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Perturbative calculation of transition amplitudes for cesium
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We have done a many-body-perturbation-theory calculation, up to second order, for 6s~6p&&2 and
6s —+6p3/2 transitions for Cs using the Dirac-Fock orbitals as single-particle wave functions. The results
show that many-body-perturbation-theory calculations for transition amplitudes do not converge well
unless some infinite subsets of diagrams are included. A systematic way of including infinite subsets of
diagrams based on the Green s-function formalism that preserves gauge invariance of transition ampli-
tudes in each step is proposed for future work.

PACS number(s): 32.70.Cs, 31.10.+z

I. INTRODUCTION II. FORMULAS FOR TRANSITION AMPLITUDES

The accurate measurement [1]of the parity violation in
Cs has raised the interest of atomic theorists to do pre-
cision calculation for heavy atoms. Among the tech-
niques that are in current use, the many-body-
perturbation-theory (MBPT) calculation [2] has a partic-
ular attraction. Namely, one can in principle improve
the accuracy step by step by including more and more di-
agrams. The fast increasing power of computers helps in
making the calculations possible. The question is, then,
how much effort should be made if a certain accuracy is
needed. The answer, of course, depends on how well the
calculation converges order by order. In the case of ener-

gy levels of low bound states of alkali-metal atoms, the
MBPT calculation has been shown to converge very well
[3]. An accuracy of better than l%%uo is obtained for Cs in
the MBPT calculation including up to third order [4].

In this article, we carry out the MBPT calculation for
transition amplitudes up to second order for 6s~6p»2
and 6s —+6p3/2 transitions in Cs. We found, however,
that the results converge poorly, in particular for the ve-
locity form. The agreement between length and velocity
forms is not improved as one goes from lowest to second
order. By comparison with other similar calculations
[5,6], we see that the inclusion of infinite subsets of dia-
grams is essential to obtain good results for the transition
amplitudes. The plan of this article is as follows. In Sec.
II formulas for transition amplitudes up to second order
are given. The numerical method and results are present-
ed in Sec. III. In Sec. IV we compare present calculation
with two other similar calculations, and propose a sys-
ternatic calculation for future work. A simple recipe for
"reading" explicit algebraic expression from diagrams is
given in the Appendix.
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where D, is the reduced dipole matrix element. The ex-
plicit expressions corresponding to the first- and second-
order diagrams [Figs. 2 and 3(a)—3(c)] can be put in the
following form:

One can derive the expression for transition amplitudes
order by order from either the MBPT or the Green's-
function formalism [7]. The Dirac-Pock approximation
(DFA) is a natural starting point from the point of view
of Green's-function formalism. The Dirac-Fock (DF)
wave functions are also the simplest choice (except hy-
drogenlike ones) for initial single-particle wave functions
in the MBPT. Based on either formalism, the transition
amplitudes of a given order can be represented by their
corresponding Feynman diagrams. Let a solid line
represent the electron propagator in the DFA, a dotted
line represent electron-electron interaction V, and a cross
(X) represent the local three-point vertex. The local
transition amplitude in the DFA is represented by Fig. 1.
The first-order (that is, one- V-line) corrections are
represented by Fig. 2. The second-order (that is, two-V-
line) corrections are represented by Figs. 3(a)—3(c). If we
denote the matrix element between two arbitrary DF
states ~s ) and ~t ) as u„,the local transition amplitude
between two valence states

~
I ) and

~
n ) in the DFA

(Fig. 1) is simply u„.Explicitly,

FIG. 1. Local Dirac-Fock vertex.
FIG. 2. First-order correction to the local Dirac-Fock ver-

tex.
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FIG. 3. (a) Part of the second-order corrections. These dia-
grams were computed in Ref. [5]. They are included in the
first-order local vertex if Brueckner orbitals are used. (b) Part of
the second-order corrections. These diagrams were not com-
puted in either Ref. [5] or [6]. (c) Part of the second-order
corrections. These diagrams are included in the gauge-invariant
Dirac-Fock transition amplitudes (Fig. 4).

In the above expressions m and n refer to two valence
states, and the c.c. notation means that the previous term
is to be complex conjugated and that the roles of m and n
are to be interchanged. The sum over the index s in Eq.
(3) ranges over all states except for the valence state. The
indices a, b, and c stand for DF hole states (a core minus
one electron), and their corresponding sums range over
the core. The indices i, j, and k stand for particle states
(a core plus one electron), and their corresponding sums
range over all positive states outside the core. E, is the DF
energy of the state indicated by its subscript.

