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Ionization potential for ground states of berylliumlike systems
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The 1s 2s ground-state energies of berylliumlike systems are calculated with a full-core plus correla-
tion method. A partial saturation of a basis-function method is used to extrapolate a better nonrelativis-
tic energy. The 1s 2s ionization potentials are calculated by including the relativistic corrections, mass
polarization, and QED effects. These results are compared with the existing theoretical and experimen-
tal data in the literature. The predicted Bet, CITY, Niv, and Ov ionization potentials are within the
quoted experimental error. Our result for F vI, 1267606.7 cm ', supports the recent experiment of
Engstrom [Phys. Scr. 31, 379 (1985)], 1 267 606(2) cm, over the datum in the existing data tables. The
predicted specific mass polarization contribution to the ionization potential for Be I, 0.006 88 a.u. , agrees
with the 0.00674(100) a.u. from the experiment of Wen et al. [Phys. Rev. A 37, 4207 (1988)]. The cal-
culated relativistic correction to the double ionization of Be I, —0.000 1350 a.u. , also agrees with the re-
cent result, —0.000 135 a.u. , of Lindroth et al. [Phys. Rev. A 45, 1493 (1992)]. Using the calculated re-
sults of Z =4—10, 15, and 20, we extrapolated the results for other Z systems up to Z =25 for which the
ionization potentials are not explicitly computed.

PACS number(s): 31.20.Di, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Extensive efforts have been expended in the study of
the Be1 ls 2s system by theorists [1—9] in the past.
These efforts were accelerated in the last few years
[10—17], partly due to the improvement of computation
resources. The most accurate nonrelativistic energy of
the Be 1 ls 2s state was calculated by Bunge [5]
to be —14.667 358(28) a.u. Recently, using the
multiconfiguration Hartree-Fock method with full
configuration interaction (CI), Olsen and Sundholm [11]
obtained an energy of —14.667 37(3) a.u.

The relativistic contribution to the Be? energy has
been studied by Liu and Kelly [15], and Lindroth et al.
[16]. Lindroth et al. has done a careful study of the rela-
tivistic corrections to the double ionization of Bet. By
subtracting the relativistic, the mass polarization, and the
QED contributions from the experimental data, they ob-
tain an "experimental" nonrelativistic energy of—14.667353(2) a.u. Compared with the result of Olson
and Sundholm [11], they concluded that "an accurate
calculation of a nonrelativistic energy for Be thus
remains a challenge to be pursued. " A similar sentiment
is also expressed in the recent work of Mkrtensson-
Pendrill et al. [14].

Most of the recent work on Be I uses the
multiconfiguration Hartree-Fock method (MCHF),
multiconfiguration Dirac-Fock method (MCDF), or
many-body perturbation theory (MBPT). These methods
clearly have the potential in extending the application to
very complicated systems. For smaller systems such as
Be I, the CI method is still quite effective. This is illus-
trated in the work of Bunge [5]. Hence, if we can use a
CI method to obtain an accurate energy for Be I, this re-
sult will show precisely where the correlation energy
comes from. This information could be useful to the

workers in MBPT in deciding which type of Feynman di-
agrams should be included in the perturbation expansion.

The improvement in experimental techniques has also
led to more interests on the mass polarization effect of
atomic systems. Recently, Wen et al. [18] used high-
resolution multiphoton-resonance-ionization mass spec-
troscopy to measure the isotope shift of the Bet states.
They have also calculated the shift for the ground state
with a MCHF method; the result strongly disagrees with
their experiment. They noted the lack of reliable theoret-
ical data in this important area and remarked "accurate
ab initio calculation of this quantity poses a challenge to
theory which to our knowledge, has not yet been met. "

Recently, Chung and collaborators use a full-core plus
correlation method (FCPC) to calculate the ionization en-
ergies for the ground and excited states of three-electron
systems [19—21]. Accurate results are obtained. This
method uses CI wave functions in the LS coupling
scheme. The correlation effects are accounted for by the
inclusion of various angular components. For three-
electron systems the basis functions in the angular com-
ponents can be saturated. This is much harder to accom-
plish for a four-electron system. In the first application
of FCPC to the four-electron system, Chung and Full-
bright [22] estimated the contributions from the satura-
tion of basis functions for Li . This is acceptable for Li
because the estimated contributions are very smaH for
this negative ion. For neutral species and positive ions,
these contributions are much larger. A more reliable
method is therefore needed to calculate these contribu-
tions. In this work, we will use a method of partial satu-
ration of angular components to improve the nonrela-
tivistic energy. This method is similar to the extrapola-
tion method used by Bunge [5].

The ionization potential (IP) results in Chung [20]
agree with the available experimental data to about l
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II. THEORY

The zeroth-order nonrelativistic Hamiltonian is given
by (in a.u. )

N
H()= g l p2

2

N
+ g

ij =1 ij
i&j

The perturbation operators are

H' =H1+K2+H3+H4+H5,
where

N

H, =—,yp4,8c;—
1

is the correction to kinetic energy,

(2)

(3)

ppm for Z =3 to 10 [23—25] except Bm. This precise
agreement raises some interesting questions. Since the
relativistic effects are calculated with first-order perturba-
tion theory and this correction is already very large for
Z ~ 8, one would ask why the higher-order relativistic
effect does not contribute to the IP [26]. Furthermore,
the QED effects in Chung [20] are calculated using a hy-
drogenlike formula with an effective nuclear charge.
These results are smaller than those of McKenzie and
Drake [27] where a more elaborated approach is used.
One possibility for the precise agreement in Chung [20] is
that it could be the result of an accidental cancellation of
errors. In this regard, it would be most interesting to see
whether the same precision agreement between theory
and experiment can be repeated for four-electron sys-
tems.

In this work we will use the full-core plus correlation
method to calculate the IP of 1s 2s systems. These re-
sults will be compared with the data in the literature. In
Sec. II, a brief account of the theory will be given. The
method of partial saturation of angular component will
be given in Sec. III and the method of energy extrapola-
tion will be given in Sec. IV. The IP and mass polariza-
tion results will be presented in Sec. V together with the
comparison with experiments. Section VI is a summary
and conclusion.

is the orbit-orbit interaction, and M is the nuclear mass.
To implement the FCPC method for a four-electron

system, it is best to take the 1s two-electron system as
the "core." Hence, the IP calculated in this work would
be the double-electron IP of the four-electron system.
The single-electron IP of the four-electron system is ob-
tained by subtracting the 1s 2s IP. The wave function for
the four-electron system can be written as

%(1,2, 3,4)= A @],],(1,2)@2,2, (3,4)

+g C, @„(,) ](;)(1,2, 3,4)

A is the antisymmetrization operator. The (I]„„(1,2) is
a predetermined 1s core wave function. It is given by

C „„(1,2)=A g c„„]r]r,"exp( —/3]»] p, r, )—
k, n, l

X Y](Q„A2)y(1,2) .

