
PHYSICAL REVIEW A VOLUME 47, NUMBER 3 MARCH 1993

Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
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A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been
developed and implemented by employing analytic basis sets of Gaussian-type functions. The instan-
taneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the
construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of
many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations
have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z =50.
The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined
for the helium isoelectronic sequence.

PACS number(s): 31.30.Jv, 31.20.Di, 31.20.Tz

I. INTRODUCTION

In recent years, accurate experimental studies on rela-
tivistic and quantum electrodynamic effects have been ex-
tended beyond one-electron systems by using newly
developed advanced ion sources to produce highly ion-
ized high-Z species. These experimental studies, in turn,
have prompted increasingly accurate theoretical calcula-
tions on many-electron systems.

Accurate treatment of many-electron systems makes it
necessary to go beyond the independent-particle-level ap-
proach to include electron correlation as well as relativis-
tic and quantum-electrodynamical effects. In high-Z sys-
tems, relativistic and electron-correlation effects are
strongly intertwined. Therefore, approaches that simul-
taneously take into account both relativistic and correla-
tion effects are desirable as they can deal with the nonad-
ditive interplay of these effects in atoms and molecules
[1—14]. Relativistic many-body perturbation theory
(MBPT), which simultaneously accounts for both relativ-
istic and electron-correlation effects, was developed by a
number of groups using discrete basis sets of "local"
[2,8,9] and "global" [4,7, 13] functions.

The MBPT, introduced in atomic physics by Kelly
[15], provides a powerful and systematic approach to the
calculation of atomic and molecular properties. Atomic
MBPT calculations using the finite-difference method
[1,6,14], however, can be very laborious because the con-
struction of sufficiently complete sets of functions for
correlated calculations is difficult. The relativistic MBPT
algorithm, based on the algebraic approximation
[2,4,7—9,13], i.e., an expansion in analytic basis sets, has
the distinct advantage over those based on a numerical
finite-difference approach in that it provides the compact
representation of the Dirac spectrum, and facilitates the
evaluation of the many-body diagrams by using finite
summations. The discrete-basis-set-expansion approach

has been shown to be comparable in accuracy with nu-
merical finite-difference calculations [2,7, 13,16].

The low-frequency Breit interaction has traditionally
been treated as a first-order perturbation correction to
finite-difference Dirac-Fock calculations based on the
no-pair Dirac-Coulomb Hamiltonian. In fact, many suc-
cessful calculations have been performed in this manner
to predict fine-structure separations [11,17—19]. In their
multiconfigurational finite-difference Dirac-Fock calcula-
tions on He-like ions, Gorceix et al. [12] have included
the magnetic interaction in the multiconfigurational self-
consistent-field (SCF) step and found that, in the region
Z=50, the magnetic correlation between the inner-shell
electrons becomes as important as the electrostatic corre-
lation. In the local B-spline basis-set-expansion DF and
MBPT calculations on lithium-like ions, Johnson, Blun-
dell, and Sapirstein included the lowest- and second-order
correlation corrections to the Breit interaction [2]. In
their approach, the retardation part was evaluated exact-
ly in the lowest order. For these systems, the Breit in-
teraction can have significant effects on the inner-shell or-
bitals and energies.

In order to study the electron correlation induced by
the Breit interaction, the instantaneous Coulomb and
low-frequency Breit interactions may be treated as an in-
tegral part of the effective two-electron interaction in rel-
ativistic Dirac-Fock-Breit (DFB) SCF and MBPT calcu-
lations [4,13,16]. By employing S spinors (S for "Slater"
basis functions), Quiney, Grant, and Wilson have recently
developed a relativistic MBPT starting from the DFB
SCF wave functions [13]. Their calculations on the argon
atom [13] and Ne + ion [20] revealed that the terms in
the perturbation expansion corresponding to the self-
consistent modification of the one-electron orbitals due to
the Breit interaction, result in the most significant relativ-
istic many-body effect.

