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It is shown that the evolution of an open quantum system whose density operator obeys a Marko-
vian master equation can in some cases be meaningfully described in terms of stochastic Schrédinger
equations (SSE’s) for its state vector. A necessary condition for this is that the information carried
away from the system by the bath (source of the irreversibility) be recoverable. The primary field of
application is quantum optics, where the bath consists of the continuum of electromagnetic modes.
The information lost from the system can be recovered using a perfect photodetector. The state of
the system conditioned on the photodetections undergoes stochastic quantum jumps. Alternative
measurement schemes on the outgoing light (homodyne and heterodyne detection) are shown to
give rise to SSE’s with diffusive terms. These three detection schemes are illustrated on a simple
quantum system, the two-level atom, giving new perspectives on the interpretation of measurement
results. The reality of these and other stochastic processes for state vectors is discussed.

PACS number(s): 03.65.Bz, 42.50.Lc, 42.50.Ar, 32.90.+a

I. INTRODUCTION

Conventionally, irreversible quantum processes (which
typically arise through coupling to an unbounded envi-
ronment) have been described in terms of a master equa-
tion (ME) for a density operator. The density operator
represents a classical ensemble of quantum pure states,
represented by rays in Hilbert space. Recently, there has
been considerable interest in the “unraveling” of such
master equations for density operators into stochastic
trajectories for state vectors [1-14]. At any point in time,
the ensemble of state vectors generated by a stochastic
Schrodinger equation (SSE) reproduces the density op-
erator generated by the original ME. Just as different
ensembles of state vectors may be represented by one
density operator, one ME may be decomposed in many
different ways into SSE’s. Some approaches, involving
jump processes [1-7,12—-14], were originally motivated by
experimental observations of such processes [15], while
others involving diffusion processes [8-10] have there ori-
gins in quantum measurement theory.

Most of the theoretical work in quantum jumps is
based on a master equation of the form

6 = Dlclp + Lop, (1.1)

where Ly is a Liouville superoperator and DJc] is a su-
peroperator defined by
Dldp = cpet — 3lclep + pelel, (1.2)

where c¢ is some Schrodinger picture system operator. We
now define a “jump” superoperator by

Jp = cpc'. (1.3)
In the usual treatment, one then expresses the solution
of (1.1) as a generalized Dyson expansion in J [3, 6, 11].
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However, we can arrive at the SSE more directly by con-
sidering the following stochastic master equation for the
density operator p.(t):

dpat) = dN,(2) (5{;8 - pc<t>)

+dt{ (n)e(t)pe(t)

—3[npc(t) + p(t)en] + Eopc(t)}, (1.4)

where n = cfc and dN,(t) is a random real variable de-
fined by

E[dN(t)] = (n)c(t)dt = Tr[T pe(?)] (1.5a)

dN(t)? =dN(t). (1.5b)

Here, E denotes an ensemble expectation value, not to
be confused with quantum averages which are denoted by
angular brackets, so that (n).(t) = Tr[np.(¢t)]. Equation
(1.5b) simply indicates that dN(¢) equals either zero or
one. That is to say, in an increment of time, the system
jumps via the superoperator J with probability given by
(1.5a); otherwise it evolves smoothly. The subscript c
on an object indicates that the object is conditioned on
the occurrence of these jumps in the past. To average
over such stochastic histories, one simply replaces dN,(t)
in Eq. (1.4) by its expectation value. Then it is easily
seen that the ensemble average density operator p(t) =
E[p.(t)] obeys the original master equation (1.1).

Now if Lop = —i[H, p], where H is the Hamiltonian
operator (h = 1), then it is evident that the stochas-
tic master equation (1.4) is equivalent to the following
stochastic Schrodinger equation:
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dle(t)) = [ch(t) (77?)75 _ 1)
+dt (i'_'_Q_(Q _Z_ zH)] e(®),  (L.6)

where now the quantum averages are defined by (n).(t) =
(Ye(t)|n|te(t)). Thus the original master equation is
equivalent to the ensemble of trajectories generated by
the SSE (1.6), provided that the initial density operator
can be written as p(0) = [1(0)){(0)|.