The angular part is given by

Y,(Q„O)=g (I, l, m, —ml0, 0)

X Y] (A])Y] (A2) . (10)

y is a two-electron singlet spin function. The constants
ck„],P], and p] are determined by optimizing the energy
of the two-electron core. @2,2, (3,4) represents the wave
function of the two 2s electrons which is given by

4q, q, (3,4)= A g dk„]»3»4exp( —k]»3 g]»4)
k, n, l

X Y](03,04)y(3, 4) .

Since the 2s electrons also form a 'S complex, their angu-
lar function Y](03,04) is similar to Eq. (10). In principle,
the ]] summation in Eq. (11) should include all l. Howev-
er, the computation resources needed for such a wave
function would be prohibitive. In this work, we only sum
/ from 0 to 1, the contribution from all other l's is includ-
ed in 4„(,) ](;)(1,2, 3,4). This latter wave function also in-
cludes the intershell correlation as well as the relaxation
of the core. It is given by

4'„(,) ](,)(1,2, 3,4) =P„(,) ](,)(R) Y]( ) (II )Xss

where
4

(12)

H =—
4

N

V; VJ.
ij =1
i&j

is the mass polarization,

is the Darwin term,
N

[1+—,'s, .s ]5(r," )
C t j=1

i&j

is the electron-electron contact term,

(5)

4

P„(;)](;)(R) = + rj 'exp( aj » ) . —(13)
j=1

A different set of a is used for each l(i). The angular
part is

Y](,) (II)=& (I]l2m]m2ll]2m]2)

X ( I]2~3m ]2m 3 l~]23m ]23 ~

4

X(l]~314m]23mqlLM) + Y] (0 ) . (14)
j=1 J J

N

~ X2c
i&j

J V
'p pJ

P& PJ+
~ij l(])—[(l» 12 )l]z, l3 ]l]$3y 14 (15)

To simplify notation, this angular function is denoted as
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XSS —[(S1,S2 )S12,S3 ]$123,S4
Z

(16)

There are two possible spin functions for the 'S system.
Namely

Xl [($1~$2)0,$3] 2, $4

2 [(Sl,S2 )1,S3]2, $4 (18)

The linear parameters C;,dk„& and the nonlinear parame-
ters a, A, l, and i)1 in Eqs. (8), (11), and (13) are deter-
mined in the energy optimization processes.

The nonrelativistic energies of the 1s core and the
1s 2s state are calculated using the Rayleigh-Ritz varia-
tion method,

(via, iq &6E„,„„,=5(IIO & =5
(

(19)

In this expression it is implicitly implied that l&23 and 14
couple into a wave function of total orbital angular
momentum L, and azimuthal component M. In this work
I. =0 and M=O. The four-electron spin wave function
can also be represented in this notation as

The relativistic and mass polarization corrections are
given by

bE=&+III1+&2 +&+&+IH3+~4+&$1+&

=DE)+AE2,
where AE& is the first-order energy from the one-particle
perturbation operators and AE2 is from the two-particle
operators. The total energy, which is accurate to first or-
der, becomes

(21)

To obtain an accurate ionization potential for the
1$2$ system, the quantum electrodynamic effect (QED)
cannot be neglected. It would be very diScult to carry
out a complete QED calculation for the four-electron sys-
tem. In Chung [19], the contribution of the QED to the
IP of the 1s 2s system is estimated using the hydrogenic
formula from Bethe and Salpeter [28]. A more precise
formula has been given in Erickson and Yennie [29] and
in Drake [30]. For an $-electron with principal quantum
number n, we have

bEOED(n, O) =4Z,sa I —,
"—21n(aZ, s. ) —In[E (n, O)]+7.214aZ, lr

—(Z,ga) [31n (Z,sa)+8.6951n(Z,ga)+19.081]I /(3an ) . (22)

This equation is also used in Edlen [31]for the IP of lithi-
umlike ground states with Z,ff=Z —1.6. In this work,
we will treat the 2s2s electrons as two hydrogenic elec-
trons. The effective nuclear charges Z, ff for the two elec-
trons are estimated by two methods: In the first method,
we assume the Z, ff of the two electrons are the same.
The energy eigenvalue of the one-electron Dirac equation
(excluding the rest mass energy) for a Coulomb potential
is [28]

b,E ; hgher order2E ; D(rZe)eg2E" (Zeg )
—.

The double-electron ionization potential becomes

Edh, P
= E„,(1$ 'S)—E„,(1$2$ 'S)

(26)

Using this Z,s, an approximate bEQED(2, 0) for the 2$
electron can be estimated from Eq. (22). In addition, we
can also use this Z,ff to estimate the higher-order relativ-
istic contribution from

2 —1/2

ED;„,(Z) = 1+
CX n —k++k —a Z

(23)

(27)

Eip(1$2$ ) =Edhip Eip(1$2$) . —

bEhigher order bEQED(

The E,p(1$ 2$ ) is obtained by subtracting the E,p(1$2$)
from this result, i.e.,

where k is related to the total angular momentum j of the
hydrogenic electron by k =j+—,'. To order of a Z,
ED;„,reduces to

The second method is to assume that there are two
different Z,ff's. They are obtained by solving the equa-
tions

E(1)(Z)
2n2 n k

(24)

E„„„l(1$2$)+bE, (ls 2$ ) —E„,„„l(1$2)

—bE, (1$ ) = — ' 1+ff Q Zeff

n n k
3

4n

Since we have calculated the energy of the 2s valence
electron to order of a Z with Eqs. (19) and (20), we can
define a Z, ff by

E„,„„,(ls 2$)+bE, (1$2$)—E„,„„l(1$) —bE, (ls )

ff1 ffi 1 3
2 2 2

1+
2n n k 4n

E„,„„l(ls2$ )+bE1(1$ 2$ ) —E„„„l(ls2$)

2
Z ff2 a Z,ff2 1 3

2 2 2
—bE, (1$2$)= — 1+

2n n k 4n

(29)

(30)

(25) These Z,s's are substituted into Eq. (22) to find the total



IONIZATION POTENTIAL FOR GROUND STATES OF. . .

