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Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential
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The Dirac equation in one dimension with a Lorentz scalar potential is associated with a supersym-
metric pair of Schrodinger Hamiltonians H& and H~. The H& and H2 share the same energy spectrum
and scattering phases. The shared spectrum includes the lowest states unless the Dirac equation allows a
zero mode (a zero-energy bound state). This situation is unlike the common examples of supersymmetric
quantum mechanics. The Dirac equation admits a zero mode only if the scalar potential has certain "to-
pology. " Various such features are illustrated through explicit examples. In particular, the phase
equivalence between H

&
and H~ is exploited to construct transparent potentials for the Dirac equation in

one dimension.

PACS number(s): 03.65.Ge, 11.10.gr

I. INTRODUCTION

Cooper et al. [1] pointed out that the Dirac equation
in one dimension with a Lorentz scalar potential exhibits
supersymmetry (SUSY) and is associated with a SUSY
pair of Schrodinger Hamiltonians H, and H2. However,
the SUSY Dirac equation has some interesting aspects
which Copper et al. left to be uncovered. The H, and
H2 have identical energy spectra including the lowest lev-
els unless the Dirac equation allows a zero mode (a nor-
malizable solution for E =0). Many examples of nonrela-
tivistic SUSY quantum mechanics have been discussed in
the literature [2,3]. In almost all of those examples the
SUSY pair of Schrodinger Hamiltonians have the same
energy spectra except for the ground state of one of the
pairs of Hamiltonians. In this sense the H, and H2 asso-
ciated with the Dirac equation are unusual. The Dirac
equation admits a zero mode only if the scalar potential
has certain "topology, " namely, if it has different limits
for x ~ ~ and x ~—ce [4]. The purpose of this paper is
to examine such various aspects of the SUSY Dirac equa-
tion through explicit examples. In particular, the feature
that H, and H2 are "phase equivalent" is exploited to
construct transparent (reAectionless) potentials for the
one-dimensional Dirac equation.

In Sec. II we examine the SUSY structure of the one-
dimensional Dirac equation with a Lorentz scalar poten-
tial. In Sec. III we illustrate various SUSY features
which was set out in Sec. II. Discussions are given in
Sec. IV.

(ip+m+S)g, =E$2,
( ip+I—+S)$2=EQ, .

(2.2)

(2.3)

Equations (2.2) and (2.3) can be reduced to two uncou-
pled Schrodinger equations [1],

2

H;f;= +U, g;=eP, , s= E —I
(2.4)

where i = 1 or 2, and

U, (x)= (m+S) —rn +1 dS
2m dX

(2.5)

The double sign in Eq. (2.5) is —(+ ) for i =1 (2). Note
the distinction between E and c.; c. is the Schrodinger
counterpart of E. The c. is common between H, and Hz.
If we define operators 3 +—by

1

&2m
+ +I+Sd

dX
(2.6)

H; can be expressed as

H =A 3+— H =A+A2= (2.7)

where c =Pi= 1, p = id Id—x, m ( )0) is the mass, and
S(x) is a Lorentz scalar. The g is a two-component spi-
nor; g=(&'). The a and p are 2X2 Pauli matrices; we

use a=tr and P=cr„. Then Eq. (2.1) reads

II. SUPERSYMMETRIC STRUCTURE
OF THE DIRAC EQUATION

HDQ(x) =Ef(x), HD =ap+Pm +PS(x), (2.1)

Let us consider the Dirac equation in one space dimen-
sion,

Clearly H, and H2 are a SUSY pair of Schrodinger Ham-
iltonians. The "superpotential" is m +S and the "factor-
ization energy" is —m /2 [3].

We are interested in constructing solvable examples of
the SUSY Dirac equation. We do this by starting with a
solvable model for one of the Schrodinger Hamiltonians,
say, H& [5]. In this scheme a solution of the Dirac equa-
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tion for E =0, which corresponds to e= —m /2, plays a
key role. Let this solution be P=(&'). It then follows

2

from Eqs. (2.2) and (2.3) that

$,$2=const . (2.8)

Hence Pi and Pz cannot be both normalizable. For satis-
fying Eqs. (2.2) and (2.3) for E=O, the constant of Eq.
(2.8) can be anything, but it must be zero if the spinor P is
to be normalizable [4].