Alternatively, it is possible to unravel the master equa-
tion (1.1) as a diffusion process for state vectors. This
is the approach of Gisin and Percival [9], who consider a
SSE of the form

dge(t) = {dt [(Net) e~ 5 —iH| + AW (t) e} lie(®)),

(1.7)

where dW is a complex Weiner increment [16] satisfying
E[dW ()] =0, (1.8a)

dW (t)*dW (t) = dt, (1.8b)

with all other second-order and higher moments van-
ishing. The tilde in (1.7) indicates that the condi-
tioned state vector obeying this equation is not normal-
ized. The only implication for this is that the quan-
tum averages are defined by, for example, (c').(¢) =
(De(t)|ctbe(t))/ (Ye(t)|e(t)). It is easy to verify from
(1.7) that p(t) = E[[9c(t))(¥e(t)]/ (Pe(t)¥e(t))] satisfies
the original master equation (1.1).

A third and quite different approach is that of Teich
and Mabhler [13]. One first solves the master equation
[which is not limited to the form of (1.1)], and determines
the (in general, time-dependent) basis states in which the
density operator is diagonal. These change smoothly in
time, and constitute the “coherent” part of the dynam-
ics. The “incoherent” part is manifest by the system
jumping between these orthogonal basis states according
to readily derived rate equations. This scheme is super-
ficially appealing because an eigenvalue of the density
matrix can be regarded as the probability of the system
actually being in the corresponding eigenstate. For sta-
tionary processes, the eigenstates are fixed in time and
only jump processes occur.

A major advantage of using a SSE in place of its corre-
sponding master equation is that less memory is required
for computation of the density operator, as a state vec-
tor in N-dimensional Hilbert space is specified by 2N
real numbers, compared to N2 for the density operator.
However, the decreased memory requirement is offset by
the necessity to do many simulations in order to obtain a
reliable ensemble average. What is of more interest is the
question of the interpretation of the stochastic evolution
of state vectors. This is especially so with the scheme
of Teich and Mabhler, because it does not offer the com-
putational advantages of the other two approaches. The
reality of such state vectors is thus a matter of contention.

In Sec. II of this paper, we show that, under certain

circumstances, the state vectors generated by the jump
SSE (1.6) and the diffusion SSE (1.7) do have a physi-
cal interpretation as the conditioned state of the system
given the history of measurement results. The differ-
ent SSE’s result from different measurement schemes on
outgoing electromagnetic radiation which carries infor-
mation about the system’s irreversible evolution. In the
two cases mentioned, the relevant measurement schemes
are direct and heterodyne photodetection, respectively.
We also consider another optical measurement scheme,
homodyne detection, which gives rise to a different diffu-
sion equation from that of heterodyne detection.

In Sec. III we apply these stochastic equations to the
simplest nontrivial quantum system: a classically driven,
detuned, damped two-level atom. Here the homodyne
and heterodyne measurement schemes give rise to diffu-
sion on the Bloch sphere, while direct detection gives rise
to quantum jumps. The evolution equation for the prob-
ability density function of state vectors is derived, and
the stationary probability distribution is plotted numer-
ically on the Bloch sphere for each case. In Sec. IV we
discuss these results and present conclusions regarding
the physical reality of the state generated by the various
stochastic dynamical equations.

II. QUANTUM THEORY
OF OPTICAL MEASUREMENTS

A. The quantum optical master equation

The irreversible dynamics of a quantum system is of-
ten treated in terms of a master equation for its density
operator. A master equation can be derived when the
system is small compared to a reservoir or bath to which
it is coupled weakly over a large bandwidth. An obvious
bath is the continuum of electromagnetic field modes.
The requirements on the system can be satisfied by a
typical localized (in space) coupling, such as at an atom,
or at a good cavity mirror. The electromagnetic field in
free space is equivalent to a continuum of harmonic os-
cillators with annihilation operators b(w) satisfying the
following commutation relation:

[b(w), b (W")] = (w — ).