QED contributions. This result is then compared with
that from Eq. (25).

For small-Z systems, the nuclear size effect is negligi-
ble. It becomes appreciable for Z & 15. If we assume a
uniform spherical nuclear charge distribution with a
cutoff radius R„„,the perturbation potentia1 is, for
r ~R„„,

Z2
H..=—-15 +05 "

r R„„R3„ (31)

since this is a very small effect. We estimated the contri-
bution of H„„to IP using the hydrogenic function with
the Z,& calculated earlier. The radii of the nuclei are tak-
en from Johnson and Soff [32].

III. PARTIAL SATURATION OF ANGULAR
COMPONENT BASIS FUNCTIONS

A four-electron calculation is much more time con-
suming than a three-electron calculation. In Chung [19],
a 318-term wave function is used for the 1s ls core. If we
use the same core wave function for this four-electron
calculation, the computation resources needed will be
very large. Recently, Chung and Fullbright [22] used a
159-term core wave function to calculate the electron
affinity of lithium; an accurate result is obtained. We will
also use a 159-term wave function for the 1sls core in
this work. The @2,2, in Eq. (8) should be a correlated
two-electron wave function similar to the 4&, &, . To save
computer CPU time, we include only the (0,0) and (1,1)
angular components in @2,2, . A11 other correlations are
included in the wave function @„~;~&~;~(1,2, 3,4). The
intershell correlation effect is also included in this four-
electron wave function.

Compared to the three-electron ground-state calcula-
tion [19], one obvious complication is that it is much
harder to saturate a four-electron wave function. There
are also far more angular coupling terms which may con-
tribute to the binding energy of the four-electron system.
It is impossible to saturate all these angular components
simultaneously as in the case of Refs. [19] and [20).
Hence, we have adopted a method of partial saturation of
angular components. The method is similar in spirit to
the one used by Bunge [5].

We first choose a sufFiciently accurate but not yet fu11y
saturated wave function. The wave function has 25 and
20 terms in the (0,0) and (1,1) components of @2,2, . In
addition, we choose a 34-angular-component 868-term

This forms a "basic" function of 913 terms.
Due to the 159-term core, this implies that 8023X4012
matrix elements are calculated before they are reduced to
a 913X913 secular equation.

In Table I we give the result for Bet from this basic
function. The angular components and their number of
radial basis functions are also listed. The energy upper
bound from this wave function is —14.667042 a.u. Al-
though this result can be lowered very substantially if the
core wave function is improved, it is the lowest upper
bound for Be I in the literature, except perhaps for that of
Olsen and Sundholm [11] who uses an extremely large
wave function. It is obvious from Table I that the basis

function in the angular components is far from saturated.
Next, we group the 34 angular components in Table I

into 12 mutually orthogonal groups of different
( l „12,l3, l4 ). In subsequent calculations, we increase the
basis functions in the (1„l2,13,l4) components, one group
at a time. The new upper bound is then compared with
that of the 913-term basis function. The energy improve-
ment is recorded. These results are shown in Table II.
The total irnprovernent is 40.3pa.u. We should mention
that except in the [0000], [0011],or [0112]computations,
when the basis functions of one group are saturated, the
energy contributions from the other groups change very
little from those of Table I. Even in these exceptional
cases the changes are small mainly because a significant
number of terms is already used in the basic function.

IV. EXTRAPOLATION TO HIGHER /

The wave function in Table I has only included the an-
gular components with l ~ 6. The components with l ~ 7
will also contribute significantly to the energy. This con-
tribution needs to be extrapolated. If we examine the en-
ergy contributions from the (00ll) components and com-
pare them with the (l, l) contributions from the 318-term
core wave function [19,20], it is interesting to note that
the ratio of

R =bE(l, l)/bE(0, 0, l, l) (32)

V. RESULTS AND DISCUSSION

Using the wave function from the 159-term core and
the 913-term basic function, we compute the relativistic
perturbation contributions to the total energy and the
double-electron IP. These results also allow us to com-
pute the Z,z for the QED and higher-order relativistic
corrections. As mentioned in Sec. II, there are two ways
to consider the screening of nuclear charge and the Z,ff s.
One way is to assume that the Z,z's for the two electrons
are identical whereas the other assumes a successive
screening. We find that these two approaches give essen-

is a constant for l =4, 5, and 6. This can be seen from
the data in Table III. The constant ratio in this equation
indicates that the AE (l, l) and hE (0,0, I, l) have the same
pattern of angular convergence. The contribution from
the higher l's to the core energy can be deduced from
Pekeris [33] and Drake [34]. If we assume that the same
ratio will continue for the higher-/ components in the
four-electron system, then the l ~ 7 contributions to the
binding energy can be extrapolated. These extrapolated
results are given in Table III.

In this work explicit calculations are carried out for
Z =4—10, 15, and 20. Using the results from Tables II
and III, we can compute the nonrelativistic energies for
these systems. This result is given in Table IV. In the
second column of this table, the upper bounds from the
basic functions are given. With the corrections from the
higher-l components, from the partial saturation of angu-
lar component basis functions, and from the core correc-
tion, a final nonrelativistic energy is obtained. This is
given in the last column of Table IV.
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TABLE I. Energy convergence of the 1s core and 1s 2s 'S state for the Be I basic (913-term) wave
function.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17

Angular
component

(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
Total
Core+ (0,0)
Core+ (1,1)
[(1,1)0,0]0,0'
[(0,1)1,0]1,1

[(0,0)0,2]2,2
[(0,1)1,1]2,2
[(0,0)0,0]0,0'
[(0,0)0,3]3,3
[(0,2)2,0]2,2
[(0,0)0,2]2,2
[(0,0)0,4]4,4
[(0,3)3,0]3,3
[(0,0)0,5]5,5
[(0,1)1,1]2,2'
[(0,1)1,2]3,3
[{0,0)0,6]6,6
[(0,1)1,2]3,3'
[(0,0)0,0]0,0
[(0,1)1,0]1,1'

No. of
terms

36
30
25
20
16
16
16

159
25
20
80
70
50
46
30
50
70
16
50
35
50
24
15
49
15
16
15

—bE (a.u. )