A simple recipe is given in the Appendix to read out
the expression from its corresponding diagram. The
second-order formulas have also been given in Ref. [5] by
Johnson, Idrees, and Sapirstein and are called the third-
order contributions there.
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FIG. 4. The gauge-invariant Dirac-Fock transition ampli-
tudes.

FIG. 5. The second-order self-energy diagrams.

III. METHOD OF CALCULATION AND RESULTS

The angular parts of the expressions in Eqs. (2)—(5) can
be summed analytically to be in the form of 3-j, 6-j, or 9-j
coefBcients. They are then computed by computer. For
the radial parts, we use the B-spline approximation for
the complete DF wave functions [g]. For each s, p»2,
p 3/2 l ] J /2 and i, 3 /2 state, we generate a pseudospec-
trum with 40 positive-energy and 40 negative-energy
states. The first 33 (counting from the lowest-energy
state up) positive-energy wave functions and their corre-
sponding energy levels are then used in calculation. The
results are presented in Table i. The final results of
length form differ from experimental values [9] by 6%
and 12% for the 6s~6p&&2 and 6s~6p3/p transitions,
respectively. The results of velocity form are in better
agreement with experimental values.

Figure 3(a) has also been calculated by Johnson, Idrees,
and Sapirstein [5] using the same method. Because they
used Aitken's extrapolation to get the final value, their
values differ from ours a little bit (see column 5, Table II).

One notices that the second-order contribution [Fig.
3(a) plus 3(b) plus 3(c)] is either comparable with or larger
than the first-order contribution. The perturbative series
apparently converges poorly. One cannot have an idea of
what size the third-order contribution is going to be. We
can also see from Table I that the length and velocity
forms of the transition amplitudes are not the same.
They differ by 5% in local values. Including perturbative
corrections up to second order does not improve the
agreement at all.

IV. DISCUSSION AND COMPARISON
WITH OTHER CALCULATIONS

In order to compare our results with other similar cal-
culations, we have to mention briefly an alternative way
of calculating transition amplitudes "order by order. "
The method has been proposed by Feldman and Fulton
from the Green's-function formalism [10]. In this

method, one systematically sums a subset of infinite num-
ber of diagrams in a manner so that the transition ampli-
tude is gauge invariant in each step. The lowest-order di-
agram of each subset is an irreducible self-energy dia-
gram. The first- and second-order self-energy diagram
are given in Figs. 2 and 3(b), respectively.

The zeroth-order approximation is the independent
particle approximation. The transition amplitude is cer-
tainly gauge invariant. The first-order approximation is
the well-known DFA. Based on the formalism, Feldman
and Fulton [10] showed that the gauge-invariant transi-
tion amplitudes in the DFA is not given by Fig. 1. They
found that the transition amplitudes satisfy a self-
consistent equation represented by Fig. 4, which contains
local contribution (Fig. 1) and nonlocal contribution due
to the first-order self-energy diagrams (Fig. 2 and corre-
sponding higher-order diagrams). By iteration starting
from the first term on the right-hand side (rhs) of Fig. 4
(namely, the local contribution), one can generate an
infinite set of diagrams. The difference between this
gauge-invariant transition amplitudes and the local con-
tribution is sometimes called the random-phase-
approximation (RPA) -type contribution [11]. A few nu-
merical results for Fig. 4 have been presented [11,12].

The next step is the second-order approximation. In
this approximation, the wave functions have to be solved
by including second-order self-energy diagrams (Fig. 5).
The double line in Fig. 5 is the electron propagator under
this approximation. These wave functions are sometimes
called Brueckner orbitals [13]. The gauge-invariant tran-
sition amplitudes in this approximation can be inferred
from the work of Feldman and Fulton [10]. Diagram-
matically, it is given by Fig. 6. Note that Fig. 6, like Fig.
4, is a self-consistent integral equation for the transition
amplitude. This equation has not been solved yet.

Having brieAy presented the gauge-invariant approach
to transition amplitudes from the Green's-function for-
malism, we are in a position to discuss the work done by
Johnson, Idrees, and Sapirstein [5] and Dzuba et al. [6].
We hereafter refer to them as I and II, respectively.