For simplicity, we consider a one-dimensional traveling
wave only. This is appropriate for a cavity coupling.
Assuming that the field carries significant energy only
around a carrier frequency (which in practice will be some
characteristic frequency of the system) with some band-
width small in comparison with the carrier frequency, the
electric field at some point in space-time is effectively [17]

E(za t) =E1 (bt—z/c + bI——z/c) )

where E; is a constant vector representing in some sense
the electric field per photon, ¢ is the speed of light, and
b; is defined by

oo .
b; =/ dw b(w)e™ ™,
0

(2.1)

(2.2)

(2.3)

Under the above assumption, the lower limit of this inte-
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gral can be extended to —oo with negligible error and the
interaction picture operators b; then satisfy the following
commutation relation [18]:

[b(2), bT (1)) = 6(t — ). (24)

Say the system is coupled to the bath at z = 0. The
electric field for 2z < 0 then represents an incoming field
and that for 2z > 0 an outgoing one. If we now make the
Markov approximation that the bandwidth of the cou-
pling is large compared to dynamical frequencies (but
small compared to the carrier frequency), then the Hamil-
tonian for the system and bath can be modeled as

H, = Hsys + ’L\/’_)’_ [bla — btaf] ,

where a is some system (usually lowering) operator and
v is the effective damping rate. Because of the singu-
larity of the commutation relation (2.4), it is necessary
to be careful in dealing with the above Hamiltonian. A
convenient way to treat it is to interpret the operators b,
in the manner of Ito stochastic calculus [7]. The analog
of the Weiner increment is

(2.5)

dBt = btdt, (2.6)
which satisfies
[dBy,dB}] = dt. (2.7)

It is thus necessary to expand infinitesimals to second
order in dB;. The infinitesimal unitary transformation
arising from (2.5) is then

U(t +dt,t) = 1 — iHgyedt + /7[dB}a — dB;al]
+g [c!cdt + dB}dBy(cc + cc')

+dBZct? + dB2tc?). (2.8)
The density operator for the system and bath (denoted
by W) thus obeys the following evolution equation:

W (t+dt) = U(t + dt, )W (@)U (¢ + dt, t). (2.9)

Now, if we wish to derive a master equation for the sys-
tem density operator p(t) = Trg[W(t)], it is necessary to
make the Born approximation, which is that the bath is
not affected by the system. That is to say, if the initial
combined density operator at time t = 0 factorizes as
W(0) = p(0) ® pp(0), then it will factorize for all times
as W (t) = p(t) ® p(0). This approximation can be jus-
tified by a system size expansion for certain initial bath
states [19]. Essentially, the ¢ numbers dB; in (2.8) have
to be replaced by ¢ numbers. This is well understood for
two classes of bath states: coherent and thermal [18]. For
a coherent bath of bandwidth A and central frequency w,
we have

(dB:) = Tr[dB,pp(0)] = VX Bidt
— VA foe= M2ty
and the second order averages in (2.8) vanish to first order

in dt. In a thermal bath, the first order moments vanish
while the nonzero second-order moment in (2.8) is given

(2.10)

by

(dBldB:) = N dt. (2.11)

From Eq. (2.9), one then derives the following master
equation for the system:

p(t) = —i[Hoys + iv(€fa — esat), p(t)]
+(N + 1)vDlalp(t) + YN D[a']p(t),

where €; = /A/v G, and D[] is the superoperator de-
fined in the Introduction (1.2). For reasons given in Ap-
pendix A, we will ignore the thermal terms by putting
N =0, which gives

P(t) = —i[Heys + iv(e;a — eal), p(t)] + vDlalp(t)
= L4o(2). (2.13)

Here the bath coherently drives the system, and also
damps it.