We have recently developed a matrix DFB SCF
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scheme by employing analytic basis sets of even- and
well-tempered Gaussian-type functions [16,21]. In this
approach, the instantaneous Coulomb and low-frequency
Breit interactions were treated on an equal footing as an
integral part of the effective electron-electron interaction.
Basis sets of G spinors ( G for "Gaussian" functions) have
a number of advantages in relativistic many-body calcula-
tions on atoms and molecules [7]. Basis sets of 6 spinors
show none of the signs of near-linear-dependence
difficulties reported with the basis sets of S spinors
[4,22,23]. The use of large basis sets of G spinors has
been shown to yield accurate results comparable to nu-
merical finite-difference methods for highly ionized high-
Z ions, as well as for neutral heavy-atom systems
[7,16,21]. Although Gaussian basis sets are at a disad-
vantage with respect to the Slater basis in nonrelativistic
calculations, because they behave improperly near a point
nucleus, the advantage of the S-spinor basis [22—25] dis-
sipates in heavy-atom systems when a finite nucleus is
employed. In fact, when the nucleus is modeled as a
finite body of uniform proton-charge distribution, the
wave function near the origin is Gaussian [7,21]. The
purpose of the present paper is to provide a description of
our recently developed relativistic MBPT calculations
based on our DFB wave functions computed by expan-
sion in basis sets of 6 spinors. The results of the matrix
DFB and relativistic MBPT calculations on He and He-
like ions up to Z =50 are presented and relativistic corre-
lation energies are analyzed.

H' =- g X+ V~)X+ —g X+ U(r; )X+ . (ld)

FAn &n&4n (2)

The effective one-electron Hamiltonian F, for the ~th
symmetry takes the form

with
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dr r
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Here the no-pair DCB Hamiltonian H+ is partitioned
into an unperturbed Hamiltonian Ho and a perturbation
term H' following Moiler and Plesset. In Eq. (lc), F is
the effective one-electron Hamiltonian for the DFB SCF
pseudoeigenvalue equation, which is solved self-
consistently:

II. RELATIVISTIC MBPT BASED
ON DIRAC-FOCK-BREIT WAVE FUNCTIONS

where P(r) and Q(r) are referred to as the large- and
small-component radial functions, respectively. V~(r) is
the nuclear attraction term,

A. The relativistic no-pair
Dirac-Coulomb-Breit Hamiltonian

The effective X-electron Hamiltonian for our develop-
ment of matrix DFB and relativistic MBPT calculations
is the so-called "no-pair" Dirac-Coulomb-Breit (DCB)
Hamiltonian (in a.u. ) [26,27].

H+ =Ho+H', (la)

For many-electron systems, the relativistic Hamiltoni-
an cannot be expressed in closed potential form. In order
to develop a relativistic many-body calculation, however,
it is desirable to have an effective ¹ lectron Hamiltonian
to a desired degree of accuracy. The effective ¹ lectron
Hamiltonian approach is attractive because it translates
the idea that atoms and molecules are weakly bound in-
homogeneous many-electron systems in which the
electron-positron pair productions are absent and particle
number is conserved.

Z/r f—or r )R
V~(r) = —(Z/2R)(3 —r /R ) for r ~R2 2 (4a)

(4b)

The nucleus is modeled as a sphere of uniform proton-
charge distribution. Z is the nuclear charge. R is the ra-
dius of the nucleus and is related to the atomic mass A by
the relationship R =2.2677X10 A'~ . U(r) in Eq. (lc)
is the one-body mean-field potential to account approxi-
mately for the electron-electron interaction.
X+=L+(1)L+(2)X . . XL+(n), with L (i+) the pro-
jection operator onto the space spanned by the positive-
energy eigenfunctions of the DFB equations in Eq. (2). In
c-number theory, the projection operator takes into ac-
count the field-theoretic condition that the negative-
energy states are filled [26,27].