13.626 840 80
0.024 234 29
0.003 028 74
0.000 776 52
0.000 275 37
0.000 120 37
0.000 059 99

13.655 33608
14.620 403 65
0.041 91333
0.001 708 43
0.001 234 47
0.000 597 68
0.000 296 83
0.000 282 08
0.000 166 20
0.000 150 21
0.000 055 58
0.000 056 71
0.000 024 62
0.000 023 89
0.000 018 46
0.000 01770
0.000 011 70
0.000 01149
0.000 011 76
0.000 008 08

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Angular
component

[(0,4)4,0]4,4
[{0,1)1,1]2,2
[(1,1)0,2]2,2
[(2,2)0,0]0,0'
[(0,1)1,3]4,4
[(0,5)5,0]5,5
[(3,3)0,0]0,0*

[(0,6)6,0]6,6
[(0,0)0,3]3,3
[{4,4)0,0]0,0'
[(0,1)1,3]4,4'
[(0,1)1,4]S,S
[(0,1)1,0]l, lb

[(1,1)0,3]3,3
[(1,2)l, l]2,2
[(2,2)0,2]2,2
[(1,1)0,1]1,1
Total

No. of
terms

15
11
16
16
15
15
16
15

8

8
5
5
5
8
5
8

16
913

—hE (a.u. )

0.000007 60
0.000 OQ7 86
0.000 007 24
0.000 OQ4 69
0.000 004 40
O.OOOOO3 71
0.000 002 60
0.000 001 87
0.000 001 76
0.000 OQ1 62
0.000 OQ1 4Q

0.000 001 31
0.000 001 46
0.000 001 07
0.000 000 91
0.000OOO 86
0.000 000 19

14.667O43 41

'In these angular components the spins of the first two electrons couple into a triplet.
A repeated angular component with the same 1's but different set of nonlinear parameters.

TABLE II. Be I 1s 2s energy improvement over the basic (913-term) wave function by partial satu-
ration of angular components (see the discussion in text).

Angular
component
expanded

[0000]
[0011]
[0022]
[0033]
[0112]
[0044]
[0055]
[0066]
[0123]
[0134]
[0145]'
[0156]
[1122]
Total-energy

No. of terms
in the basic

wave function

46
170
152
109
81
73
64
64
30
20

5
0

21
improvement

No. of terms
increased

157
214
152
169
225
165
208
210
214
168
309
155
103

Total
No. of
terms

1070
1127
1065
1082
1138
1078
1121
1123
1127
1081
1222
1068
1016

Upper bound
energy E (a.u. )

—14.667 047 35
—14.667 050 53
—14.667 046 91—14.667 047 21
—14.667 050 41—14.667 047 14
—14.667 046 18
—14.667 045 10—14.667 046 24
—14.667 044 39—14.667 044 63
—14.667 044 70
—14.667 043 76

AE (a.u. )

improved

—0.000 003 94
—0.000 007 12
—0.000 003 50
—0.000 003 80
—0.000 007 00
—0.000 003 76
—0.000 002 77
—0.000 001 69
—0.000 002 83
—0.000 000 98
—0.000 001 22
—0.000 001 29
—0.000 000 35
—0.000 040 25

'Also including [0222] and [1113]angular components.
Also including [016?]angular components.
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TABLE III. Extrapolation of the higher angular component (l & 6) contribution to the binding ener-

gy of Be-like 1s 2s systems (in a.u. ). The extrapolated (l & 6) contributions are based on the l =6 re-
sults and their comparison with that of the ls core [19,20]. See the discussion in text.

1s

—AE (a.u. )

Z=4
s22s 2 Ratio' 1s

—bE (a.u. )

Z=9
s 2s Ratio'

l=4
l=s
l=6
l&6

0.000 286 3
0.000 127 3
0.000 064 2
0.000 149 1

Z=5

0.000 069 7
0.000 030 4
0.000 015 2
0.000 035 4

4.108
4.190
4.206

0.000 346 1

0.000 155 2
0.000 079 0
0.000 183 5

Z =10

0.000 201 7
0.000 090 2
0.000 045 6
0.000 105 8

1.716
1.720
1.735

l=4
l=5
1=6
l&6

0.000 307 9
0.000 1370
0.000 069 5
0.000 1600

0.000 1092
0.000 047 5
0.000 024 0
0.000 055 2

2.821
2.887
2.899

0.000 352 0
0.000 157 6
0.000 080 0
0.000 186 1

0.000 215 1

0.000 096 3
0.000 048 7
0.000 1133

1.636
1.636
1.643

l=4
l=5
l=6
l&6

l=4
l=5
l=6
l &6

l=4
l=s
l=6
l&6

0.000 321 2
0.000 143 3
0.000 072 8
0.000 1699

0.000 332 7
0.000 148 5
0.000 075 5
0.000 174 4

0.000 340 7
0.000 152 3
0.000 077 4
0.000 178 9

Z=6

Z=7

Z=8

0.000 139 8
0.000 061 0
0.000 030 5
0.000 071 2

0.000 164 9
0.000 073 2
0.000 037 0
0.000 085 5

0.000 185 0
0.000 082 5
0.000 041 5
0.000 096 0

2.297
2.348
2.387

2.021
2.030
2.040

1.841
1.846
1.864

0.000 367 6
0.000 164 8
0.000 084 1

0.000 194 3

0.000 375 4
0.000 168 5
0.000 086 0
0.000 199 1

Z =15
0.000 259 0
0.000 1174
0.000 059 7
0.000 1380

Z =20
0.000 282 5
0.000 128 5
0.000 065 5

0.000 151 5

1.419
1.404
1.408

1.329
1.312
1.314

'The ratio is AE, 2(l, l)/AE, 2 &(00ll).

tially the same results for both the QED and the higher-
order relativistic corrections, with the result from the
latter approach being slightly larger. For example, the
difference between the two sets of QED corrections is
0.08 cm ' for Z =4. For Z =20, it increases to 1.49
cm which is only 0.06%%uo of the total QED contribution
to the double-electron IP. Hence only one set of results
(from successive screening Z, tr) is included in Table V.