Having sketched the derivation of the optical master
equation, we now justify its special significance. Briefly,
the interaction of the optical bath with its physical sur-
roundings can be controlled experimentally. This is in
contrast to, for example, the particulate Brownian mo-
tion master equation [19] whereby the particles consti-
tuting the bath are presumably subject to the same sort
of random fluctuations as the system. In that case, the
information regarding the change in the system is irre-
trievably lost into the universe at large, whereas the out-
going light from the system obeying the optical master
equation can be collected and the information regained.
However, in making the Born approximation to derive
the master equation, one has discarded this information
by assuming that the system does not affect the bath.
Thus to explicitly see the bath carrying away informa-
tion about the system, it is necessary to return to Eq.
(2.9) before the Born approximation has been made.

For example, we calculate the intensity of the outgoing
light at time ¢ at a distance z from the system. From
(2.2), this is given by (in units of photon flux)

(2.12)

I(z,t) = Tr [bt_z/cW(t)bI_z /c] . (2.14)

Naively applying the Born approximation at this stage
yields a constant, equal to Tr [bt_z /CpB(O)bI_z /C]. How-
ever, using the unitary evolution operator (2.8), it can
be rewritten as

Tt [bo-areU (8,8 = 2/ )W (E = 2/ (1,8 — 2],
(2.15)

Using the commutation relation (2.7), this is easily shown
[7] to be equal to

Tr { [bt—z/c + vVAa) W(t — 2/C) [be—s/c + ﬁa]f} .
(2.16)

Now restoring the Born approximation and assuming a
coherent bath as above gives
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I(z,t) =~Tr { [€1—2/c + a] p(t — z/c) [e:_z/c + aT] } .
(2.17)

This can be simply interpreted in the case of a damped
optical cavity, with a being the annihilation operator of
the cavity mode. If ¢, = 0, the intensity is simply the
rate of loss of photons from the cavity at the time t —
z/c, as expected. If €; # 0, there is interference between
the field transmitted through the output mirror and the
incoming light reflected there. Thus, for the purposes
of intensity measurements (in which vacuum fluctuations
may be ignored), the annihilation operator for the output
field relevant to the system state at time ¢ is \/¥(e; + a).
At first sight, the theory presented here would seem to
be limited in applicability to systems in which the irre-
versibility arises from a direct coupling to the continuum
of the electromagnetic field. In fact, this is not the case;
there are a large number of quantum optical intracavity
measurement schemes to which this theory would apply
[20-22, 11]. Specifically, say the cavity field (represented
by annihilation operator ¢) is damped to a bath in the
vacuum state at rate x. Let the cavity mode be coupled
to another intracavity system (such as a second mode or
an atom) by the interaction picture coupling
V= %(acT +ate). (2.18)
In practice, this may require a nonlinear medium, and
other driving fields in the cavity if a is not a lowering
operator near cavity resonance. If k > g, the first cav-
ity mode can be adiabatically eliminated [11], giving the
following master equation for the second system

A(t) = vDlalp(t),

where v = g%/k. This equation is identical to that which
would have arisen if this system were directly coupled
to the optical bath. Furthermore, the output light is
the same as in the direct coupling case, so the following
theory applies equally to such indirect couplings.

(2.19)

B. Direct photodetection

We have shown that the electromagnetic bath carries
away the information about the irreversible evolution of
the system. To take advantage of this, we have to ob-
tain this information by measuring this outgoing light.
There are many schemes of measurement which are used
experimentally, but most ultimately rely upon photode-
tection. We will not be using a specific physical model
of a photodetector, although the formulas we use can be
justified by such models [19]. This is because, however
sophisticated the model may be, at some stage it is nec-
essary to invoke the projection postulate (or some other
postulate of quantum measurement theory) in order to
talk about the result of the measurement. Unlike op-
tical beams, material measurement devices are strongly
coupled to their environment, so that irrevocable loss of
information is unavoidable. Once this has taken place,
the location of the division between the quantum sys-
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tem and the classical measuring apparatus (the so-called
Heisenberg cut [23]) is essentially arbitrary. For our pur-
poses, it is sufficiently accurate to place the cut between
the outgoing light and the photodetector, and to define
the latter by the following postulates.

