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Electric-dipole polarizabilities of K, Rb, Cs, and Fr are calculated in the framework of the quasirela-
tivistic method based on mass-velocity and Darwin terms in the Pauli Hamiltonian. The electron-
correlation contribution due to atomic cores is taken into account at two levels of approximation. The
next-to-valence-shell contributions follow from the appropriate complete active-space multiconfiguration
self-consistent-field calculations while the remaining core correlation efFects are evaluated by using a
second-order-perturbation method. Both pure relativistic and mixed correlation-relativistic contribu-

o 3 0 3 0 3tions are evaluated. The present nonrelativistic results for K (44.6 A ), Rb (60.8 A ), Cs (72.8 A ), and
0 3 0 3 0 3 0 3 0 3Fr (81.8 A ) are reduced by 0.8 A, 11.3 A, 11.5 A, and 33.5 A, respectively, due to relativistic and

correlation-relativistic corrections. The quasirelativistic results for K, Rb, and Cs are in good agreement
0

with experimental data. The predicted dipole polarizability of Fr is 48.3 A . Additionally, polarized
basis sets for Cs and Fr for calculations of molecular electric properties have been generated in this
study.

PACS number(s): 31.20.Tz, 31.30.Jv, 35.10.Di

I. INTRODUCTION

The dipole polarizability is undoubtedly one of the
most important and interesting electric properties of
atoms [1]. It accounts for the main part of their response
to external perturbations which can be modeled in terms
of electric fields [2]. For this reason atomic dipole polari-
zabilities are natural ingredients of interaction potentials
for atomic scattering studies [3].

Most of the dipole polarizability rejects the electric-
field response of atomic valence shells and the core and
core-valence contributions are usually of secondary im-
portance. This is certainly true for atoms of main groups
Va through VIII [4]. However, already for the main
group IVa the core contributions to the dipole polariza-
bility of the second- and higher-row atoms become of
some importance [4]. It is well established [4,5] that a
pure valence-electron approximation is unsuitable for di-
pole polarizabilities of the group-Ia and group IIa atoms.
With the increasing nuclear charge Z a substantial con-
tribution to the dipole polarizability arises also from rela-
tivistic effects [6,7].

The purpose of the present study ranges from the plain
numerical calculation of accurate polarizability data for
alkali-metal atoms to the investigation of the validity of
methods for the determination of the electron-correlation
[8,9] and relativistic [10,11] contributions. Some atten-
tion is also given to the development of polarized basis
sets [12,13] of Gaussian-type orbitals (GTO's) for calcula-
tions of atomic and molecular electric properties and sup-
plements our earlier investigations [13]in this area.

The dipole polarizability of Li and Na has been widely

studied by several other authors and a survey of the cor-
responding theoretical and experimental data can be
found in Refs. [1,4,5, 14]. It also follows from relativistic
Dirac-Hartree-Fock (DHF) calculations of Desclaux,
Laaksonen, and Pyykko [6] that the relativistic contribu-
tion to the dipole polarizability of Li and Na is virtually
negligible. Thus these two atoms are excluded from
present investigations.

The recent study of polarizabilities of the alkaline-
earth metals [7] shows that a noticeable relativistic con-
tribution is observed already for the third-row atoms.
For this reason the present study comprises potassium
and all heavier metals of group Ia. Including Fr is main-
ly a matter of curiosity, as the corresponding data are
rather unlikely to be used.

The methods employed in our calculations are sur-
veyed in Sec. II. The polarized basis sets of contracted
Gaussian-type orbitals (CGTO's) for K and Rb have been
generated in our earlier investigation [13]. Those for Cs
and Fr are derived in this paper and the pertinent details
are given in Sec. III. In Sec. IV the polarizability data of
this paper are presented and their reliability is analyzed.
The paper is summarized in Sec. V.

II. METHODS AND COMPUTATIONAL
METHODOLOGY

In general, the methods used in this paper are based on
the perturbation treatment of electron-correlation and
relativistic contributions with respect to the given ap-
proximate reference state calculated by some approxi-
mate method M. The latter may by itself account for
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some part of the electron correlation while the rest of it is
to be obtained in a perturbation treatment. This ap-
proach has been recently used in calculations of valence-
state electric-dipole polarizabilities and quadrupole mo-
ments of the first- and second-row atoms [15].

The relativistic contribution to atomic polarizabilities
has been obtained in the framework of the quasirelativis-
tic method [10,11] based solely on the mass-velocity and
Darwin (MVD) terms of the Pauli approximation to the
relativistic Hamiltonian [16].

In what follows some details of methods used in this
study will be discussed in terms of their applicability and
reliability. Since the dipole polarizability e of an atomic
S state is given by [1,2]

a'E(F)
BF„BF„

where E(F) is the total electronic energy as a function of
the electric-field strength F, most of the discussion will be
carried out with reference to the methods of computing
E(F)

A. Evaluation of the electron-correlation
contribution to dipole-polarizabilities

In the nonrelativistic approximation the total polariza-
bility a„, is expressed as a sum of the result obtained by
some method M, n„, ~, and perturbation corrections,
cx M pT with respect to the reference state obtained by
that method:

nr nr, M+ nr, M-PT

If the reference method M corresponds to some formal
Hamiltonian H„', ', the perturbation corrections a„,M pT
can be given a series expansion ordered with respect to
the (correlation) perturbation operator W„„

(O)~nr ~nr ~nr

where H„, is the total nonrelativistic electronic Hamil-
tonian of the system. Hence, one can write

nr, M-PT nr, M-PTI'
E

(with i denoting the order of the perturbation correction).
Furthermore, if M satisfies the Brillouin condition [17],
the series in (4) begins with the second-order term [18].

By choosing the method M one can shift the amount of
the electron-correlation contribution carried by the two
terms of Eq. (2). In particular, if M is the restricted
Hartree-Pock (RHF) method, then the total of the
electron-correlation contribution will have to be
recovered by the perturbation term (4). Since in most
cases the series (4) is replaced by Nth-order truncated ex-
pansion, the RHF reference requires a rather high-order
perturbation treatment.