In Eq. (ld) the effective electron-electron interaction
V; is given by the sum of the instantaneous Coulomb in-
teraction plus the low-frequency form of the Coulomb-
gauge Breit interaction operators,

where

Ho= gF(;),
V,"= 1/r,"+8,",

(lb)
where

(5a)

and

F=ca.p+Pc + V~(r)+ U(r), (lc) B,~
= —(1/2r,")[a;aj+[(a;.r; )(a rj )/rj ]] . (5b)

Many-body corrections evaluated numerically in terms
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of the low-frequency forms of the Coulomb- and
Feynrnan-gauge interactions may be sufficiently different
in no-pair theory. There is justification for choosing the
Coulomb-gauge Breit operator in the "no-pair"

¹

electron Hamiltonian rather than the simpler Gaunt in-
teraction in the present study. In a recent study, Sucher
[28] analyzed the apparent gauge dependence of the
effective potentials between electrons derived in the
Coulomb and Feynman gauges, and indicated that the
Feynman-gauge form of the interaction should not be
used in no-virtual-pair calculations because the leading-
order relativistic effects are incompletely determined.

Addition of the low-frequency Breit interaction to the
instantaneous Coulomb interaction partially remedies the
noncovariance of the DC Hamiltonian. Inclusion of the
Breit interaction results in an effective ¹ lectron Hamil-
tonian that contains all effects through order a . Sucher
[28] argues that the no-pair DCB Hamiltonian provides a
satisfactory starting point for calculations on many-
electron atoms in the sense that it treats the electrons re-
lativistically, treats the most important part of electron-
electron interaction nonperturbatively, and puts the in-
stantaneous Coulomb and low-frequency Breit interac-
tions on the same footing in relativistic DFB SCF and
MBPT calculations.

B. Matrix Dirac-Fock-Breit SCF method

X . =N II+XS a st&

Here the [ C„;I and [ C„„]are linear variation parame-
ters. NI and Ns are the normalization factors.

Klahn and Morgan [33] have shown that the rate of
convergence of a variational calculation is determined by
how quickly the basis functions replicate the analytic
structure of the unknown function that one is trying to
approximate. Our G-spinor functions mimic exactly the
behavior of the wave function near the origin of a uni-
formly charged spherical nucleus [32]. This is precisely
the reason why our G-spinor expansions exhibit fast and
smooth convergence when the nucleus is modeled as a
finite body of uniform proton-charge distribution [32].
Unlike the S-spinor basis functions [4,13,20,22 —25], the
exponent of r in the Gaussian functions does not depend
on the speed of light. Therefore, our G spinors that satis-
fy the boundary conditions associated with the finite nu-
cleus automatically satisfy the so-called kinetic balance
for a finite value of c [21,32].

With the basis-set expansion in Eqs. (6a) and (6b), the
SCF equation in Eq. (2) is cast in a matrix form,

FC =SCE
Detailed accounts of the matrix DFB SCF formalism
have been given in previous publications [4,16,21] and are
not repeated here.

p„.(.) = y x.', c„'., (6a)

and

(6b)

where

NL r ' exp( g; r ) for ~—(0,
yL

NL r '+ 'exp( —g, r ) for z )0,
and

Early studies claimed that a perturbative treatment of
the low-frequency Breit interaction was mandatory. A
number of recent studies, however, have demonstrated
that this is not the case [4,13,16,21,29 —31]. The no-pair
DCB Hamiltonian in Eq. (la) may be used in the varia-
tional calculations in place of the time-honored Dirac-
Coulomb Hamiltonian. It is usually assumed that Breit-
energy contributions are small, but even for moderate nu-
clear charge the Breit interaction is now known to con-
tribute a substantial part of the correction to the total
DFB SCF energy [13,21,29—31]. The low-frequency
Breit interaction, which gives the leading correction to
the instantaneous Coulomb interaction in quantum elec-
trodynamics, is a two-body potential of the same general
form as the instantaneous Coulomb interaction, and this
term may be easily incorporated in the matrix DFB self-
consistent-field procedure [4,13,16,21].