The P& satisfies Eq. (2.4) for i = 1 and F. =0
(E= —m/2), i.e.,

H, H~ HD

FIG. 1. Schematic energy spectra of H&, H2, and HD are
shown for the two situations which correspond to Eqs. (2.11)
and (2.12), respectively, regarding the asymptotic behavior of
function P&.

1 d m
1 4'I

2
4'1 (2.9)

We will assume U, such that Eq. (2.9) is solvable for P&.
We also assume that the ground state for U, is above the
factorization energy —m /2. Then we can choose P, with
no node; this is understood henceforth. For the assumed
U„Eq. (2.5) with i =1 can be regarded as a differential
equation for the unknown S. If we define S by

1m+S=-
dx

(2.10)

then Eq. (2.5) is satisfied. Actually Eq. (2.10) is a special
case of the genera1 solution which we wi11 discuss in Sec.
IV [3,6]. For the S deterinined above, the partner poten-
tial U2 can be determined by Eq. (2.5). Solution Pz of Eq.
(2.4) for i =2 is related to P& through Eq. (2.8) apart from
a constant factor, $2=1/P, .

For the asymptotic behavior of P, we consider three
cases:

We refer to the type of S related to Eq. (2.11) as the non-
topological type, and the one related to Eq. (2.12) the to-
pological type.

If U& and U2 are both localized, i.e., if they vanish as
x ~+~, we can think of the transmission problem; a
wave is incident, say, from the left and it is partially
transmitted to the right and partially reAected to the left.
We will be particularly interested in transparent poten-
tials. A transparent potential is such that the transmis-
sion probability is unity for a wave of any shape. If the
incient wave is a plane wave with a definite energy, the
transparency has to hold for any value of the energy. It
is known that the SUSY pair H, and H2 are phase
equivalent; that is, the resulting transmission coefticient
(and also the refiection coefficient) is the same between
H, and H2 [7]. Therefore, if U, is a transparent poten-
tial, so is U2. Then the associated S is a transparent po-
tential for the Dirac equation.

Pt —+0 for x~ac and P&~ac for x~ —ao, (2.11)

P,~ ao for x ~ ac and x ~—~,
Pi ~0 for x ~ ac and x ~—ao

(2.12)

(2.13)

We are not interested in the overall sign of P, nor in any
particular choice of the direction of the x axis. Therefore
the above three cases cover essentially all possibilities.

Let us note some relevant features of the three cases.
In the case of Eq. (2.11), neither P, nor P2 (= I/P&) is
normalizable. For the S defined by Eq. (2.10) with this
P&, HD has no zero mode. The Hi and H2 share the same
energy spectrum. In the case of Eq. (2.12), P& is not nor-
malizable but P2 is. The H, and H2 share the same ener-

gy spectrum except that Hz has one extra, the lowest
state of c= —m/2. The HD has a zero mode. The case
of Eq. (2.13) is the same as that of Eq. (2.12) except that
P, and P2 are interchanged. It is sufficient to consider
Eqs. (2.11) and (2.12). The spectra for H„H2, and HL, of
the two cases are schematically shown in Fig. 1. The
asymptotic behavior of P, is relevant to the asymptotic
behavior of S. For the starting potential U& we assume
either U, ( a& ) = U, ( —~ ) =0 or U& ( ao ) /U, ( —ac ) = 1.
Then we will see that

III. ILLUSTRATIONS

We examine several examples and illustrate various
features of the SUSY Dirac equation. We start with a
solvable U, and determine S through Eq. (2.10) and then
Uz through Eq. (2.5). For U, we consider the Poschl-
Teller potential [8], the Kay-Moses potentials [9], and the
harmonic-oscillator potential.

Example A. The Poschl-Teller potential is defined by

U, (x)=- v(v+ 1)»
sech (»x ),

2m
(3.1)

where v and K are positive constants. The Schrodinger
equation with this U& has bound states with eigenvalues

(v —n)»
2m

n(=0, 1,2, . . . ) ~v. (3.2)

K
tP'&"(x) =(»/2)' sech(»x ), 8"'=—

2m
(3.3)

If v is an integer, U, is a transparent potential [8,9]. In
this case c'"'=0 for n =v, this is a "half-bound" state
[10,11].