If the method M accounts for the electron-correlation
effects to a certain level, one can anticipate that the per-
turbation series in (4) can be truncated at relatively low
order without considerable loss of accuracy. This is the
main idea behind the recently developed second-order

perturbation-theory (PT2) approach based on complete-
active-space (CAS) self-consistent-field (SCF) wave func-
tions [8,9]. The success of the method, which is hereafter
referred to as CASPT2, strongly depends on the quality
of the CASSCF reference space.

The following terminology will be used in the analysis
of the dependence between the structure of the CASSCF
reference state and the efficiency of the second-order
treatment of the pertinent residual correlation (3). The
total available space of one-particle states is subdivided
into four classes —the frozen, inactive, active, and secon-
dary orbital subspaces [19]. The frozen orbitals are al-
ways doubly occupied and are not optimized at the level
of the CASSCF approximation. No excitations from the
frozen subspace are allowed in CASPT2. The inactive or-
bitals are doubly occupied and optimized in CASSCF and
excitations from this subspace are allowed in CASPT2
[8,9]. It is worth noting that some inactive CASSCF or-
bitals may be frozen in the CASPT2 approximation.

The active orbital subspace is used to build the full
configuration-interaction (CI) wave function for a given
number of electrons. The secondary space is used to fully
optimize the CASSCF wave function and to generate sin-
gle and double excitations from the reference state at the
level of the CASPT2 approach [8,9].

The partition of the orbital space and the number of
electrons in the active subspace completely define the
CASSCF wave function of the chosen spin-space symme-
try. For the S ground state of alkali atoms the minimum
active space is that with a single valence orbital ns. Since
in the present paper all inner-shell orbitals are considered
to be inactive in the CASSCF method, such a wave func-
tion will be equivalent to that of the open-shell RHF ap-
proximation. The inner-shell orbitals may then remain
all inactive in CASPT2 or partly frozen. Both approxi-
mations will be studied in this paper with the freezing re-
stricted to all but (n —2)d', (n —1)s, and (n —1)p
shells (3s 3p in the case of K).

The subsequent plausible candidate for the reference
state is the CASSCF wave function for the I (n —1)p, ns]
subspace of occupied orbitals. By using the method de-
scribed in Ref. [15] the major correlating orbitals have
been found to be (n —1)d and np, leading to the active or-
bital subspace I(n —1)p, ns, (n —1)d, np] for seven elec-
trons. The inactive CASSCF orbitals are either left inac-
tive or partly frozen at the CASPT2 level of approxima-
tion. In the latter case only the (n —2)d' and (n —1)s,
shells are left inactive.

The largest active space considered in this paper con-
sists of I(n —1)s, (n —1)p, ns, (n —1)d, np, (n +1)s] orbit-
als for nine electrons. The CASPT2 calculations for this
active space are quite time demanding and the corre-
sponding studies have consequently been somewhat re-
stricted. In all these CASPT2 calculations only the
(n —2)d' shell was left inactive with all other inner
shells frozen. The most complete study of the interplay
between correlation contributions from the CASSCF and
perturbation approaches has been performed for Cs. The
analysis of the corresponding nonrelativistic and quasire-
lativistic corrections has been used to set up guide lines
for calculations on other atoms.
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B. Quasirelativistic treatment of pure relativistic
and correlation-relativistic contributions

to the dipole polarizability

a(O ) =aM(O )+aM PT(O ) (7)

with both terms on the right-hand side assumed to be an-
alytic in o.,

(8a)

+M-PT(~) y + +M-PT
k (k)

k=0
(8b)

Since the MVD operator is of the first order in c, the
expansions (8a) and (8b) should be truncated at that order
as well [10,11].Thus, setting cr =1, one obtains the first-
order quasirelativistic approximation to a,

aM +aM +aM-PT+ aM-PT
(0) (&) (0) (i) (9)

where the correlation perturbation expansion (4) applies
to both aM pT and aM pT.

(0) (1)

The quasirelativistic treatment of relativistic contribu-
tions to electric properties, as developed in our recent pa-
pers [10,11] and demonstrated in a variety of applications
[7,10,11,20,21], takes advantage of the spatial distinction
between relativistic and electric-field perturbations. As
long as the spin-orbit coupling can be neglected, the
MVD operator [10,11]gives the major part of the relativ-
istic effect. Moreover, it heavily weights the inner re-
gions of the atomic-electron-density distribution while
the electric-field perturbation affects primarily the outer
(valence) region. This distinction has been demonstrated
to lead to excellent quasirelativistic estimates of the rela-
tivistic contribution to polarizabilities of alkaline-earth-
metal atoms [7] within the SCF approximation.

Obviously, the quasirelativistic treatment must fail for
the nuclear charge Z approaching the value of about 137
a.u. However, present experience shows that even for Au
(Z =79) the quasirelativistic method performs quite well
[21]. Some deterioration of the dipole-moment results
which has been recently found for PbO could presumably
be attributed to either the spin-orbit-coupling effects or to
nonadditivity of relativistic and electron-correlation con-
tributions to electric properties. In the present case, the
quasirelativistic results for Fr may tell more about the
range of applicability of the method based on the MVD
perturbation.

In the quasirelativistic approach the nonrelativistic
Hamiltonian H is replaced by

H r Hnr+HMVD

Thus the CASSCF approach will lead to the following
counterpart of Eq. (3):

H, =H' '(cr)+ W(cr),

where o. is the ordering parameter for the MVD pertur-
bation HMvo. As a consequence, the total quasirelativis-
tic dipole polarizability a depends on o. and can be ex-
pressed as

For M representing the RHF method all the electron-
correlation contribution follows from aM PT(o. ), while for
methods going beyond this approximation the electron-
correlation effects will be redistributed between aM(cr)
and txM PT( 0' ) ~

There may be several objections with respect to the
present treatment of the interplay between electron-
correlation and relativistic effects. Certainly, whenever
the spin-orbit coupling becomes of importance, the
quasirelativistic approximation based solely on MVD
terms is expected to fail. On the other hand, the splitting
of / —

—,
' and I+—,

' levels is not expected to be important
for inner (closed) shells [22] and the contribution from
these to the total dipole polarizability is small anyway.
In the present case the valence part is represented by a
single ns orbital and it is the relativistic contraction of
this orbital that yields the dominant contribution to the
lowering of nonrelativistic dipole polarizabilities [7,16].