Consider a photodetector of efficiency n at position 2
(as defined in the preceding subsection). In the infinites-
imal interval of time (¢,t + dt), the detector will either
detect one photon or no photons. The probability that
it will detect one photon is given by

P(z,t)dt = nl(z,t)dt. (2.20)

That is to say, the rate of photodetections is equal to the
photon flux times the efficiency. With a coherent bath
as before, this becomes

P(z,t)dt = Tr [Jy—,/cp(t — 2/c)] dt, (2.21)
where we have defined a jump superoperator
Tep =1 les +alp[ef +al]. (2.22)

Given that a photodetection does occur, the new sys-
tem state conditioned on this is given by

Te—z/cP(t — 2/¢)

pct —z/c+dt) = P D)

(2.23)
Note that a photodetection at time ¢ causes a change in
the system at time t — z/c. Despite appearances, this
does not violate causality, for the same reason that the
experiment of Einstein, Podolsky, and Rosen [24] does
not. The change in the system (which we will call a
“quantum jump”) is more akin to a change in knowledge
than it is to Bohr’s original concept of a quantum jump
between stationary atomic states [25]. This change in
knowledge takes place locally, within the observer, and
does not imply any physical mechanism causing a tran-
sition in the system.

So far we have not specified how the system changes
when there is no photodetection in the interval (¢,t +
dt). This change is determined by the master equation
(2.13) which the system obeys and the jump superoper-
ator J. (Contrast this approach with that of Srinivas
and Davies [26], whereby the jump superoperator de-
termines the master equation.) Denote the increment
in the photocount of the detector in the time interval
(t+ z/c,t + z/c+ dt) by dN(t). As in the Introduction,
this is a random variable which satisfies

E[ch(t)] =Tr [%pc(t)] dt = Pc(t)dt’ (2'243)

dN,(t)? = dN,(t). (2.24b)
Here, the ¢ subscript refers to the state of the system
conditioned on the previous history of photodetections.
When a photodetection occurs [dN(t — z/c) = 1], the
system state changes discontinuously via (2.23). Requir-
ing that E[p.(t)] (the ensemble average of the conditioned
density operator) obey the master equation p(t) = L:p(t)
(2.13) leads immediately to the stochastic quantum jump
equation
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pelt +dt) = AN, (2) (‘—7;’—(5;—) - pc(t)) + Su(dt)pe(t),

(2.25)
where the smooth evolution superoperator is given by

Si(dt) =1+ [Ly — Tz + P.(t)] dt. (2.26)

With £, as defined in (2.13), the nonjump evolution be-
comes

Se(dt)p(t) = p(t) — i [Heys — iny (3a'a + eal) , p(2)],

+ (1 =)y {le;a — eal, pe(t)] + Dlalpc(t) },
(2.27)

where we have introduced a variation on the commutator
brackets via the notation
[A,B]. = (AB — B'A!) - Tx(AB — BTA"), (2.28)
where A and B are arbitrary operators. This star com-
mutator is necessarily anti-Hermitian and of zero trace.
It reduces to the normal commutator when A and B are
Hermitian, provided that Tr(AB) exists.
If and only if n = 1, the stochastic master equation for
the conditioned density operator (2.27) is equivalent to

the following stochastic Schrodinger equation (SSE) for
the conditioned ket

drbe(t)) = [dm(t) (% - 1)