In our matrix DFB SCF calculations, both P„,(r) and
Q„(r) are expanded in terms of a set of Gaussian-type
functions, [X, ) and [X, ] [7,16,21,32]:

C. Relativistic MBPT scheme

Relativistic MBPT based on the algebraic approxima-
tion provides a tractable scheme for the calculation of
relativistic correlation effects in atoms and molecules. By
invoking a G-spinor basis-set-expansion method, the
present approach not only applies to molecules in a
straightforward manner, but also a compact representa-
tion of the Dirac spectrum is obtained, allowing a many-
body perturbation-theory treatment with all the compu-
tational advantages [7].

In q-number theory, the negative-energy states are tak-
en to be filled in the true vacuum state, and relativistic
MBPT is conveniently described within the particle-hole
second-quantized formalism in which the occupied
positive-energy state as well as the negative-energy con-
tinuum are taken to be below the Fermi level [1—8]. A
formalism given by Grant and Pyper [34] was used to
evaluate the necessary Breit-interaction integrals for the
MBPT calculations. Goldstone diagrams have been
summed to compute relativistic correlation corrections
up to second order. We evaluate only the positive-energy
intermediate contribution of the second-order energy
correction. In the no-virtual-pair approximation of Such-
er [27,28], our relativistic MBPT thus yields a many-body
perturbation expansion that contains the same diagrams
as that from the nonrelativistic Schrodinger Hamiltonian
in expansions based on Hartree-Fock wave functions
[4,7]. Virtual spinors used in the study were calculated in
the field of the nucleus and all the electrons (V poten-
tial).

Negative-energy states, as part of the complete set of
states, play a role in many-body calculations. Contribu-
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tions from the negative-energy states, however, are of the
order of a, and are neglected here. In a recent study [2],
Johnson, Blundell, and Sapirstein discussed in detail a
pitfall when negative-energy states are also considered.
In our DFB SCF calculations, the Coulomb one-photon
and Breit one-photon diagrams are summed through all
orders since the single-particle basis is determined self-
consistently. Thus, the most important consequence of
treating the low-frequency Breit interaction self-
consistently is the substantial simplification in the relativ-
istic many-body perturbation theory that results from the
cancellation of these classes of diagram through all or-
ders of perturbation theory [4,7, 13]. The use of the two-
body interaction operator that includes both the instan-
taneous Coulomb and low-frequency Breit interactions in
both the self-consistent-field and MBPT calculations
leads to a theory that accounts for all corrections to or-
der a [28].

D. Computation

Matrix DFB SCF and MBPT calculations on He and
He-like ions up to Z =50 are performed by using
moderately large, even-tempered basis sets of
14slOp8d7f6g5h4i G spinors. Thus, the order of the
partial-wave expansion (L,„), the highest angular
momentum of the spinors included in the virtual space, isL,„=6 throughout this study. In basis sets of even-
tempered Gaussian functions, the exponents, Ig;] are
given in terms of two parameters, a and P. In the present
study, these parameters were taken from the previous
study on the He atom and He-like ions [7]. For the He-
like neon ion we have also employed larger G-spinor basis
sets, 14s 10p 8d 7f7g 7h 7i and 14s 12p 10d 10f10g 10h 10i
to study the effects of basis-set truncation on the
electron-correlation energy. The Dirac-Fock SCF and

MBPT calculations were also performed by excluding the
Breit interaction. These are the matrix Dirac-Fock-
Coulomb (DFC) SCF and MBPT calculations based on
the Dirac-Coulomb (DC) Hamiltonian. The speed of
light was taken to be 137.035 989 5 a.u. The nonrelativis-
tic limit was simulated by setting the speed of light to
c =10 . The nuclei are modeled as spheres of uniform
proton charge in all the calculations. The use of the finite
nuclear model of uniform proton-charge distribution in
our study is crucial because the G spinors satisfy only the
boundary condition associated with the finite nuclear
model. The atomic masses, A, used for He, Ne +, Ca' +,
Zn +, Zr +, and Ca + are, respectively, 4.0, 20.18,
40.08, 65.37, 91.22, and 118.71.