C. Computational aspects

All calculations reported in this paper have been car-
ried out by using the finite-field numerical perturbation
method as described in our earlier papers [10,11]. This
technique is used for both electric field and MVD pertur-
bations. The field-strength values used in this paper are a
little higher than those employed in earlier studies for
closed-shell systems [7,11]. The CASSCF and CASPT2
energies have been calculated for electric fields 0.0, 0.001,
and 0.002 a.u. with the quasirelativistic perturbation
strength of 0.0 and +0.01 a.u. (for K and Rb) and
+0.005 a.u. (for Cs and Fr) and then fitted for each value
of o to a quartic polynomial in F. The derivatives of the
CASSCF energy have been checked against the deriva-
tives of the CASSCF dipole moment with respect to o..
Another verification of the CASSCF data is provided by
second derivatives of the first-order MVD correction
with respect to the electric-field strength [7,10,11]. The
agreement between those three sources of the first-order
relativistic correction to dipole polarizability is taken as a
measure of the accuracy of our numerical data. It has
been found that the corresponding differences are at most
of the order of 0.2%. A similar accuracy is expected for
numerical derivatives of CASPT2 energies.

All polarizability calculations have been performed by
using the MoLCAs-2 system of quantum-chemistry pro-
grams [23]. This system, devised primarily for molecular
calculations, requires treating atoms in symmetry groups
not higher than Dzh. The optimization of orbital ex-
ponents in initial spd and spdf GTO basis sets for Cs and
Fr, respectively, has been carried out by the methods out-
lined in Ref. [24].

III. BASIS SETS

All calculations reported in this paper have been car-
ried out using contracted sets of Gaussian functions. It is
known [12,14] that in evaluation of atomic and molecular
electric properties particular care needs to be taken of
sufBcient flexibility of the basis set. A standardization of
the basis-set generation for such calculations has been



1718 KELLO, SADLEJ, AND FAEGRI 47

proposed recently [12], leading to what is called the
(first-order) polarized basis sets. Such basis sets are al-
ready available for K and Rb. Those for Cs and Fr have
been generated in this paper starting from energy-
optimized sets of approximately double-g quality.

A. Potassium and rubidium

The polarized (spd) basis set for potassium [13] has
been derived earlier and is used without any modification
in this study. The suitability of this [15.13.4/3. 7.2]
GTO/CGTO set has already been demonstrated in RHF
SCF calculations on K and in correlated-level calcula-
tions for KH [13,25]. This basis set and the Rb bases
below are available in the MOLCAs-2 [23] basis-set library.

The original [18.15.10/11.3.4] polarized basis set for
Rb is taken from Ref. [13]. Because one of the purposes
of this study is to investigate the role of core-polarization
effects involving the 3d' shell, the initial set has been
augmented by appropriate f-type polarization functions
generated by applying the basis-set polarization method

[12] to 3d RHF SCF orbitals of Rb. The two f-type po-
larization functions are

f, =0.08 775(14.1054)+0.19 320(5.5366),

f~ =0.19 873(2.2397 ) +0.06 384(0.8594)

The numbers in parentheses are the orbital exponents of
primitive f-type GTO's while those in front of them are
the contraction coefftcients. The augmented (spdf) po-
larized set of Rb is therefore [18.15.10.4/11.9.4.2].

B. Cesium and francium

The generation of polarized (spd) and (spdf) sets fol-
lows the rules described previously [7,12,13] and consists
of the following three steps: (i) generalized contraction of
initial energy-optimized sets, (ii) addition of diffuse s and
p functions, and (iii) determination of polarization func-
tions for outer p shells and the (n —2)d ' shell.

The initial (21.15.8) GTO set [ERH„( S )
= —7553.90053 a.u.] has been contracted to a [11.9.2]

TABLE I. First-order polarized [23.18.12.4/13. 11.6.2] GTO/CGTO basis set for cesium. The (spd)
polarized basis set can be obtained by removing the f-type GTO's.

GTO CGTO Exponent Contraction coefticients

s subset

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1 —4

5
6
7
8
9

10
11
12
13

1 —3

18 018 184.2
2 698 241.36
614059.535
173 927.900
56 739.082 3
20 481.201 5
7 986.413 01
3 310.8212 2
1 442.310 16
654.023 073
304.041 333
132.350 219
67.030 350 4
33.464 640 0
14.568 725 9
7.458 851 12
3.001 490 96
1.461 0830 1

0.402 209 42
0.175 580 56
0.045 835
0.0200 091 8
0.008 735

29 904.687 5
7 084.517 30
2 299.176 74
877.155 521
370.647 956
167.623 191
79.458 439 4
38.616742 5

0.000 009 5

0.000 074 2
0.000 389 9
0.001 643 6
0.005 950 8
0.019054 7
0.054 243 5

0.133 629 0
0.265 623 0
0.364 094 0
0.256 777 0
0.049 596 0

—0.005 282 9
0.002 669 5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

p subset

0.000 262 9
0.002 309 4
0.012 851 5
0.052 470 8
0.158 414 0
0.329 064 0
0.395 249 0
0.201 967 0

0.000 003 1

0.000 024 2
0.000 127 0
0.000 536 5
0.001 948 1

0.006 3170
0.018 433 1

0.048 382 7
0.109 1490
0.195 398 0
0.194059 0

—0.155 127 0
—0.589 003 0
—0.397 561 0

0.000 123 7
0.001 086 9
0.006 125 7
0.025 504 0
0.080 813 8
0.179004 0
0.225 337 0

—0.035 943 6

0.000 001 4
0.000 0108
0.000 056 9
0.000 241 2
0.000 873 8
0.002 848 3
0.008 306 0
0.022 116 1

0.050 509 0
0.095 1118
0.099 939 7

—0.095 531 2
—0.526 235 0
—0.431 629 0

0.000 055 4
0.000 489 7
0.002 750 8
0.011 569 5
0.036 775 4
0.083 393 9
0.104 223 0

—0.035 285 5

0.000 000 6
0.000 005 0
0.000 026 3
0.000 1110
0.000 403 7
0.001 3107
0.003 845 9
0.010 1930
0.023 570 7
0.044 262 1

0.048 406 1
—0.490 884 2
—0.274 671 0
—0.268 047 0
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TABLE I ( Continued).