Table V gives the IP results for Z =4—10 and for
Z =15 and 20. The last two states are computed in order
to extrapolate our results to higher-Z systems. In this
table the results from the 1sls core are given in the

second column. The nonrelativistic energy of the core is
corrected using Pekeris [33] and Drake [34]. Hence, the
ls ls energy is directly from Pekeris [33] and Drake [34].
The row of "Rel. corr." is the discrepancy of our first-
order relativistic results with that of Pekeris. This
correction does not affect the IP but it affects the four-
electron relativistic energy. Most of this discrepancy
comes from the electron-electron contact potential which
is particularly large for the 1s core. This shows the
weakness of the CI wave function in the case of the 1s-1s
interaction. For the 1s-2s and 2s-2s interactions, the CI
wave function works much better. The difference of

TABLE IV. Nonrelativistic energies of Be-like 1s 2s states (in a.u.).

Z

4
5
6
7
8
9

10
15
20

913 term
Upper bound

—14.667 043 4
—24.348 516 1
—36.534 435 9
—51.222 272 0
—68.411 074 1
—88.100440 8

—110.290 158 6
—258.741 1394
—469.693 640 1

Higher-I corr.

—0.000 035 4
—0.000 055 2
—0.000 071 2
—0.000 085 5
—0.000 096 0
—0.000 105 8
—0.000 1133
—0.000 1380
—0.000 151 5

Corr. from partial
wave saturation

—0.000 040 3
—0.000 051 4
—0.000055 5
—0.000 062 7
—0.000 071 7
—0.000 073 9
—0.000 071 8
—0.000 089 0
—0.000 093 4

Core corr.

—0.000 230 1
—0.002 247 6
—0.000 260 0
—0.000 268 8
—0.000 275 8
—0.000 281 3
—0.000 285 9
—0.000 300 2
—0.000 308 0

Total

—14.667 349 2
—24.348 870 3
—36.534 822 3
—51.222 689 0
—68.411 517 5
—88.100901 9

—110.290 629 5
—258.741 666 6
—469.694 1930
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TABLE V. Ionization potential for the 1s 2s states of beryllium-like systems (in a.u.).

1s1s 1s 2s
Ionization potential

a.u. cm

Z=4
Nonrel. (with core corr. )
(H, +H )

&a, &

Rel. corr. '
Subtotal
QED corr.
Double IP (this work)
1s 2s IP
1s 2s IP (this work)
Expt. b

(theory) —(experiment)
Z=5
Nonrel. (with core corr. )

(a, +a, )

&a, &

&H, &

Rel. corr. '
Higher rel. corr. '
Subtotal
QED corr.
Double IP (this work)
1s~2s IP
1s 2s IP (this work)
Expt.
(theory) —(experiment)
Z=6
Nonrel. (with core corr. )

&a, +a, &

&H, &

(a, )
&a, &

Rel. corr. '
Higher rel. corr. '
Subtotal
QED corr.
Nuclear size
Double IP (this work)
1s 2s IP
1s 2s IP (this work)
Expt."
(theory) —(experiment)
Z=7
Nonrel. (with core corr. )

(Hi+a, )
&H, )
(a, )
&a, )
Rel. corr. '
Higher rel. corr. '
Subtotal
QED carr.
Nuclear size
Double IP (this work)
1s22s IP
15 2s IP (this work)

—13.655 566 21
—0.002 429 60

0.000 265 31
—0.000 047 03

0.000 025 72
—0.000 014 6S

—13.657 766 46

—22.030 971 55
—0.006 327 03

0.000 572 36
—0.000 079 70

0.000 027 67
—0.000 025 18

—32.406 246 57
—0.013 709 88

0.001 055 31
—0.000 121 00

0.000 031 47
—0.000 038 90

—32.419029 57

—44.781 445 12
—0.026 222 70

0.001 7S4 07
—0.000 17092

0.000 032 19
—0.000 055 04

—44.806 107 52

—14.667 349 19
—0.002 578 34

0.000 279 74
—0.000 047 70

0.000 028 11
—0.000 014 65

—14.669 682 04

—24.348 870 27
—0.006 940 37

0.000 618 49
—0.000 080 84

0.000 029 78
—0.000 025 18
—0.000 000 10—24.355 268 49

—36.534 822 33
—0.015 430 92

0.001 160 14
—0.000 121 97

0.000 032 78
—0.000 038 90
—0.000 000 56

—36.549 221 76

—51.222 689 03
—0.030 044 77

0.001 953 09
—0.000 170 50

0.000 032 09
—0.000 055 04
—0.000 002 07—51.250 976 23

1.011 782 98
0.000 148 74

—0.000 014 43
0.000000 68

—0.000 002 39

1.011915 6—0.000 004 6
1.011 9109
0.669 289 3
0.342 621 6
0.342 621 1

0.000 000 5

2.317 898 72
0.000 613 34

—0.000 046 13
0.000 001 14

—0.000 002 11

0.000 000 1

2.318465 1
—0.000 020 4

2.318444 6
1.393 987 6
0.924 457 0
0.924 469 1

—0.000 012 1

4.128 575 76
0.001 721 04

—0.000 104 83
0.000 000 98

—0.000 001 31

0.000 000 56

4.130 192 2—0.000 057 7—0.000 000 1

4.130 134 5
2.370 215 1

1.759 9194
1.759 924 0—0.000 004 6

6.441 243 91
0.003 822 06—0.000 19902—0.000 000 42
0.000 000 10

0.000 002 07
6.444 868 7

—0.000 128 4
—0.000 000 2

6.444 740 1

3.597 539 4
2.847 200 7

222 047.17
32.64

—3.17
0.15

—0.52

222 076.28
—1.02

222 075.25
146 883.08
75 192.17
75 192.07

0.10

508 694.61
134.61

—10.12
0.25

—0.46

0.02
508 818.90

—4.47
508 814.42
305 929.67
202 884.75
202 887.40

—2.65

906 076.19
377.71

—23.01
0.21

—0.29

0.12

906 430.95
—12.65
—0.02

906 418.27
520 178.28
386 239.99
386 241(2)

—1.01

1 413 634.21
838.81

—43.68
—0.09

0.02

0.45
1 414 429.73

—28.18
—0.05

1 414 401.51
789 537.69
624 863.82
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1s ls

TABLE V. (Continued}.