III. RESULTS AND DISCUSSION

Table I displays the SCF energies (Esc„)as well as the
second-order correlation corrections (Ez ) for the He
atom and the He-like ions up to Z=50. These results
were computed by employing moderately large, even-
tempered basis sets of 14s 10pgd7f 6g5h4i G spinors. In
each entry in Table I the SCF energy (Esc„~„„~)and the
second-order correlation correction (Ez~„,~

) obtained in
the nonrelativistic (nr) limit are given in the first row. In
the second row, the DFC SCF energy (Esc„~Dc~ ) and the
second-order Coulomb correlation correction (Ez~Dc~)
are given. The DFC and instantaneous Coulomb correla-
tion energies were computed by employing the DC Ham-
iltonian, i.e., by deleting the low-frequency Breit-
interaction terms from the DCB Hamiltonian. The DFB
SCF energy (Esc„~DcB~ ) as well as the second-order
correlation energy (E2~DcB~) based on the DCB Hamil-
tonian are given in the third row. In the last column of
the table the electron-correlation energies due to the
low-frequency Breit interaction (Ez~~~ ) are tabulated.

TABLE I. SCF and second-order correlation energies for the ground-state He-like ions (in a.u. ).

EscF E E2(a)

He
(Z =2)

Ne +

(Z = 10)

18+

(Z =20)

z 28+

(Z =30)

z 38+

(Z =40)

48+

(Z =50)

NR
DC

DCB

NR
DC

DCB

NR
DC

DCB

NR
DC

DCB

NR
DC

DCB

NR
DC

DCB

—2.861 679
—2.861 812
—2.861 748

—93.861 057
—93.982 695
—93.970 587

—387.610430
—389.665 357
—389.563 213

—881.356 852
—892.065 286
—891.712 209

—1575.094 145
—1609.865 822
—1609.012 466

—2468.811 391
—2556.310 106
—2554.609 459

—0.037 135
—0.037 132
—0.037 169

—0.044 368
—0.044 294
—0.045 692

—0.045 374
—0.045 180
—0.050 875

—0.045 710
—0.045 517
—0.058 152

—0.045 876
—0.045 936
—0.068 049

—0.045 976
—0.046 661
—0.080 851

—0.000 037

—0.001 398

—0.005 695

—0.012 635

—0.022 113

—0.034 190
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These values were computed as the difference

2(DCB) 2(DC)
The DFC energy, —2.861812 a.u. , of He computed

with our G spinors is in excellent agreement with the
value, —2. 861 813 a.u. , obtained by Blundell et al. using
the B-spline expansion method [8]. For highly ionized
He-like ions, the nuclear potential dominates over the
electron-electron interactions, and thus the Dirac-Fock
independent-particle approximation becomes an increas-
ingly accurate approximation as Z increases. In these in-
stances, the MBPT series converges very rapidly, and the
second-order MBPT energy, in general, accounts for the
total correlation correction to well over 99%%uo accuracy
[7].