GTO CGTO Exponent Contraction coefficients

9
10
11
12
13
14
15
16
17
18

5
6
7
8

9
10
11

18.515 060 2
9.139090 91
4.129 325 41
1.929 193 85
0.811 869 55
0.346 91639
0.133 841 82
0.051 636 7
0.019921 7
0.007 685 9

0.026 320 4
0.000 352 9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

—0.5163140
—0.477 959 0

—0.359 461 0
—0.323 333 0

d subset

1

2
3
4
5

6
7
8
9

10
11
12

638 ~ 157 487
191.608 245
72.488 068 8
30.342 141 0
13.238 863 5

5.622 501 76
2.373 086 59
0.916 181 10
0.346 91639
0.133 841 82
0.019921 7
0.007 685 9

0.006 302 4
0.049 366 0
0.194 327 0
0.412 736 0
0.428 200 0
0.133923 0
1.0
1.0
0.116830
0.098 540
0.519964
0.314661

—0.002 741 8
—0.021 816 9
—0.087 402 2
—0.185 749 0
—0.140 377 0

0.288 626 0

f subset

13.238 86
5.622 502
2.373 087
0.916 181

—0.038 581
0.121 722
0.388 874
0.293 876

CGTO set and extended by two diffuse s-type and three
diffuse p-type GTO's, thus leading to a [23.18.8/13. 11.2]
CGTO set [ERH„( S)= —7553.90084 a.u.]. Two d-type
polarization CGTO's have been generated from Sp and 6p
atomic orbitals of Cs( S) and Cs( P), respectively. This
leads [7,12,13] to a (spd ) polarized basis set of the form
[23.18.12/13. 11.4], which is compatible with the Sr polar-
ized set of Ref. [7]. To account for the 4d' core-
polarization effects two f-type polarization CGTO's [7]
have been generated, and they give the (spdf) polarized
set of the form [23.18.12.4/13. 11.4.2]. Both (spd) and
(spdf ) polarized basis sets for Cs are presented in Table I.

The corresponding basis sets for Fr have been obtained
in an analogous way as for Cs. Both the d-extended and
df-extended sets are derived from the energy-optimized
(24.17.13.8) GTO set [ERH„( S)=—22475. 84862 a.u. ]
which has been contracted to a [13.9.6.2] GTO set and
augmented with diffuse s- and p-type functions to give a
[26.21.13.8/15. 13.6.2] GTO/CGTO set [ERH„( S )
= —22475. 84900 a.u. ]. Out of this set the d- and df
polarized sets of the form [26.21.17.8/15. 13.8.2] and
[26.21.17.12/15. 13.8.4], respectively, have been generat-
ed. The orbital exponents and contraction coefficients
are given in Table II.

IV. RESULTS. EVALUATION OF THE
RELIABILITY OF THE CALCULATED

POLARIZABILITY DATA

The presentation of numerical data follows the parti-
tion defined by Eq. (9). The results shown in Tables III
and IV are subdivided into nonrelativistic contributions
as calculated by CASSCF and CASPT2 methods, i.e.,

(0)~ (0) (0) ~ (0)+M ~ +M-PT +CASSCF ' +CASPT2 & (10)

and what is called the relativistic contributions, which
are approximated by the first-order quasirelativistic re-

By the method of their derivation [12,13] the d-
polarized sets account for the field-induced polarization
of outer s and p shells. The flexibility of the description
of these shells is ensured by leaving most s- and p-type
GTO's with low exponents uncontracted. The df
polarized sets additionally account for the field-induced
polarization of (n —2)d' shells. The use of generalized
contractions, as shown in our earlier papers [7,21] and
confirmed by the results presented in Sec. IV, has only a
small effect on the relativistic contribution to dipole po-
larizabilities of alkali metals.
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TABLE II. First-order polarized [26.21.17.12/15. 13.8.4] CANTO/CCsTO basis set for francium. The numbers in brackets give the
power of 10 accompanying the given entry. A basis set which does not account for the polarization of the 5d shell can be obtained by
removing the last four f-type

CANTO's.

GTO CGTO Exponent Contraction coefficients

1

2
3
4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1 —5

6
7
8
9

10
11
12
13
14
15

0.519902 283[+8]
0.778 522 721[+7]
0.177 170 151[+7]
0.501 817 629[+6]
0.163 704 385[+6]
0.590 925 831[+5]
0.230 421 470[+5]
0.955 227062[+4]
0.416 173242[+4]
0.188 806 699[+4]
0.881 602 891[+3]
0.405 734 450[+3]
0.205 233 445 [+3]
0.103 066 810[+3]
0.465 374 781[+2]
0.248 310377[+2]
0.110692 200[+2]
0.594 239 642[+ 1]
0.228 194 840[+ 1]
0.119 158 993[+1]
0.337 905 297
0.151 649 993
0.474 708 000[—1]
0.220 277 975[—1]
0.102 215 185[—1]
0.474 310000[—2]

0.800923 [—5]
0.622 755 [—4]
0.327 448[—3]
0.138 109[—2]
0.500 554[—2]
0.160 848[—1]
0.461 545[—1]
0.115902[+0]
0.239 591[+0]
0.356 004[+0]
0.291 223[+0]
0.762 196[—1]—0.289 925[—2]
0.255 355[—2]

—0.153 103[—2]
0.962 018[—3]
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

s subset

—0.267 971[—5]—0.208 354[—4]—0.109 617[—3]—0.462 822[—3]—0.168 421[—2]—0.546 308[—2]—0.160 604[—1]—0.425 580[—1]—0.989 143[—1]—0.185 707[+0]—0.219 427[+0]
0.471 897[—1]
0.546 948[+0]
0.500 140[+0]
0.833 508[—1]—0.114439[—1]