1s 2s
Ionization potential

a.u. cm

Expt. '
(theory) —(experiment)
Z=8
Nonrel. (with core corr. )

&H, +H, &

&H, &

(H, )
&H, )
Rel. corr. '
Higher rel. corr. '
Subtotal
QED corr.
Nuclear size
Double IP (this work)
1s 2s IP
1s22s' IP (this work)
Expt. '
{theory) —{experiment)
Z=9
Nonrel. (with core corr. )

&H, +H, )
&H, &

(H, )
&H, &

Rel. corr. '
Higher rel. corr. '
Subtotal
QED corr.
Nuclear size
Double IP (this work)
1s 2s IP
1s 2s IP {this work)
Expt. g

{theory) —(experiment)
Z =10
Nonrel. (with core corr. )

&H, +H, &

&H, )
&H, )
&H, )
Rel. corr. '
Higher rel. corr. '
Subtotal
QED corr.
Nuclear size
Double IP (this work)
1s 2s IP
1s 2s IP (this work)
Expt. d

(theory) —(experiment)

Z =15
Nonrel. (with core corr. )
(H, +H, )
&H, )
&H, &

(H, &

Higher rel. corr. '
Subtotal
QED corr.

—59.156 595 06
—0.045 828 18

0.002 708 74
—0.000 229 47

0.000 032 75
—0.000 072 88

—59.199984 10

—75.531 712 34
—0.074 809 57

0.003 959 05
—0.000 296 65
—0.000 031 43
—0.000 094 84

—75.602 922 92

—93.906 806 48
—0.115769 18

0.005545 11
—0.000 372 45

0.000 033 53
—0.000 120 56

—94.017490 04

—215.782 090 80
—0.613 692 47

0.019908 22
—0.000 880 94

0.000 033 47

—68.411 517 53
—0.053 298 54

0.003 045 13
—0.000 226 20

0.000 031 06
—0.000 072 88
—0.000 006 07

—68.462 045 03

—88.100901 88
—0.088 038 68

0.004 484 21
—0.000 288 43

0.000 028 19
—0.000 094 84
—0.000015 11

—88.184 826 54

—110.290 629 51
—0.137570 76

0.006 318 85
—0.000 356 82

0.000 028 29
—0.000 120 56
—0.000 033 33

—110.422 363 85

—258.741 666 60
—0.751 500 33

0.023 101 63
—0.000 774 24

0.000 018 85
—0.000 597 59

2.847 210 6
—0.000 009 9

9.254 922 47
0.007 470 35

—0.000 33640
—0.000 003 26

O.OOO OO1 69

0.000 006 07
9.262 060 9

—0.000 246 0
—0.000 000 5

9.261 814 5
5.075 960 6
4.185 853 9
4.185 853 0
0.000 000 9

12.569 189 54
0.013229 10

—0.000 525 16
—0.000 008 22

0.000 003 24

0.000015 11
12.581 903 6

—0.000 425 1
—0.000 001 0
12.581 477 6
6.805 669 5
5.775 808 0
5.775 804 8
0.000 003 2

16.383 823 03
0.021 801 58

—0.000 773 75
—0.000 015 63

0.000 005 24

0.000 033 33
16.404 873 8

—0.000 681 5
—0.000 001 7
16.404 1906
8.786 952 4
7.617 238 2
7.617454 1

—0.000 215 9

41.959 575 80
0.137 807 86

—0.003 19341
—0.000 106 70

0.000 014 62
0.000 597 59

43.094 695 8
—0.003 732 7

624 866(3 )—2.18

2 031 150.98
1 639.50
—73.83
—0.72

0.37

1.33
2 032 717.63

—53.98
—0.10

2 032 663.54
1 114006.34

918657.20
918 657(4)

0.20

2 758538.51
2 903.37
—115.25

—1.80
0.71

3.32
2 761 328.85

—93.30
—0.21

2 761 235.34
1 493 628.64
1 267 606.70
1 267 606(2)

0.70

3 595 734.75
4 784.76
—169.81

—3.43
1.15

7.32
3 600 354.74

—149.57
—0.38

3 600 204.79
1 928 460.16
1 671 744.63
1 671 792.00

—47.37

9 428 369.80
30 244.79
—700.86
—23.42

3.21
131.15

9 458 024.68
—819.22
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TABLE V. (Continued).

1s ls s 2s
Ionization potential

a.u. cm

Nuclear size
Double IP (this work)
1s 2s IP
1s22s IP (this work)
Expt. "
(theory) —(experiment)
Z =20
Nonrel. (with core corr. )

(H, +H, )
(H, )
(H, )
(H. )
Higher rel. corr. '
Subtotal
QED corr.
Nuclear size
Double IP (this work)
1s 2$ IP
1s 2s IP (this work)
Expt. d

(theory) —(experiment)

—387.657 233 80
—1.985 129 30

0.048 653 12
—0.001 605 16

0.000 035 12

—469.694 19303
—2.468 931 80

0.056 975 68
—0.001 275 14

0.000 009 61
—0.004 173 79

—0.000 012 3
43.090 950 7
22.481 996 8
20.608 953 9
20.608 669 9
0.000 283 9

82.036 959 23
0.483 802 50

—0.008 322 56
—0.000 33003

0.000 025 51
0.004 173 79

82.516 308 4
—0.011 519 8
—0.000 051 3
82.504 737 3
42.546 775 3
39.957 962 0
39.959 609 9

—0.001 647 8

—2.71
9 457 202.75
4 934 140.43
4 523 062.32
4 523 000.00

62.32

18 004 783.70
106 180.91
—1 826.57

—72.43
5.60

916.03
18 109987.25

—2 528.26
—11.26

18 107447.72
9 337 809.37
8 769 638.35
8 770 000.00

—361.65

'This is the total deviation of first-order corrections between our 1s core and those of Pekeris [33].
Reference [37].

'See Eq. (26) and the discussion in Sec. V.
Reference [24].

'Reference [40].
'Reference [41].
gReference [25].
"Reference [36].

columns two and three, together with the QED and
higher-order relativistic correction, gives the double-
electron IP of the 1s 2s state. If we subtract the IP of
1s 2s from this result, the single-electron IP of the 1s 2s
system is obtained. For consistency, we subtract the
theoretical ls 2s IP results calculated in Chung [20]
which are corrected by adding the higher-order relativis-
tic effect and nuclear size effect. The QED contribution
in Ref. [20] is also improved with Eq. (22). Some of these
results are given in Chung [35]. For four-electron sys-
tems, the experimental data are taken from Kelly [24] for
Z =4—8, 10, and 20. For I' VI the more recent experi-
mental IP datum of Engstrom [25] is used. For P X11, the
IP datum of Martin, Zalubas, and Musgrove [36] is used
for comparison.