TABLE I. Reduced dipole matrix elements for the resonance transitions 6s ~6p&/2 3/2 in Cs.

Transition

6s ~6p )/2

6s ~6p3/2

'Reference [9].

Form

length
velocity
length
velocity

Local DF

Fig. 1

5.278
5.036

—7.426
—7.064

First order

Fig. 2

—0.334
—0.207
—0.005
—0.002

Fig. 3(a)

—0.577
—0.560

0.836
0.807

Second order

Fig. 3(b)

0.044
0.051

—0.059
—0.053

Fig. 3(c)

0.377
0.234

—0.504
—0.313

Sum

4.788
4.554

—7.158
—6.625

Expt. '

4.52

—6.36
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FIG. 6. A gauge-invariant transition amplitudes including up
to second-order self-energy diagrams.

FIG. 11. A Heitler diagram with two auxiliary lines to help
in reading out its corresponding algebraic expression.

FIG. 7. First-order corrections to the local transition ampli-
tudes when using Brueckner orbitals.

FIG. 8. A second-order Heitler diagram where time order is
explicitly shown.

&jEI V f kl )

FIG. 9. Diagrammatic representation of the matrix element

+kj

FIG. 10. Diagrammatic representation of the matrix element
Qkj.

I used DF orbitals and calculated RPA-type contribu-
tions of transition amplitudes according to Fig. 4, which
certainly included the first-order polarization correction
(Fig. 2). They then added part of the second-order
corrections, namely, the contribution from Fig. 3(a). The
part of the second-order contributions from Fig. 3(c) has
been included in Fig. 4, while that from Fig. 3(b) is
claimed to be an order smaller than that from Fig. 3(a) by
energy-denominator consideration and is not calculated.
Their calculation is a combination of the perturbative
calculation presented in Sec. II and the gauge-invariant
method described in the beginning of this section. They
are able to get a final result of 3% difference with experi-
mental value. We list their results in Table II. The ve-
locity forms also shown in Table II are calculated by us
for comparison. If the corrections from Fig. 3(b) were in-
cluded (column 7, Table II), their results would have been
closer to experimental value (within 2% error).

In the work of II, Dzuba et al. first obtained the
Brueckner orbitals with a few approximations for con-
venience without changing the accuracy needed. For
transition amplitudes, they then calculated the first term
of the right-hand side of Fig. 6, which automatically in-
cludes the contributions from Fig. 3(a). They then added
the first-order perturbative corrections (core polarization)
corresponding to the diagrams shown in Fig. 7. Note
that Fig. 7 is the same as Fig. 2 except that the DF orbit-
als are replaced by the Brueckner orbitals. They claimed
that the high-order RPA-type contribution is small and
did not present it in their results. We estimate this
RPA-type correction using the DF orbitals by taking the
difFerence of the contributions from column 4, Table II
and column 4, Table I. We obtain for the 6s~6p»2
transition —0.303 —( —0.334)=0.031 (length form) and—0.063 —( —0.207 ) =0. 144 (velocity form). These
values are 0.7% and 3.1% of the experimental value, re-
spectively. The part of second-order contributions from
the last five diagrams of the right-hand side of Fig. 6 is
also neglected in their work. This part of second-order
contributions can be approximated by Fig. 3(b) using the
DF orbitals; it is 0.044 (length form) and 0.051 (velocity
form) given in Table I. They are about 1% of experimen-
tal value. With these estimated corrections (column 5,
Table III), the results of II are brought closer to the ex-
perimental value for the length form (less than 0.5% er-
ror). But, based on the results of II, our estimated
correction for the velocity form is apparently not good.
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TABLE II. Results of Johnson, Idrees, and Sapirstein for the transitions 6s~6p, /2 3/2 Column 7 gives estimated corrections to
their results based on our calculation. Values in velocity form are calculated by us.

Transition

6s ~6P1/2

6s ~6p3/2

length
velocity
length
velocity

Local DF'
(Fig. 1)

5.278
5.036

—7.426
—7.064

RPA'
(Fig. 4)

—0.303
—0.063

0.413
0.053

Second order'
[Fig. 3(a)]

—0.582
—0.560

0.842
0.807

Sum'

4.393
4.413

—6.171
—6.204

Correction
[Fig. 3(b)]

0.044
0.051

—0.059
—0.053

Expt. '

4.52

—6.36

'Reference [5].
Present calculation.