0.128 324[—5]
0.998 772[—5]
0.524 727[—4]
0.222 023 [—3]
0.806 435[—3]
0.262 772 [—2]
0.772 551[—2]
0.207 401 [—1]
0.488 398[—1]
0.961 467 [—1]
0.120 776[+0]—0.301 202[—1]

—0.501 909[+0]—0.604 981[+0]
0.523 577[+0]
0.806 229[+0]

0.655 215[—6]
0.509 584[—5]
0.268 020[—4]
0.113246[—3]
0.412 147[—3]
0.134044[—2]
0.395 535[—2]
0.106058[—1]
0.251 978[—1]
0.498 113[—1]
0.644 816[—1]—0.181 244[—1]—0.296 954[+0]—0.416 280[+0]
0.555 612 [+0]
0.107 869[+1]

0.308 372[—6]
0.239 894[—5]
0.126 127[—4]
0.533 196[—4]
0.193 936[—3]
0.631 298[—3]
0.186 151[—2]
0.499 985[—2]
0.118 762[—1]
0.235 820[—1]
0.305 810[—1]—0.854 306[—2]

—0.145 989[+0]
—0.210 608[+0]

0.310691[+0]
0.664 625 [+0]

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

1 —4

5
6
7
8
9

10
11
12
13

0.106 044 417[+6]
0.251 136654[+5]
0.815 438 543[+4]
0.311741 758[+4]
0.132 234 593[+4]
0.602 971 370[+3]
0.289 498 046[+3]
0.143 957 601[+3]
0.712 922 966[+2]
0.368 983 593[+2]
0.187 156664[+2]
0.952 376 353[+1]
0.483 162 337[+1]
0.229 242 994[+1]
0.108 459 331[+1]
0.361 090 962[+0]
0.134773 553[+0]
0.474 708 000[—1]
0.220 277 975[—1]
0.102 215 185[—1]
0.474 310000[—2]

—0.150 838[—3]—0.133 534[—2]—0.757 975[—2]—0.322 674[—1]—0.105 461[+0]—0.252 404[+0]
—0.388 505[+0]—0.303 915[+0]
—0.803 595[—1]—0.343 651[—4]—0.161 064[—2]

0.103010[—2]
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

p subset

0.769 776[—4]
0.681 418[—3]
0.390983[—2]
0.169 007[—1]
0.575 698[—1]
0.146 357[+0]
0.244 803[+0]
0.129 195[+0]—0.356 091[+0]—O.S80 572[+0]

—0.210 517[+0]
—0.931 576[—2]

0.391 778[—4]
0.346 780[—3]
0.199506[—2]
0.865 572[—2]
0.297 856[—1]
0.769 073[—1]
0.131653[+0]
0.582 805 [—1]—0.293 266[+0]—0.507 290[+0]
0.137035[+0]
0.739 691[+0]

0.176 973[—4]
0.157 593[—3]
0.901 829[—3]
0.393 964[—2]
0.135050[—1]
0.352 647[—1]
0.600 383[—1]
0.265 621[—1]—0.151 550[+0]—0.254 384[+0]
0.112377[+0]
0.614 533[+0]

d subset

1 —2 0.611 735 956[+4]
0.185 205 638[+4]
0.724 226 43 1 [+3]

—0.459 047 [—3]—0.443 897[—2]—0.251 769[—1]

—0.246 637[—3]—0.240 943 [—2]—0.137 725[—1]
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TABLE II {Continued).

GTO CGTO Exponent Contraction coefficients

4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.321 814 803[+3]
0.154 434 352[+3]
0.775 020 935[+2]
0.400 923 735[+2]
0.207 097 071[+2]
0.105 859 654[+2]
0.539040 583[+1]
0.260 975 371[+1]
0.121 851 031[+1]
0.511 821 378[+0]
0.361 091 000[+0]
0.134 774000[+0]
0.220 280 000[—1]
0.102 220 000[—1]

—0.950631[—1]—0.242 232[+0]—0.387 560[+0]
—0.328 430[+0]—0.113483[+0]
—0.994 924[—2]

1.0
1.0
1.0
1.0
0.1147970[+0]
0.135 1830[+0]
0.383 0940[+0]
0.450 2800[+0]

—0.532 519[—1]
—0.138 225[+0]
—0.215 654[+0]—0.944 443 [—1]

0.296 407[+0]
0.526 547[+0]

f subset

1

2
3
4
5
6
7
8
9

10
11
12

0.635 258 368[+3]
0.222 350 513[+3]
0.957 847 815[+3]
0.450 793 487[+2]
0.222 060 626[+2]
0.109 955 403[+2]
0.534 161 135[+1]
0.239 269 542 [+1]
0.539 040 583[+1]
0.260 975 371[+1]
0.121 851 031[+1]
0.511 821 378[+0]

0.156248[—2]
0.140 800[—1]
0.655 637[—1]
0.187 845[+0]
0.337 320[+0]
0.384 596[+0]
0.244 145[+0]
0.603 122[—1]—0.631 500[—2]
0.302 345[+0]
0.459 934[+0]
0.200 798[+0]

TABLE III. Calculations of the dipole qolarizability of Cs( 5). A study of different approximations. All polarizability data in a.u.
(1.a.u. of dipole polarizability =-0. 14818 A ).