The experimental IP for Be I from Johansson is
75 192.07(10) cm ' [37]; it agrees well with the predicted
result of 75 192.17 cm '. In view of the approximation
in the QED calculation and the extrapolation methods
used in the theory, this agreement is better than one
would expect. The Be1 IP quoted in Moore [38] is
75 192.29 cm '; it also agrees well with the theory.

Among the 1s 2s systems, the Be I is the most exten-
sively studied in the literature. Before 1991, most of the

theoretical efforts are expended on the calculation of non-
relativistic energy (see Table VI). Among these, the most
accurate nonrelativistic energy is probably the—14.667 37(3) a.u. of Olsen and Sundholm [11]. Our re-
sult, —14.667 3492 a.u. , gives an order of magnitude im-
provement over their calculation. Recently, Lindroth
et al. [16] deduced a semiempirical nonrelativistic energy
by subtracting the relativistic and QED corrections from
the experimental IP. Their result, —14.667 353(2) a.u. ,
is different from this work by 4(2) pa. u. Most of the
difference comes from the estimated QED contribution.
It is interesting to note that in Table V the relativistic
contribution to the Be 1 double IP (from H „H2,H3, and
Hs) is 0.00013499 a.u. This agrees exactly with the
0.000 135 a.u. of Lindroth et al. [16]. In the recent work
of Davidson et al. [17], they obtain 0.000116 a.u. with
the QED effect included. Their estimated ls 2s nonrela-
tivistic energies are lower than those obtained in this
work. The discrepancy increases from 0.00001 a.u. for
Be I to 0.000 30 a.u. for Ne VII. For Ca XVII, the
discrepancy is 0.000 59 a.u.

Recently, Wen et al. [18] has measured the contribu-
tion of the mass polarization effect to the Be 1s 2s IP.
Their specific mass polarization contribution is
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TABLE VI. Comparison of theoretical and experimental Be is~2s energies (in a.u. ). The QED of the Be + ls ls core is not in-

cluded.

Ref.

[1]
[3]
[4]
[5]
[6]
[7]
[10]
[11]
[12]
[13]
[14]
[15]
[17]
[16]

[24]
[38]

Kelly (1963)
Sims and Hagstrom (1971)
Fischer and Saxena (1974)
Bunge (1976)
Lindgren and Salomonson (1980)
Salomonson, Lindgren, and Mkrtensson (1980)
Millack (1989)
Olsen and Sundholm (1989)
Salomonson and Oster (1990)
Dietz and Hess (1990)
MArtensson-Pendrill et al. (1991)
Liu and Kelly (1991)
Davidson et aI. (1991)
Lindroth et al. (1992)
This work
Kelly'
Moore

Method

MBPT
Hylleraas-CI
MCHF
CI
MBPT (CC)
MBPT (MCMS)
g-Hartree
MCHF-full CI
MBPT (CC)
Gaussian-basis CI
MCHF
MBPT (MCDF)
Estimated
Semiempirical
Full-core plus Corr.
Experiment
Experiment

Enonrel

14.664 0
14.666 54
14.665 87
14.667 358(28)
14.665 96
14.661 1

14.670
14.667 37(3)
14.666 69
14.657 843

14.667 36
14.667 353(2)
14.667 349 2

rel

14.669 67(3)
14.671 1

14.669 677 4
14.669 675 9
14.669 671 7

'Using Pekeris' [33] two-electron relativistic energy plus the ionization potentials 146 882. 86 and 75 192.07 cm
Using Pekeris [33] two-electron relativistic energy plus the ionization potentials 146 881.7 and 75 192.29 cm

0.006 74(100) a.u. In this reference the authors remarked
that their calculated result, —0.00147 a.u. , disagrees
with the experiment. They attributed this discrepancy to
the lack of correlation in their calculation. Lindroth
et al. [16] adopted the experimental data in their
analysis. They did not make any calculation on this
effect. For Be, the experimental result of Wen et al. [18]
corresponds to

0.006 74( 100)
1823 X9.012 182 2

= —0.410(61) pa. u. (33)

In Table V the mass polarization contribution to the
double-electron IP is —2.389 pa.u. Its contribution to
the ls 2s IP is found to be —1.970 pa. u. [19]. This im-
plies that the contribution to the 1s 2s IP should be—0.419 pa. u. , which is well within the experimental un-
certainty.

In Table VI we make a comparison between the vari-
ous results of Be I in the literature. Note that the experi-
mental energies are obtained by adding the double-
electron IP quoted in Kelly [24] and in Moore [38] to the
ls energy of Pekeris [33]. The —14.6696774 a.u. quot-
ed in this table is the result of our relativistic energy plus
the 2s2s QED effect. Although the ls 2s IP of Moore
agrees closely with our prediction, her 1s 2s IP disagrees
with theory by more than 1 cm ' [20]. This discrepancy
is rejected in the comparison.

For C III, N rv, and 0 v, our predicted results are all
within the quoted experimental uncertainty. These ex-
perimental data are quoted in Kelly [24] and Moore [39].
The C III IP quoted in these two references is 386 241(2)
cm '. This agrees with the predicted result of
386 239.99 cm '. The N Iv IP is predicted to be
624 863.82 cm '; it is within the experimental uncertain-

ty of 624866(3) cm ' [40]. The Ov IP is predicted to be
918 657.20 cm '; it also agrees with the experimental re-
sult of 918 657(4) cm ' [41].

For F Vl, the IP quoted in Kelly [24] is 1267 622 cm
No error bar is given for this datum. It differs from our
prediction, 1267606.70 cm ', by 15 cm '. A more re-
cent measurement on F vI has been reported by
Engstrom [25]. His result, 1 267 606(2) cm ', agrees well
with the prediction.

For the systems discussed above, the experiment and
theory agree closely. However, there are cases where the
predicted IP lies outside of the experimental uncertainty.
B II is the most interesting case in question.

For B II our predicted IP is about —2.65 cm ' off from
the 202887. 4(8) cm ' quoted in Kelly [24] and Moore
[39]. Moore attributes this datum to the unpublished
work of Olme. It is interesting to note that while most of
the predicted 1s 2s IP agrees well with the experiment
for Z =3 to 10 [20]. The B 111 is also an exception. The
predicted IP, 305929.67 cm ',. is 1.43 cm ' smaller than
the experimental result 305 931.1(6) cm ', also by Olme
[42]. Although the discrepancies between theory and ex-
periment are not very large, they are definitely outside of
the quoted uncertainty.