- dt(ﬂ/{%[cﬁa — (afa)c(t)] + esal
~Hea' + o)t

+iHsys)j| |1be(t)), (2:29)

where the quantum averages are defined by (afa).(t) =
(¢c(t)|atalte(t)). The interpretation of the n = 1 condi-
tion is obvious; in order to continuously describe a system
by a ket (rather than a density operator), it is necessary
(and sufficient) to have maximal knowledge of its change
of state. This requires unit efficiency in the detection of
the outgoing light which contains the information lost by
the system when it evolves nonunitarily. With zero ef-
ficiency detection, the stochastic master equation (2.27)
reduces to the standard master equation (2.13). This in-
terpretation highlights the fact that a density operator
description of a quantum state is only necessary when
information is lost irretrievably.

When the coherent driving field (e;) is zero, the master
equation becomes the vacuum optical master equation

(VOME):
p(t) = —i[Hsys, p(t)] + YDlalp(t) = Lop(t).  (2.30)

In this case, the direct photodetection SSE (2.29) is sim-
ply
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djtpe(t)) = {ch(t) (__&.ﬁ)_(ﬁ - l)

-t (Jla~ w10 0]+ ) |

(2.31)

which is identical in form to the quantum jump SSE (1.6)
given in the Introduction. However, the latter does not
have a physical interpretation as the evolution equation
for a ket conditioned on the results of photodetections;
it is merely an algorithm for computing density operator
evolution. Adding coherent driving would simply change
the Hamiltonian H in Eq. (1.6). For a correct inter-
pretation in terms of photodetections, changing just the
Hamiltonian in Eq. (2.31) would be valid only if the co-
herent driving modes were (i) to cause negligible damping
of the system, and (ii) not monitored by the photodetec-
tor. This is the situation considered in Sec. III. In the
remainder of this paper we will always take ¢, = 0 and
so consider only the VOME. _

In this case, it is easy to show (see Appendix B) that
the ensemble expectation value of the two-time correla-
tion function for the normalized photocurrent is

E[L(t + ) I(t)] = v*n*Tr{alae’"[ap(t)a']}
+ynTrla’ap(t)]6(r),

where Lg is defined in (2.30), the photocurrent is defined
by I.(t) = dN.(t)/dt, and we have restored 7 the quan-
tum efficiency of the detector. There is no conditioned
subscript on I(t) in Eq. (2.32) because it is determined
only by p(t), which is assumed given. This initial system
state may be conditioned on some previous measurement
result, but that is irrelevant. The photocurrent at the
later time I.(t+7) is conditioned on the stochastic history
of the photocurrent over time interval [¢,t+7). Changing
to the Heisenberg picture for the operators gives

(2.32)

E[I(t+7)I(t)] = ¥*n*(: n(t+7)n(t) :)+yn(n(t))é(r),
(2.33)

where n = a'a and :: denotes normal ordering of the en-
closed operators (i.e., at’s before a’s). This is the stan-
dard expression for the second-order coherence function
G@(t,t + 7) plus shot noise. Here we see that it can
be derived explicitly as an ensemble average of prod-
ucts of classical photocurrents, which is how it is de-
termined experimentally. This confirms that the above
theory correctly models optical measurements and pro-
vides a perhaps more intuitive understanding of the rela-
tion between theory and experiment than that provided
by standard derivations of autocorrelation functions [27]
and the like.

C. Homodyne photodetection

The unraveling of the VOME (2.30) as a quantum
jump SSE in terms of photodetections of the output light
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seems so natural that it is tempting to do away with the
detector and to conclude that the quantum jumps of the
source are objective events, resulting in the emission of a
photon into the bath. To do this, however, is to place the
Heisenberg cut too soon. The optical bath is still a quan-
tum system in that it may exhibit interference effects
(for example, Young’s experiment). A system may only
be considered as a classical object only when it strongly
couples to its environment so as to destroy quantum co-
herences [28]. The outgoing light from the system may be
channeled into a more elaborate measurement apparatus
than that of a simple photodetector. Different measure-
ment schemes result in different sorts of quantum trajec-
tories for the system state. The simplest alternative to
direct photodetection is homodyne photodetection. This
has been considered in detail in a previous paper [11],
and so the theory we will present here is a summary of a
slightly more general case.