Orbital subspaces Contributions

Active in Frozen in Nonrelativistic Relativistic

Basis set CASSCF' CASPT2 CASSCF CASPT2 Total CASSCF CASPT2 Total Total

[23.18.12]' [6s J'
[Sp6sSd6p ]
[5p6sSd6p]

j SsSp6sSd6p7s]

None
None

[KLM4s 4p j
None

806.7
621.8
621.8
609.7

—420.2 386.5
—110.7 511.1
—114.7 507.1

—135.4
—107.0
—107.0
—104.0

+80.1

+27.0
+28.6

—55.3 331.2
—80.0 431.0
—78.4 428.7

[23.18.12/13. 11.6]' [6s]
[5p6sSd6p]
[5p6sSd6p]

[Ss5p6s5d6p7s]

None
None

[KLM4s 4p ]
[KLM4s 4p ]

806.0
600.0
600.0
594.7

—443.8
—99.2

—103.9
—83.9

362.1

500.2
496.2
510.8

—132.0
—99.7
—99.7
—97.7

+85.9
+23.5
+26.2

—46. 1 316.0
—76.2 424.6
—73.6 422.6

[23.18.12.4/13. 11.6.2]' [Sp6s5d6p ] [KLM4s '4p J 600.5 —109.0 491.6 —99.7 +21.7 —78.0 413.6

'All remaining core orbitals are inactive in CASSCF calculations. The sequence of orbitals in the active space follows from the
nonincreasing sequence of occupation numbers.
The active orbital subspace is the same as in CASSCF calculations. The inactive orbital space in CASPT2 follows from the

difference between inactive CASSCF and frozen CASPT2 orbital subspaces.
'Uncontracted polarized GTO basis set determined in this paper.
Open-shell RHF calculation.

'spd polarized GTO/CGTO basis set of this paper.
'spdf polarized GTO/CGTO basis set of this paper.
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TABLE IV. Calculations of the dipole polarizability of K( S), Rb( S), and Fr( S). All data in a.u.

Orbital subspaces Contributions

Atom/basis set

Active in

CASSCF

Frozen in

CASPT2

Nonrelativistic Relativistic

CASSF CASPT2 Total CASSCF CASPT2 Total Total

K( S)
[15.13.4/3. 7.2] [4s j

j 3p4s3d4p j

[KL]
[KL]

416.1

335.3

—141.7
—34.2

274.4
301.1

—7.8
—6.8

+3.3
+ 1.2

—4.5 269.9
—5.6 295.5

Rb( S)
[18.15.10/11.3.4]

[18.15.10.4/11.9.4.2 [

[5s]
[4p Ss4d5p j
[4p5s4d5p j

[KL3s '3p ~]

[KL 3s '3p '
j

[KL 3s'3p' j

523.7
410.3
410.5

—230.6
—52.3
—55.1

233.1

358.1

355.1

—36.3
—30.4
—30.4

+ 16.8
+5.9
+5.5

—19.4 273.6
—24.5 333.6
—24.8 330.2

Fr(~S )

[26.21.17.8]

[26.21.17.8/15. 13.8.2]
[26.21.17.12/15. 13.8.4]

7s None
[6p7s6d7p j {KLMNSs 5p j

[6p7s6d7p] [KLMN5s Sp ]

[6p7s6d7p j [KLMN5s 5p ]

964.3
710.2
703.5
704.4

—599.0
—135.7
—135.7
—152.8

365.3
574.5
567.8
551.6

—415.6
—310.2
—306.7
—307.4

+292.3
+83.5
+89.2
+81.6

—127.3
—226.7
—217.5
—225.8

238.0
347.8
350.3
325.7

suits. Thus, in the present tabular data,

(&) (&) — (&) (&)
+M + M-PT CASSCF+ CASPT2 '

While the first term on the right-hand side of Eq. (1) gives
the pure first-order MVD contribution and the corre-
sponding mixed correlation-relativistic corrections for
the given active orbital space, the second term accounts
for mixed correlation-relativistic effect arising from the
core orbitals. Only in the case of the [ns j active space,
i.e., with the CASSCF being equivalent to the open-shell
RHF method, the CASPT2 contributions can be clearly
interpreted as the core and core-valence (core-
polarization) [5] terms.

Among the alkali-metal atoms studied in this paper,
Cs( S) occupies a rather special position. Both the core-
polarization and relativistic contributions to its dipole
polarizability are either known [6] or expected [5] to be
large. Hence, most of the approximations used in our
calculations have been carefully investigated for Cs. It is
anticipated that once a given approximation is found to
be reasonably safe for Cs, its use for K and Rb should be
even more valid. No extensive scan of the reliability of
different approximations has been carried out for Fr, as
the quasirelativistic approach may not be entirely ap-
propriate for this case.

We have studied the following three factors which may
affect the calculated dipole polarizability of Cs: (i) the
basis-set contraction effect, (ii) the effect of the electron
correlation as partitioned between the CASSCF and
CASPT2 contributions, and (iii) the core-polarization
contribution from the 4d' shell. Also, the inhuence of
freezing deep core orbitals in CASPT2 calculations has
been investigated. All data pertinent to these effects are
collected in Table III. Some missing entries result from
excessive demands on computational resources for the
corresponding calculations.

The pure valence nonrelativistic CASSCF approxima-
tion overestimates the dipole polarizability of Cs( S) by
almost a factor of 2. The core-correlation correction as

estimated from the CASPT2 results for the [ 6s j active
space is much too negative. Their sum (386.5 a.u. ) for the
uncontracted [23.18.12] GTO set and 362.1 a.u. for the
polarized [23.18.12/13. 11.6] set) is fortuitously close to
the final quasirelativistic results for largest basis sets and
largest active spaces (see last column of Table III). In-
creasing the size of the active space stabilizes the nonrela-
tivistic CASSCF + CASPT2 result for [23.18.12] GTO
set at approximately 500 a.u. Simultaneously, the total
first-order relativistic correction becomes stabilized at the
value of about —80 a.u. The effect of freezing the inner
shells [KLM4s 4p j in CASPT2 calculations lowers the
total nonrelativistic value by about 4 a.u. The relativistic
contribution becomes less negative by about 2 a.u. One
can conclude that freezing the deep core orbitals has a
rather negligible effect on the final quasirelativistic result.

The effect of the contraction of the [23.18.12] basis set
depends on the choice of the active space and can be es-
timated at the value of about —11 a.u. for the total non-
relativistic results with the j 5p6s5d 6p j active space. On
comparing these results with those for the [6s j active
space (lowering by about 24 a.u. upon contraction) one
finds that the contraction effect on the nonrelativistic
CASSCF + CASPT2 result diminishes with the increase
of the active orbital subspace. Thus one can safely con-
sider the value of +11 a.u. as an upper limit for the
change in the nonrelativistic result upon fully decontract-
ing the spd polarized basis set. Simultaneously, one finds
that the same correction to the relativistic contribution
should not be more negative than about —4 a.u.