'Reference [9].

The possible reason is that since the high-order RPA-
type correction using the DF orbitals is quite large
(3.1%%uo), we would expect that this value would be
changed significantly if the Brueckner orbitals are used
instead. In addition, the high-order (order 3 and up) con-
tribution generated from Fig. 3(b) can be also large.
Therefore our estimated corrections for the velocity form
are not suitable. The equation represented by Fig. 6
should be solved to get a better result.

From the perturbative point of view (Sec. II), up to
second order, I neglects the contributions form Fig. 3(b),
while II drops out the contributions from Figs. 3(b) and
3(c). However, as we have seen in Sec. III, the perturba-
tive calculation order by order does not converge well
anyway. Instead, we see that, by including an infinite
subset of diagrams, for example, the RPA-type contribu-
tion in I or using the Brueckner orbitals in II, we can get
better theoretical results. The question is which subsets
of diagrams are more important to be included for ob-
taining good results for transition amplitudes in whatever
gauge. Fortunately, the Green's-function formalism give
us a systematic way to sum over the infinite subsets of di-
agrams order by order as we have sketched in the begin-
ning of this section. The formalism also guarantees that
the resultant transition amplitudes are gauge invariant
order by order. We will demonstrate this assertion ex-
plicitly in future work.

Recently, there are also some "all-order" calculations
along this line [14,15]. Since these works are somewhat
beyond the scope of this paper, the comparison with
them will be more appropriately done in our future work
based on the Green's-function formalism.
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APPENDIX

Given a Feynman diagram, say, the first diagrams in
Fig. 3(b), there are six time-ordered diagrams correspond-
ing to it. They are called Heitler diagrams. One of these
Heitler diagrams is shown by Fig. 8. In Fig. 8 we have
shown the time direction of the DF propagator explicitly,
assuming initial and final valence states are

~
m ) and

~
n ),

respectively. Let us use this Heitler diagram as an exam-
ple for explaining the rule to write down the algebraic ex-
pression.

An algebraic expression consists of three parts:
numerator, denominator, and phase. They can be read
from the corresponding Heitler diagram according to the
following rules.

(1) Designate each DF propagator either by a particle
label if it propagates forward (in time) or by a hole label if
backward.

(2) Associate each electron-electron interaction V and
the three-point vertex X with a matrix element such as
&ij ~

V~kl ) for Fig. 9 and uk, for Fig. 10. The numerator
is the product of these matrix elements. For example, for
diagrams Fig. 8, the numerator is given by

&«IVI«&&ji IVlam &uk, .

(3) Draw lines through the Heitler diagram between

TABLE III. Results of Dzuba et al. for the transition 6s ~6p&/2. Column 5 gives estimated correc-
tions to their results based on our calculation.

Local Brueckner' First order' Correction
(first term on rhs of Fig. 6) (Fig. 7) Sum' [Fig. 3(b) + Fig. 4 —Fig. 2] Expt. '

length
velocity

'Reference [6].
Present calculation.

'Reference [9].

4.82
4.63

—0.37
—0.07

4.45
4.56

0.075
0.195

4.52
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each time interval as shown in Fig. 11 for the case of Fig.
8. For each line, assign an energy factor according to
what propagators it intersects as follows: If the line is be-
fore the vertex (in time), we have

E —(energies of particles)+(energies of holes) .

If the line is after the vertex, replace c. by c.„.The ener-

gy denominator is the product of these energy factors.
For example, for diagram Fig. 11 we get the energy
denominator

(E„—e; —Ek+e, )(E —e; —Ei+E, ) .

(4) The phase is determined by h, the number of propa-
gators labeled by holes, and l the number of fermion
(electron) loops. It is given by

(phase) = (
—I )"+' .

For example, for diagram Fig. 8 the phase is given by

( 1 )1+0

The final algebraic result according to these rules for the
Heitler diagram Fig. 8 is

(
—I) 1 1

(s„—E; —ek+e, ) (E —E; —E, +E, )

X (na
~
V~ki & (ji ~

V~am ) ukj .

Hole states are to be summed over the core, and particle
states are to be summed and integrated over states out-
side the core.
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