The instantaneous Coulomb correlation energy for He
and ions of the helium isoelectronic sequence computed
by using the DC Hamiltonian remains almost constant,
with a slight increase in magnitude as nuclear charge, Z,
increases. In contrast, the electron correlation due to the
Breit interaction, E2(~), increases dramatically as Z in-
creases. For the s»2 and p&&2 shells, the contribution is
most significant because the magnetic interaction, the
dominant term in the low-frequency Breit interaction, is
a short-range interaction, which, in the classical limit,
behaves as 1/r . Drake has recently reported the results
of high-precision nonrelativistic variational calculations
with relativistic and quantum-electrodynamic corrections
on a number of heliumlike ions up to Z=100 [35]. For
the heliumlike Ne + ion, the relativistic many-body shift
through order o. derived from Drake's calculation is—1254 phartrees [20]. In the present study, the relativis-
tic many-body shift including the Breit interaction com-
puted as the differenc E2(DcB) —E2(„,), is —1324 phar-
trees. This value compares well with the relativistic
many-body shift derived from Drake's results at this or-
der of approximation.

Table II displays the results of three sets of calcula-
tions on the Ne + ion obtained by increasing the
size of the basis set. DFB and second-order correla-
tion energies computed with three G-spinor basis
sets, 14s 10p8d7f 6g5h4i, 14slOpgd7f 7g7h7i, and
14s12plOd10f10glOh10i, respectively, are tabulated in
rows A, B, and C. The basis set exponents used for these
calculations are tabulated in Table III. In the previous
study [7], we have found that the effect of using larger G-
spinor basis sets in s-, p-, and d-symmetry species has
negligible effect on the computed electron-correlation en-
ergy since the basis sets used for these symmetry species
are saturated. The effect of employing larger basis sets in

f , g , h , and i-symm-etry --species is noticeable. The im-

provement in the correlation energies, E2(Dc) and

E2(DcB), is on the order of 10 a.u. going from the
14s 10p8d7f 6g5h4i to the 14s 10p8d7f 7g7h7i basis set.
The 14slOp8d7f7g7h7i basis set is nearly saturated,
however, and the effect of enlarging the basis set is re-
duced by an order of magnitude, i.e., on the order of 10
a.u.

In their multiconfigurational finite-difference DF cal-
culations on the Ne +, Ca' +, Zn + and Sn" ions,
Gorceix, Indelicato, and Desclaux included the magnetic
interaction in the self-consistent-field step, and computed
the electron-correlation energies due to both the
Coulomb and magnetic interactions [12]. In Table IV the
Coulomb and magnetic correlation contributions report-
ed by Gorceix et al. are compared with the second-order
correlation energies due to the Coulomb and low-
frequency Breit interactions. In each entry in Table IV
the second-order correlation contributions due to the in-
stantaneous Coulomb and low-frequency Breit interac-
tions are given in the first row. In the second row the
Coulomb and magnetic correlation energies obtained by
Gorceix et al. [12] are given. The Coulomb correlation
energy that Gorceix et aI. obtained for Ne + using up to
f orbitals, —0.04422 a.u. , is slightly smaller in magni-
tude than the second-order Coulomb correlation correc-
tion that we obtained, —0.044294 a.u. , using partial-
wave expansion up to I. „=6. The third-order
Coulomb correlation correction for Ne + that we ob-
tained in a previous study is —0.001072 a.u. [7]. Gor-
ceix et al. determined the magnetic correlation in Ne +

to be —1632 phartree, whereas the correlation energy
due to the Breit interaction, E2(z), obtained in the present
study is —1398 phartree. When the retardation contri-
bution, which counteracts the magnetic contribution, is
taken into account in their calculations, we expect that
their value will give a much closer agreement with ours.

Although the magnetic correlation energy exceeds in
magnitude the Coulomb correlation energy in the region
Z = 50 [12], the correlation energy due to the low-
frequency Breit interaction, E2(~), has not exceeded in
magnitude the Coulomb correlation energy even at
Z=50. This is due to the retardation term that coun-
teracts the magnetic term in the low-frequency form of
the Breit interaction. Johnson, Blundell, and Sapirstein
have performed 8-spline basis-expansion DF SCF and
MBPT calculations on the Li atom and Li-like ions [2].
Their results indicate that the second-order contribution
of the low-frequency Breit interaction for the Li-like ions
exceeds in magnitude the Coulomb correlation energy,
E2(Dc), in the region Z =74.