In this example we consider the case of v=1. There is
one bound state with

m +S(ao )

m+S( —ao )

+1, if P, is like Eq. (2. 11),
—1, if P, is like Eq. (2. 12) . (2.14)

Also U, is a transparent potential. Define the "scattering
solution" y(k, x) by
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ik —II tanh(ax ) Thy U2 turns out to be

This y( k, x ) satisfies Eq. (2.4) with e =k /2m. It
represents a transmission process in which no reAection
takes place. Apart from a constant factor, P', " is given
by y(i', x ). Similarly, solution p& of Eq. (2.9) is given by

m + Ir tanh(I~x )x =g Im, x e
m —K

(3.5)

S(x)= 2K

m +E cosh[2(I~x+ A, ) ]
(3.6)

which behaves like Eq. (2.11). This P, and Eq. (2.10) lead
to

K
Uz(x ) = — sech (vx +2A, ), (3.&)

P& =y(im, x )+yy(im, —x ), (3.9)

which is the same as U, of Eq. (3.1) with v= 1 except that
U2 is displaced by 2X/K. Obviously U, and U2 have the
same energy spectrum and they are both transparent po-
tentials. The S of Eq. (3.6) is a transparent potential for
the Dirac equation [11,12]. Figure 2 shows U„U2, and
S; K=0.5m. If we shift the origin such that Kx ~Kx
S of Eq. (3.6) becomes an even function of x, and
U& (x)= U2( —x).

We can choose P, of the type of Eq. (2.12),

where E =(m —v )' and
1/2

m +K
e

m K
(3.7)

where y is an arbitrary positive constant. If we take
y = 1, the above P, is even with respect to x and m +S is
odd. The S of this case is given by

2E [E +m cosh [2(IIx —
A, ) ] ] e "+2I~ e™S(x)=-

[m+E cosh[2(I~x —A )]je '+ [m+E,cosh[2(I~x+1 )]]e™ (3.10)

This S is topological; note that m +S~m as x~ —~
while m+S~ —m as x~ IC. Equation (2.5) with this S
gives the partner potential Uz, which is even with respect
to x. For y&1, however, neither m+S nor U2 exhibits
such symmetry.

Figure 3 compares U„U2, and S of this case of y =1
with K =0.Sm. The U, of Fig. 3 is the same as that of
Fig. 2. Each of U, and U2 has a bound state with
E= —II /2m. In addition U2 has a bound state with
E= —m/2 and wave function P2 (= I/P, ). The Dirac
equation with this S has two bound states which corre-
spond to the two bound states of U~. One of them is the
zero mode (E=0, E = —m /2), of which P consists of Pz

alone [4]. These U, and U2 are both transparent poten-
tials for the Schrodinger equation and the S is a transpar-
ent potential for the Dirac equation. In Ref. [12] a com-
plete solution to the problem of constructing a transpar-
ent potential of the Lorentz scalar type for the one-
dimensiona1 Dirac equation was given. It was under-
stood in Ref. [12],however, that S was a localized poten-
tial. Hence S of the topological type was not included in
Ref. [12].

Example B The v=. 2 case of Eq. (3.1). There are two
eigenstates of H, with eigenvalues c'"=—K /2m and
E' '= —(2I~) /2m, where the superscript refers to n of Eq.
(3.2). The corresponding wave functions are

I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0

—0.5

C$
~pwI

0
Q

—5 0
x (units of ] jm)

I I I I I I I I I I I I I I

—5 0 5
x (units of ]. /m)

FICx. 2. Example A: Potentials U& (dashed curve), U& (dash-
dotted curve), and S (solid curve) in units of 1/m. The S is non-

topological. K=O. 5m.

FIG. 3. Example A: Potentials U& (dashed curve), U, (dash-
dotted curve), and S (solid curve) in units of 1/m. The S is to-
pological. ~=0.5m and y=1.
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P',"=(3x/2)' tanh(ax )sech(ax ),
&3K

g(i '= sech (ax ) .