On extending the spd polarized basis set with f-type
polarization functions one finds that the nonrelativistic
result is lowered by about 5 a.u. while the total relativis-
tic correction becomes about 4 a.u. more negative. The
change in the total dipole polarizability arising from the
polarization of the 4d' shell amounts to about —9 a.u.
and will be at least partly canceled by the basis-set con-
traction effect. On the other hand, increasing the size of
the active space would presumably reduce the total polar-
izability.
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Summarizing different estimates which follow from the
data of Table III we conclude that the total relativistical-
ly corrected dipole polarizability of Cs( S) should be in
the range of 410—420 a.u. It also follows that calcula-
tions with the spd polarized basis set and the [Sp6s5d6p ]
active space give a reasonable estimate of the result
which would follow from uncontracted basis-set calcula-
tions with much larger active spaces. One should also re-
rnark that the failure of the CASSCF + CASPT2 calcu-
lations with the minimal [6s] active space gives some
warning with regard to the reliability of low-order results
with unrestricted Hartree-Fock reference.

Much less extensive analysis of the influence of
different approximations on the calculated dipole polari-
zability has been carried out for K, Rb, and Fr. The
(spd) polarized basis sets for K and Rb have been exam-
ined in our earlier paper [13]. The polarized basis sets
generated in this study for Fr are examined in present
calculations of its dipole polarizability. Moreover, in or-
der to investigate the magnitude of the core-polarization
effect due to 3d' shell, the polarizability of Rb( S) has
been calculated with the polarized basis set augmented by
f-type functions (see Sec. III). Results of the dipole po-
larizability calculations for K, Rb, and Fr are collected in
Table IV.

The general pattern of the dependence of the dipole po-
larizability data for K, Rb, and Fr on the basis-set
features and the size of the active orbital subspace follows
that discussed for Cs. One can expect that upon a further
extension of the active space the nonrelativistic CASSCF
+ CASPT2 values should to some extent increase; the
corresponding changes should be very small for K, but
may contribute significantly to the dipole polarizability of
Fr. Increasing the size of the active space leads to an in-
crease in the negative first-order CASSCF + CASPT2
relativistic contribution. This compensates to some ex-
tent for the corresponding increase of the nonrelativistic
result. Including the (n —2)d' core-polarization effect
in calculations on Rb and Fr has a similar contribution as
in the case of Cs. This effect reduces the total polarizabil-
ity of Rb and Fr.

There are experimental values of the dipole polarizabil-
ity available for K, Rb, and Cs [1]. A comparison of our
results with experimental data will be presented in Sec. V.
Most theoretical calculations for heavier alkali-metal
atoms have been carried out with different effective pseu-
dopotentials. Surveys of these results may be found in
Refs. [1,4,5,26]. Since the pseudopotential methods usu-
ally involve several uncertainties, the corresponding data
should not be used as the major reference to qualify the
present results.

All electron calculations at the RHF and correlated
levels of approximation have been performed by Reinsch
and Meyer [4] for K( S). The RHF result for the dipole
polarizability of K( S) computed by Reinsch and Meyer
(418.0 a.u. with spd GTO/CGTO basis set) agrees well
with the present value of 416.1 a.u. However, the contri-
bution of intershell correlation effects calculated by these
authors amounts to —130.4 a.u. , and gives the nonrela-
tivistic dipole polarizability of K( S) equal to 287.6 a.u. ,
i.e., about 13 a.u. lower than the nonrelativistic value of

the present paper. This discrepancy may to some extent
follow from the method used in early papers of Meyer
and co-workers [4,5] to evaluate the dipole polarizability
from an approximate dipole-moment formula [27,28].

For evaluating the reliability of the calculated relativis-
tic contribution to dipole polarizabilities of alkali-metal
atoms, the numerical DHF results of Desclaux, Laak-
sonen, and Pyykko [6] are of only limited usefulness. The
nonrelativistic result for Cs( S ) reported by these authors
(757 a.u. ) is about 50 a.u. lower than the present RHF
value (806.7 a.u. , see Table III). The DHF result of Des-
claux, Laaksonen, and Pyykko is 622 a.u. Thus their (to-
tal) pure relativistic contribution to a of Cs( S) is about
—135 a.u. and perfectly agrees with the first-order
quasirelativistic value of this study (

—135.4 a.u. , see
Table III).

Nonrelativistic RHF values for K and Rb have not
been given by Desclaux, Laaksonen, and Pyykko [6]
while their DHF data are 394 and 463 a.u. , respectively.
The present quasirelativistic RHF values from Table IV
are 408.3 a.u. for K( S) and 486.7 a.u. for Rb. By analo-

gy with the above-mentioned discrepancies for Cs one
may conclude that the DHF values of Ref. [6] are most
likely affected in a similar manner.

The nonrelativistic RHF and the DHF results of Des-
claux, Laaksonen, and Pyykko [6] turn out to be sys-
tematically too low. In the calculations carried out by
these authors only one orbital of the given symmetry
could be perturbed. Their calculations therefore corre-
spond to what is known as the uncoupled Hartree-Fock
(UCHF) approximation [29] to the fully coupled
Hartree-Fock (CHF) solution of the perturbation prob-
lem. The UCHF dipole polarizabilities [29] are usually
lower than the corresponding CHF results. Indeed, on
performing open-shell RHF-UCHF calculations with po-
larization restrictions to only the 6s valence orbital, we
obtain a dipole polarizability of 751.6 a.u. for Cs, in good
agreement with the value of 757 a.u. reported by Des-
claux, Laaksonen, and Pyykko [6].

The importance of the electron-correlation contribu-
tion to dipole polarizabilities of alkali-metal atoms aris-
ing from the next-to-valence shell has been stressed by
Christiansen and Pitzer [30]. Their results with explicit
correlation of the valence and next-to-valence shells and
the rest of the core approximated by relativistic pseudo-
potentials have been found to differ form the experimen-
tal data in the worst case (Rb) by +5%%uo. Because the
method used by Christiansen and Pitzer (within the ap-
proximations inherent in their approach) combines both
the electron-correlation and relativistic effects, their data
should be compatible with those of this paper. Indeed
the dipole-polarizability results of Christiansen and
Pitzer [30] (K: 287.5 a.u. , Rb: 336.1 a.u. , Cs: 413.7 a.u. )

compare well with the present values calculated for the
[(n —1)p ns(n —

1)dnp ] active space (see the last column
of Tables III and IV).