Consider the apparatus for balanced homodyne (or
heterodyne) detection shown in Fig. 1. The beam split-
ter located a distance zg from the source has transmittiv-
ity % We treat the local oscillator as a classical coherent
field with amplitude i,/703; at distance 2o before the input
to the beam splitter. Say B: = exp[—i(w + Q)t], where w
is the frequency at which a rotates under the free Hamil-
tonian of the system. Moving to the interaction picture
eliminates this free Hamiltonian, allowing us to replace
Hys by interaction picture V; (where the time depen-
dence is usually trivial), and to write 8; = Bexp[—ift].
The effective annihilation operators for the field at the
detectors D; (at 21) and D, (at 22) at times t+ 21 /c and
t + 22/c, respectively, are

Cl =72 (a— B)e ™" (2:34a)
C?=+/v/2i(a + B)e™ ™. (2.34b)

The appropriate jump superoperators for the (assumed
unit efficiency) photodetectors are then defined by J*p =
CkpCFt (k = 1,2). Now we have two photocount in-
crements dN¥(t) with means PE(t)dt = (CFICF).(t)dt,
and using the method of the preceding subsection the
stochastic master equation is found to be

(2

JY a jéww&v)@

BS

source

local osc.

FIG. 1. Schematic diagram of balanced homodyne detec-
tion. The beam splitter (BS) has transmittivity 1/2. The
photodetectors are denoted D; and Da.

1
pett) = ani(o) (2P - )

2
+dN2(t) (:%2’% - pc(t))

—i [Vt - i%a*a, pc(t)] , (2.35)
where the star-commutator is as defined previously in Eq.
(2.28).

Because of the perfect detection, this stochastic master
equation is equivalent to the following SSE:

1
dipe(t)) = [dNé(t) (\/;_W - 1)

2 ct
+ch(t)( i o 1)

— dt {M + %[afa —~ (a*a>c(t)l}] |9be(t))

(2.36)

This explicitly shows that the direct photodetection SSE
(2.31) is not the only way to unravel the VOME with a
simple interpretation. It is still, however, in the form of
a quantum jump SSE. We can change this into a diffu-
sion process by considering a continuum limit in which
|B| — o0, so that the rate of jumps goes to infinity as the
size of the jumps goes to zero. Individual photodetections
are replaced by a classical photocurrent. In balanced de-
tection as we are considering here, the difference between
the photocurrents of the two detectors is the signal cur-
rent. In this subsection we want this to be a homodyne
signal (proportional to one of the quadratures of the sys-
tem), so we put the detuning Q of the local oscillator
equal to zero. This allows the subscripts ¢ to be dropped
from Ss.

Consider |8]?> > (a'a) and a time At such that the
number of photodetections ~ v|3|2At is very large, but
that the change in the system is very small. Then it
can be shown [11] that the number of photodetections at
detector Dy, can be approximated by a Gaussian random
variable:

mi = 21671 [1+ (~1)¥a/8 + al /67).(0)] At

IETINA

where AW}, are independent real Weiner increments [16].
The infinitesimally evolved system state given the pho-
tocounts my is approximately

(et + At)) = exp [~ (Fala+iV:) At]

a\™ a\™
X {14+ 1-— —> Pe(t)),
(1+5) (1-5) wo
(2.38)
where the tilde denotes that we are ignoring normal-

ization. Substituting in the stochastic expression for
the photocounts (2.37) and taking the continuum limit

(2.37)
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|8] — oo, [arg(B) = ¢], At — dt, and AW}, — dWj, gives
the following SSE for the unnormalized conditioned ket:

[t + dt)) = { 1- (%aTa + m) dt

+ [2fydt(X<p>c(t)

+ﬁdW(t)]e-i¢a};¢c(t)>. (2.39)

Here, X, = 3(e”*a + e*al) is the quadrature of the
system aligned parallel to the local oscillator, and dW =
(dW2—dW1)/+/2 is a real infinitesimal Weiner increment.