For the scattering solution we take

k +K +3ikz tanh(lrx ) —3a tanh (Kx )

(ik+1~)(ik+2~)
e'

(3.11)

(3.12)

(3.13)

Moses potential can be constructed as follows. Choose
an integer N (any of 1,2, . . .), and then 2N positive con-
stants I~; and A,. (i = 1,2, . . . , N ). The Kay-Moses poten-
tial for this parameter set is

d2
V(x)= —2 [ln[det[I+ A (x)]j ], (3.16)

dx

where I and A (x) are N XN matrices with matrix ele-
ments

where

ik
a =v+c, b = —v —1+c, c =1— (3.15)

The wave function for the bound state with E= ~' /2m
is given by P((1~', x ) =y(i~', x ). The rest goes again in the
same way as in Example A. The U& and Uz for nonin-
tegral v are not transparent.

Example D. The Kay-Moses potentials. For the
Schrodinger equation, Kay and Moses gave a complete
solution for the problem of constructing a transparent
potential [9]. There is an infinite family of the Kay-
Moses potentials including examples A and B. A Kay-

Apart from a constant factor this y(k, x) is related to the
wave functions of the bound states by y(inly, x ) =itjI"'. If
we define P(=g(im, x), P( conforms to Eq. (2.11). The
rest goes in the same way as in example A. The U&, Uz
and S of this case are displayed in Fig. 4; K=0.25m. The
U, is symmetric, i.e., an even function of x. But, close
scrutiny reveals that neither U2 nor S has symmetry
(with respect to any value of x). Solution P, of the type of
Eq. (2.12) can be constructed in the same way as Eq. (3.9).
The resulting S is topological, but we do not show the re-
sults of this case because they are qualitatively similar to
those of Fig. 3.

Example C. The case of nonintegral v of Eq. (3.1).
The scattering solution can be chosen as [8]

y(k, x ) =sech ' (ax ) 2F, (a, b, c;—,
' [I+tanh(1~x )]),

(3.14)

(K +K )X

I; =5;, A; (x)=(A;A )'
Ki +Kj

(3.17)

The V has 1V bound states with energies c."=—K;/2m,
i =1,2, . . . . For an arbitrary choice of the 3 s, Vhas
no symmetry. If we require that V be symmetric, V is
uniquely determined (for specified values of x s). The
A,. 's in this case are such that [13]

A I. KI +Kj
2&( (~;) I&(

(3.18)

(A;)'~ g;(x)e i'
g(k, x)= 1+ g )k +KI.

IkX
7 (3.19)

where g;(x)'s are defined by the N linear algebraic equa-
tions

N

g [5, + A;.(x)]g, (x)=0 . (3.20)

The U& assumed in examples 3 and B can be identified
with V of Eq. (3.16) with the following parameters:
K( K, A ( /(2a ) = 1 for example A, and Ir( =v, Ir2 =2&,
A ] /2K~ = A 2 /2K2 =3 for example B. For the U2 of ex-
ample A, U2 of Eq. (3.8) corresponds to the parameter
set at K] K and A, /2K=e . On the other hand, the U2
associated with a topological S of Eq. (3.10) bears four
parameters: K, =K, K2=m, 3&, and Az. The 3, and A2
depend on y of Eq. (3.9). If y= 1, the Uz is symmetric
and Eq. (3.18) applies: A i/(2x)= A2/(2m )=(m+v)/
(m —~).

For the scattering solution we can take [14]

I I
(

I I I I
)

I I I I
)

I I0

The y(im, x ) derived from the g(k, x ) given above con-

—0.05 0 I I
i

l I I I
i

I I I I
i

I I

cj
—0.1

Q

O

—0.15

—0.2
I i i i i I i « i I—5 0 5

x (units of ]. /m)

—0.05

C5

—0.1
OP

Q
C4

—0.15

—0.2
I & ( i i I i i i i I

FIG. 4. Example B: Potentials U& (dashed curve), U2 (dash-
dotted curve), and S (solid curve) in units of 1/m. The S is non-
topological. ~=0.25m.

—5 0 5
x (uni ts o f ]. /m)

FIG. 5. Example D: The symmetrized version of Fig. 4.
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1 /2
Ki +Kj

2K].

forms to Eq. (2.11). With this y(k, x) we can proceed in
the same way as in examples A and B.