Among different approximation methods of including
the core-polarization and relativistic effects one should
also mention the results obtained by Fuentealba [31]with
a semiempirical effective core potential. This method
treats the alkali-metal atoms as a one-electron problem
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and all electron-correlation (including core-polarization)
and relativistic effects are embedded in empirical parame-
ters of the pseudopotential. Indeed, the method nearly
reproduces the experimental polarizability data for Li
through Cs. However, it provides little information
about the mutual interplay of the electron-correlation
and relativistic contributions to the dipole polarizability
of alkali-metal atoms. Similar, essentially one-electron
methods have recently been used by Zhou and Norcross
[32], who obtained excellent results for the dipole polari-
zability of Cs.

V. SUMMARY AND CONCLUSIONS

TABLE V. Comparison of the calculated dipole polarizabili-
0

ty data with experimental values. All polarizabilities in A .

This work Experimental

Atom Bb
Molof et al.
(Ref. [33])

Hall and Zorn
(Ref. [34])

K'
Rb
Cs'
Fr'

44.6
60.8
72.8
81.8

43.8
48.9
61.3
48.3

43.4+0.9
47.3+0.9
59.6+1.2

45.2+3.2
48.7+3.4
63.3+4.6

'Nonrelativistic values.
First-order MVD quasirelativistic results.

'Basis set: [15.13.4/9. 7.2]; active space (3p4s3d4p I; frozen in
CASPT2: (KL J.
dBasis set: [18.15.10.4/11.9.4.2]; active space (4p5s4d5p ];
frozen in CASPT2: (KL3s 3p ].
'Basis set: [23.18.12.4/13. 11.6.2]; active space ( 5p 6s 5d 6p ];
frozen in CASPT2: (KLM4s 4p
'Basis set: [26.21.17.12/15. 13.8.4]; active space (6p7s6d7p];
frozen in CASPT2: (KLMX5s 5p

The dipole-polarizability results calculated in this pa-
per are summarized in Table V. They are compared with
experimental data of Molof et al. [33] and Hall and Zorn
[34] obtained by using two different measurement tech-
niques. The quasirelativistic data of this paper corre-
spond to the sum of CASSCF and CASPT2 nonrelativis-
tic and first-order MVD contributions calculated with the
((n —1)p ns(n —1)d np ] active space. The core-
correlation effects and the corresponding mixed
correlation-relativistic contributions include (n —2)d'
and (n —1)s shells.

The present all-electron first-order quasirelativistic re-
sults for K, Rb, and Cs agree well with the experimental
values. The data of Table V show that including the rela-
tivistic corrections to the dipole polarizability is impor-
tant already for Rb and indispensable for heavier atoms
of group Ia.

Experimental data for the dipole polarizability of Fr
are rather unlikely to become available and it is dif5cult
to assess the quality of our quasirelativistic result for this
atom. The quasirelativistic approach works well for K,
Rb, and Cs, and although some deterioration of its validi-
ty for higher values of Z is expected, the present a value
for Fr should not be far from the exact result. Our
quasirelativistic calculations predict a relativistic contri-
bution to a of Fr as large as —41% of the nonrelativistic
result. For the validation of this value even DHF calcu-

lations of Fr dipole polarizability [6] would be of great
help.

In their 1988 review article Miller and Bederson [1]
quote (yet unpublished) results of Doolen and Liberman,
who on the basis of relativistic pseudopotential calcula-
tions predicted a decrease of 18% in the polarizability of
Fr as compared to that of Cs. According to our quasire-
lativistic correlated data of Table V the relativistic and
electron-correlation contributions make the dipole polari-
zability of Fr about 21% lower than the calculated value
for Cs.

The present all-electron calculations avoid any refer-
ence to effective core potentials and the detailed analysis
of different results presented in Tables III and IV adds to
the validation of pseudopotential methods. The semi-
empirical pseudopotentials [31] may obviously by very
successful even in the valence-electron approximation.
However, there is no systematic way of their improve-
ment. The ab initio pseudopotential methods [30] may
efticiently account for core-polarization and relativistic
effects of deeper core electrons. The observation of
Christiansen and Pitzer [30] that in calculations on
alkali-metal atoms one needs to consider explicitly the
next-to-valence shell is confirmed and documented by the
present data. However, the occupation-number analysis
of the CASPT2 one-particle density matrix shows that
while explicit correlation is necessary to (n —1)p pairs
the effect for the (n —1)s pair is quite negligible.

It is also interesting to compare the relative contribu-
tions due to electron-correlation and relativistic effects.
According to the data of Tables III and IV the electron-
correlation contribution to the RHF polarizabilities sys-
tematically increases with Z, as does the (negative) pure
(RHF) relativistic correction. However, the latter is ac-
companied by the increase of the (positive) correlation-
relativistic correction. Consequently, the pure electron-
correlation term makes a dominant contribution to the
lowering of the RHF dipole polarizability even for Fr.

On the computational side the results of this paper
provide another [8,9,15,35] illustration of the efficiency of
the CASPT2 approach. Once the dominant electron-
correlation effects are accounted for at the level of the
CASSCF method, the remaining correlation is adequately
described by the second-order single-state multireference
CASPT2 treatment. This provides an all-electron
ab initio alternative to effective core potentials.

Finally, let us mention that as part of this study we
have generated first-order polarized basis sets for Cs and
Fr which complete the polarized basis-set library
[7,13,23] for the group-Ia elements. These basis sets are
devised primarily for high-level correlated calculations of
molecular electric properties. Because of the highly ionic
character of compounds with alkali-metal atoms, the con-
traction effects discussed in Sec. IV will be rather
insignificant. For the same reason the relativistic contri-
bution to molecular electric properties will be
significantly reduced, making the pseudorelativistic
MVD method quite reliable.
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