The agreement between theory and experiment is poor-
er for Ne VII, P xII, and CaxvII. The discrepancy in
Ne V11 is 47 cm ' based on the quoted IP in Kelly [24]
and Moore [39]. This datum is from the unpublished
data of Edlen. Judging from the agreement of the 1s 2s
IP for Z =3 to 9, it seems unlikely that our prediction for
Z =10 could be

off

b this amount.
As Z becomes larger than ten, the QED and higher-

order relativistic effects increase quickly. In principle,
the approximations we used in this work may cause the
prediction to be less accurate. Unfortunately, for these
systems, most of the "experimental" 1s 2s IP data in the
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data tables [39] do not give experimental uncertainty.
For the very few cases where error bars are given, our
predicted IP's are well within the quoted uncertainty.

For P XII, the IP quoted in Kelly [24] and Moore [39]
is 4 520 100 cm '. This is very different from the
4523000 cm ' given in Martin, Zalubas, and Musgrove
[36]. Our predicted IP, 4 523 062 cm ', strongly favors
the latter datum. For CaxvII, the IP quoted in Moore
[39] is 8 767 000 cm '. Our prediction, 8 769 628 cm
favors the 8 770000 cm ' quoted in Kelly [24].

By making a least-squares fit for the IP with the data
calculated in Table V, we can extrapolate for other Z sys-
tems. These results are given in Table VII for Z =11 to
25. These results allow us to make a comparison with ex-
periment. Some of the IP data are compiled more recent-
ly by Martin and collaborators [43—47]. These compiled
data are substantially closer to our prediction than those
from Kelly [24]. For example, the predicted Na viii IP is
343 cm ' higher than that of Kelly, but it is well within
the experimental uncertainty of 2131300(250) cm ' of
Martin and Zalubas [43]. Some of the predicted data are
extremely close to the more recent experimental data.
For Alx, the discrepancy is only 34 cm ' and it is 62
cm ' for P xrl. Unfortunately, the uncertainties in these
experimental data are not quoted. The significance of
these agreements is not clear.

VI. CQNCI. USIQN

In this work we use a full-core plus correlation method
to calculate the ionization potential of the 1s 2s systems.
CI wave functions are used. In order to obtain a more re-
liable energy, we adopted a method of partial saturation
for the radial basis functions in the angular components.
The relativistic corrections are first calculated with first-
order perturbation theory. This is further corrected by
estimating the QED and higher-order relativistic correc-
tions using an effective nuclear charge. The contribution
of the nuclear size effect to the IP is also estimated with

TABLE VII. 1s 2s ionization potential from a least-squares
fit (in cm ').

hydrogenic functions by assuming a uniform spherical
nuclear charge distribution. Explicit calculations are car-
ried out for Z =4—10, 15, and 20. The IP results for oth-
er Z systems are obtained by a least-squares fit to the cal-
culated data.

Judging from the comparison of our prediction with
the available experimental data, the method appears to be
reliable. With the exception of BIT, the results we ob-
tained are well within the experimental uncertainty quot-
ed.

It should be pointed out that the Z,z defined by Eq.
(25) or by Eqs. (29) and (30) is only an approximation.
Therefore, the QED, higher-order relativistic correction,
and nuclear size effect are not calculated from first princi-
ples. The QED contribution calculated in this work is
smaller than that of Lindroth et al. [16]. Equation (25) is
not the only way the Z,z can be defined. For example,
we may define a Z,~ by using the first-order relativistic
correction only. Hence, for the 2s electron in 1s 2s, we
have

2 4
2 2

a Zeff 1 3
b,E, (ls 2s) AE, (ls )=——

2n3 k 4n
(34)

This definition leads to a larger Z,~ for the 2s electron.
The QED results calculated with this Z,s. agree excellent-
ly with the results of McKenzie and Drake [27] (see Table
VIII) and the Be I result agrees with Lindroth et al. [16].
However, based on the available experimental data, the
IP's calculated with these QED values give poorer agree-
ment with experiment for both the three- and especially
the four-electron systems for Z =5 to 9. We hope that
more precision measurement on the IP's of these systems
can be made. This may help us to decide unambiguously
which Z,z is physically more correct. We note that the
definition of Eq. (34) runs into difficulty for some np elec-
trons where the energy contribution of the relativistic
effect is positive [17]. For low-Z systems, the approxima-
tion used in this work [i.e., using Eqs. (29) and (30)] seems
to be justified by the exceptional agreement between
theory and the existing experiment for both the three-
electron [20] and four-electron systems. However, for

Z

11
12
13
14
16
17
18
19
21
22
23
24
25

This work

2 131 142.8
2645 871.7
3 216033.9
3 841 727. 1

5 260213.9
6053 278.9
6 902 434. 5
7 807 821.5
9 788 076.7

10 863 324.0
11 995 599. 1

13 185 117.6
14432 130.7

Experiment'

2 131 300(250)
2 646 000
3 216000
3 842 100
5 260000
6 047 200
6 894 200

[7 810000]
[9780 000]

[10860 000]
[11990000]
[13 180000]
[14420 000]

Ref. No.

[43]
[44]
[45]
[46]
[47]

'Data for Z =17—25 are from Kelly [24]. The values in brack-
ets are based on extrapolation rather than observation.
It is remarked that the uncertainty should be several hundred

cm '.

Z
Eq. (34)
Ref. [27]

Z
Eq. (34)
Ref. [27]

Z
Eq. (34)'
Ref. [16]

Z
Eq. (34)'

4
0.62
0.68

10
45. 1

46.6

4
0.88
1.0(1)

10
81.0

5
2.05
2.21

11
66.2
68.1

5
3.23

15
412

6
4.94
5.26

13
128
131

2s 2s
6

8.27

20
1229

7
10.0
10.5
15

222
226

7
17.0

8
17.8
18.6
17

356
362

8
31.1

9
29.2
30.3
20

652
651

9
51.9

'The generalization of this equation for the case of 1s 2$ .

TABLE VIII. QED results using the Z,s from Eq. (34) and
comparison with those of Mckenzie and Drake [27] and with
Lindroth et al. [16] (in 10pa. u.).

2$
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medium-Z systems, accurate experimental data are lack-
ing. Whether this approximation will again be justified
remains to be seen.

The method adopted in this work should be easily
applicable to excited four-electron atomic systems. It
could also be useful for five or more electron atomic sys-
tems.
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