If we start with a symmetric U&, the ensuing nontopo-
logical S and U2 have no symmetry in general as we saw
in example B. It would be interesting to find a U& which
leads to a symmetric S. In that case U2 will be related to
U& by U&(x)= U2( —x). This can be done as follows.
Choose the A s according to [12,15]

m Ki
(3.21)

m +K,.

U =—'me@ x1 (3.22)

The eigenvalues are s„=(n + —,
' )co. In place of y(k, x ) we

now use the parabolic cylindrical function

Then, with P& =y(im, y), where y is that of Eq. (3.19), we
can proceed in the same way as before. Figure 5 shows
the symmetrized version of example B. If we opt for a to-
pological S, the choice of y = 1 leads to an odd m +S and
an even Uz.

Example E. The harmonic oscillator. W'e start with

2v/2 —z /4 ~ 0 +
I [(1—v)/2] 2' 2' 2 v'2 I ( —v/2) ' ' 2

' 2' 2
(3.23)

P, (x)=D,(z), v= ——1+1 m (3.24)

which leads to a nontopological S. Figure 6 shows U&,

Uz, and S of this example with co =v'0. 1 m.
The case of topological S can be done by means of

Qi(x)=D, (z)+yD ( —z), (3.25)

where y is an arbitrary positive constant. If y = 1, P& is
even with respect to x, m +S odd, and U2 even. The re-
sults for the choice of @=1 are shown in Fig. 7. In Ap-

where z =2mcox [16]. The D (z) consists of two terms
as seen in Eq. (3.23). Each of them satisfies Eq. (2.4) with
U& of Eq. (3.22) and with c. =(v+ —,')co. Each of them,
however, diverges as x ~+~. In D (z) the two terms
are combined such that D (z)~0 as x ~ 0D. Unless v is
a nonnegative integer, however, D (z) diverges as
x —+ —oo; it behaves like Eq. (2.11). We take P& to be

pendix B we examine a modified version of example E for
which P„etc., become very simple.

The nontopological S obtained above (Fig. 6) is not
symmetric. It is possible to construct a symmetric ver-
sion of the model in a manner similar to example D. In
example D we chose the same K, 's as those of example B.
This time we choose K s which correspond to the c„,
n =1,2, . . . . In practice we can accommodate only a
finite number of energy levels, but this number can be in-
creased arbitrarily. Such calculations, under the name of
the "inverse problem, " have been done in nonrelativistic
quantum mechanics [13,17]. There are two points to be
remembered in the relativistic case. (i) For A,. s we have
to use Eq. (3.21) rather than Eq. (3.18). (ii) Since E„ is
positive, the corresponding relativistic energy E„ is
greater than m. In order for the Dirac equation to have a
bound state with such an energy, we have to assume a
rest mass greater than m. Note that when the potential is
the confining type such as the harmonic-oscillator poten-
tial, the rest mass loses its meaning in any case.

(I) I

2—
I I I I

J
I I I I

I
i

I I I 1
[ I I

2—

1.5
c5

~W

10
CL

0.5

0
~W

0
f4

0 —,
—5 0

x (units o f ]. /m)

I I I I I I I I I I I I I I-5 0 5
x (units o f ]. /m)

FICi. 6. Example E: Potentials U, (dashed curve), U2 (dash-
dotted curve), and S (solid curve) in units of 1/m. The S is non-
topological. co=&0.1m.

FIG. 7. Example E: Potentials U& (dashed curve), U& (dash-
dotted curve), and S (solid curve) in units of 1/m. The S is to-
pological. co=&0.1m and y=1.
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IV. DISCUSSION f", —(2mS+S —S')f, +(E m—)P(=0, (Al)

We have examined various SUSY features of the Dirac
equation in one dimension with a Lorentz scalar potential
S. We have shown that, starting with a potential U, for
the Schrodinger equation, an S that leads to the same en-
ergy spectrum and transmission coefticient can be con-
structed. In particular, a transparent potential for the
Dirac equation can be constructed by starting with a
transparent potential for the Schrodinger equation.
Below Eq. (2.10) we mentioned that Eq. (2.10) is a special
case of a general relation between S and P, . The general
formula is

where S' =dS /dx, etc. By adding and subtracting
(m +S)t/iI to its left-hand side, Eq. (Al) can be rewritten
as

Q)+(m +S)1(t)=E$2,
Eq. (A2) becomes

(A3)

[QI+(m+S)f, ]'—(m +S)Q')+[E —(m +S) ]$,=0 .

