk (rp))k YI, (r3)]g Q

(A2)

In the case ofX =0, these two formulas can be considerably simplified.
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