TABLE II. The effects of basis-set size on the second-order energy in the Ne + ion (a.u. ).

Basis
set DC

E
DCB

3:14s10p8d7f6g Sh4i
8:14s10p8d7f7g7h 7i

C:14s12p10d 10f10g 10h 10i

—0.044 294
—0.044 308
—0.044 310

—0.045 692
—0.045 715
—0.045 719
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TABLE III. Basis-set composition for Ne'+. 3, 8, and C specify the exponents of the basis sets 14slOp8d7f6g5h4i,
14slOp8d7f7g7h7i, and 14s12plOdlOf 10glOh 10i, respectively.

317641.33
136 515.53
58 671.488
25 215.765
10 837.203

4657.6007
2001.7383

860.304 83
369.740 83
158.906 79
68.294 780
29.351 650
12.614 720
5.421 540

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C
C

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C

C
C

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C

C
C

B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C

C
C

B,C
B,C

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

C

C
C

B,C
B,C

A, B,C
A, B,C
A, B,C
A, B,C
B,C

C

Table V compares the partial-wave contributions of the
second-order pair correlation energies of Ne +, comput-
ed by using the basis set of G spinors, with those comput-
ed in the point-nucleus approximation by employing the
S-spinor basis set [20]. In each entry in Table V the
partial-wave contributions computed by using basis sets
of G and S spinors [20] are given respectively, in the first
and second row. The partial-wave contributions were
computed by employing the DCB Harniltonian as well, as
in the nonrelativistic limit, in order to evaluate the rela-
tivistic many-body shift for each pair correlation energy.
The relativistic many-body shift is given in the last
column of the table. Agreement between the two sets of
results is seen to be excellent. However, the results show
that the finite nucleus does have a small but detectable
effect, particularly for the s&&2-pair energy at the s limit.
The low-frequency Breit interaction is rather sensitive to
the electron-nuclear effective potential near the origin be-
cause of the subtle way that the interaction couples the
large and small components.

Table VI shows the partial-wave analysis of the
second-order correlation energy, E2[Dca~, of the Sn

ion. For this system, the computed relativistic
many-body shift including the Breit interaction,
E2[oca] —E2~„,], amounts to 34875 phartrees, whereas
the relativistic many-body shift excluding the Breit in-
teraction, E2[Dc]—E2[„,], is only 685 phartrees. The
terms in the partial-wave expansion for the relativistic
many-body shift vary approximately as 1/l, where l is
the orbital angular momentum of the intermediate states.
The results of DFC, DFB, SCF, and MBPT calculations
show that the Breit interaction results in a significant
amount of modification in relativistic many-body effects.
The DC Hamiltonian accounts for only a fraction of the
total relativistic correction to the correlation energy for
highly ionized high-Z species. The bulk of the relativistic
correction to the correlation energy comes from Coulomb
one-photon and Breit one-photon diagrams [2,13], and
these diagrammatic terms are summed to all orders when
the spinors are determined self-consistently by the DFB
SCF method.

As one goes to higher Z, the low-frequency Breit in-
teraction does not account for the retardation interaction
accurately [2,36], because the low-frequency form is no

TABLE IV. Comparison of the Coulomb and Breit correlation energies obtained by using the
second-order MBPT with the correlation energies obtained by Cxorceix et aI. using the finite-diA'erence
multiconfigurational Dirac-Fock scheme (in a.u. ).

Ne +

Ca 18+

Zn28+

48+

Electrostatic
E2(Dc)

—0.044 294
—0.044 216
—0.045 180
—0.044 492

—0.045 517
—0.044 455

—0.046 661
—0.044 371

Correlation energy
Low-frequency Breit

Ez(a)

—0.001 398

—0.005 695

—0.012 635

—0.034 190

Magnetic

—0.001 632

—0.007 012

—0.016 34

—0.046 77
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TABLE V. Comparison of the partial-wave contributions of the second-order pair-correlation ener-
gies of Ne'+ computed by using the G-spinor basis with those obtained by using the S-spinor basis set
[20] (in phartrees).