(A2)

Then if we dePne $2 by

1 dPim+S=-
dx c+ J dy/P&(y)

(4.1) —p2+(m +S)$2=EQ, . (A4)

where c is an arbitrary constant. This generalization
yields a further variety of phase equivalent potentials as it
was the case for the Schrodinger equation [3,6].

The method of constructing a transparent potential
that we have presented in this paper is complementary to
the other method that we recently developed [11,12].
The other method is based on the relationship between
transparent potentials and solutions of a class of non-
linear Dirac equations [18]. In Refs. [11,12] it was under-
stood that the scalar potential S is a localized one. Hence
S of the topological type we discussed in this paper was
not included in Refs. [11,12]. One might suspect that a
transparent potential of the topological type is also relat-
ed to solutions of nonlinear Dirac equations in the same
manner as observed in Refs. [11,12]. We found that this
is not the case.

We have confined ourselves to the one-dimensional
case. Can the results be extended to the two- and three-
dimensional cases? This does not seem to be possible.
When the potential is a central one, the Dirac Hamiltoni-
an in two or three dimensions can be reduced to the form
of

Hz, =a„p„+I'a„Pk /r+P(m +S), (4.2)

ACKNOWLEDGMENT

where k is a constant related to the angular momentum,
p„ is the radial part of p, and a, =a r [19]. This Hn is
similar to the Hn of Eq. (2.1) in the sense that a„and p
can be chosen as 2 X 2 Pauli matrices. However, the term
with a,p makes it impossible to reduce the Dirac equa-
tion to a Schrodinger equation like Eq. (2.4) with an
energy-independent potential.

Equations (A3) and (A4) are nothing but Eqs. (2.2) and
(2.3). The assumed existence of S can be justified by Eqs.
(2.9) and (2.10).

The "derivation" given above may give the impression
that the Schrodinger equation and the Dirac equation
(with a scalar potential) are completely equivalent. This
is not quite right, however. If the Dirac wave function
for a bound state is normalized byf" g gdx =f (~g, ~

+ ~1(2~ )dx =1, the "Schroding-
er wave function" f, is not normalized by itself. The
combination of the two Schrodinger Hamiltonians H,
and H2 is equivalent to the Dirac Hamiltonian 2Y&.

APPENDIX 8

Let us examine the following somewhat artificial
modification of U, of Eq. (3.22),

U, =
—,'mco x —

—,'(m —co) . (B1)

The eigenvalues of H& are e„=(n + 1)co—m /2;
n =0, 1,2, . . . . If we write s as s„=(v+ 1)u —m /2, the
factorization energy is s,= —m/2. For v= —1, D (z)
of Eq. (3.23) becomes simple and we find

P, (x)=D, (z)
2 /2=Pm. /2e " erfc(V max ) . (B2)

Recall that erfc(y) ~2 for y —+ —~ and
Vmerfc(y)-e /y for y))1. This P& is of the type of
Eq. (2.11). The S is determined by

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

APPENDIX A

—m fox 2

m +S(x)= — &m cox-
&rr erfc(&mcox )

&m co,

(B3)

Let us show how the Dirac equation can be "derived"
from the Schrodinger equation. Start with Eq. (2.4) with
subscript i =1. Assume that there exists a function S
which is related to the given potential U& through Eq.
(2.5). Then Eq. (2.4) can be written as

which asymptotically behaves like

m +S(x)~+mcox, for xi+co (B4)

Note that S(0)= [ —1+(2/&m)]m =0. 128m. The U2 is
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determined through Eq. (2.5).
A topological S can be obtained through Eq. (3.25). If

we take y = 1 for simplicity, we And

P, (x)=&2sre (B5)

rn +S(x ) = —m coax,

U2 =
—,
' m co x —

—,
'

( m + cg) ) .

(B6)

(B7)

which behaves like Eq. (2.12) and leads to the following:
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