S 1/2

P 1/2

P3/2

3/2

d 5/2

fs/2

f7n

g 9/2

h 9/2

111/2

113/2

S1/2

I 1/2

P3/2

d 3 /2

5/2

fsn

f7n

g 7/2

g 9/2

h 9/2

h1

111/2

113/2

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

G-S
S-S

Nonrelativistic

—14 109.5
—14 104.3

—8277.7
—8274.9

—16 555.5
—16 549.7

—1502.4
—1499.0
—2253.5
—2248.6

—445.5
—442.7

—594.0
—590.2
—172.3
—170.1

—215.4
—212.6
—78.7
—76.9
—94.4
—92.3
—40.2
—38.8
—46.9
—45.3

DCB

—14496.4
—14472. 1

—8596.6
—8593.3

—16913.5
—16908.9
—1579.7
—1575.7

—2319.3
—2313.4
—478.9
—475.2
—621.4
—616.7
—190.2
—187.2

—230.2
—226.5

—89.4
—86.9

—103.4
—100.5

—47.1
—45.0
—52.8
—50.4

Difference'

—386.9
—367.8
—318.9
—320.4
—358.0
—359.2
—77.3
—76.7
—65.8
—64.8

—33.4
—32.5

—27.4
—26.5

—17.9
—17.1

—14.8
—13.9
—10.7
—10.0
—9.0
—8.2

—6.9
—6.1

—5.9
—5 ~ 1

'Relativistic many-body shift.

TABLE VI. Partial-wave analysis of the second-order correlation energy of Sn '+ {in phartrees).

S1/2

I 1/2

P3/2
3/2

d 5/2

fsn
f7n
g7/2

g 9/2
h 9/2

h11/2
i 11/2

13/2

S 1/2

P 1/2

5'3/2
d 3 /2

d 5/2

fsi2
f7n
g7/2

g 9/2
h 9/2
h

1 11/2

113/2

Nonrelativistic

—14 278.2
—8713.4

—17427.6
—1543.6
—2315.7
—452.0
—602.7
—172.9
—216.2
—77.0
—92.5
—38.6
—45. 1

DCB

—24 992.4
—17 104.7
—27 847.0
—3185.8
—3888.6
—1045.7
—1170.2
—445.5
—485.6
—213.9
—229.9
—116.3
—125.7

Difference'

—10714.2
—8391.3

—10419.4
—1642.2
—1572.9
—593.7
—567.5
—272.6
—269.4
—136.9
—137.4
—77.7
—80.6

'Relativistic many-body shift.
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longer appropriate for interactions in which orbital-
energy differences are comparable to c . For high-Z sys-
tems, it is necessary to treat the Breit interaction more
rigorously by taking into account the frequency-
dependent part of the transverse photon exchange. This
may be achieved by first-order perturbation theory in the
manner described by Johnson, Blundell, and Sapirstein

IV. CONCLUSIONS

The relativistic many-body perturbation theory based
on the Dirac-Fock-Breit wave functions has successfully
been implemented by employing expansion in basis sets of
Gaussian spinors. As the present study has demonstrat-
ed, the G-spinor basis-set calculations can be regarded as

a highly accurate and versatile approximation in relativis-
tic many-body calculations. The low-frequency Breit in-
teraction, which gives the leading correction to the in-
stantaneous Coulomb interaction in quantum electro-
dynamics, may be easily incorporated into the SCF and
many-body perturbation calculations. The low-frequency
Breit interaction results in a significant degree of
modification in relativistic many-body effects, whereas
the Dirac-Coulomb Hamiltonian accounts for only a
fraction of the total relativistic correction to the correla-
tion energy.
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