In the continuum limit, the photocounts mj are re-
placed by the photocurrents given by Eq. (2.37). The
signal photocurrent is the difference I2(t) — I}(t)

Ie(t) = 27|B1(X)c(t) + Vv71BIE(®), (2.40)

where £(t) = dW (t)/dt represents Gaussian white noise
and satisfies

E[§(t)Et)] = 8(t —t'). (2.41)

The deterministic part of this photocurrent is propor-
tional to the X, quadrature of the system, as desired
from homodyne detection. It is shown in Ref. [11] that
this expression and the homodyne SSE (2.39) yield the
standard expression for the X, quadrature squeezing au-
tocorrelation function:

ElL(t + T)I(t)] = 47°(: Xp(t + 1) X (t) :) +76(7),
(2.42)

where X, (t) is a standard Heisenberg picture operator.
(The generalization for nonunit efficiency detectors is also
derived in Ref. [11].) Furthermore, the above expres-
sion for the photocurrent allows the homodyne SSE to
be written in the following concise form:

De(t + At)) = { 1- (%a*a + in) At

+

Now the first integral in (2.46) is of order /. The
second integral will evidently be a new complex random
variable of zero mean which we denote by

t+At )
AW (t) = / =i 0=29) gy (). (2.47)
t

It is easy to show that
E[AWS(H)AWq(t)] = (At — |t — /) H(At — |t — ¢/)),
(2.48)
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d - ) I.(t ~
21000 = [-Jata— v + ] 1B0). 49
This clearly shows how the change in the system is con-
ditioned on the stochastic result of the measurement.

D. Heterodyne detection

For heterodyne detection, the detection scheme is the
same as that for homodyne detection, but the local oscil-
lator is detuned from the system (i.e.,  is finite). Then
the SSE for the conditioned state vector becomes

[e(t + dt)) = { 1-— (%aTa + m) dt
i [Mt(a? + ae~ 2=y (¢)

+ \/adW(t)e—"(“’—‘”’} a} ve(8))s

(2.44)

while the signal photocurrent is given by

Le(t) = 7|Bl(ae™ @~ 4+ ol 0= (1) + \/7]8|dW (t)
= 2916|(X cos(2t) — Xpir/2in(Q1))c(t)
+v71BldW (¢).

From this expression it is evident that by Fourier ana-
lyzing the photocurrent, a simultaneous readout of the
approximate values of the two quadratures can be made.
However, this will only work if the detuning frequency is
much higher than the characteristic system frequencies
(other than the free evolution frequency which has been
eliminated). That is, we require Q > v ~ V;. Then
we can consider a time scale At such that QAt > 1 but
YAt <« 1. Over this time, we can integrate Eq. (2.44)
and ignore terms of second order in yAt to obtain

(2.45)

t+At t+At .
yAt(al)o(t) + v(a)c(t) /t e 2= gs 4\ /Y /t e”’("’_ns)dW(s)} a}lwc(t)). (2.46)

where H is the Heaviside function which is zero when
its argument is negative and one when its argument is
positive. Other second-order moments are of order /.
In taking the continuum limit of v/Q — 0, At — dt,
we can take AWq(t) — dWq(t) = £a(t)dt, where &q(t)
represents Gaussian complex white noise satisfying

Ea()éa(t)] =6t -1t'),

with other second-order moments vanishing. The condi-
tioned ket then obeys the following SSE:

(2.49)



47 INTERPRETATION OF QUANTUM JUMP AND DIFFUSION . .. 1659

L15() = { ~Lala- v,

+ [v(a")e(t) + v7éa(®)] a}!iﬁc(t»-

(2.50)

This SSE is precisely the same as that proposed by Gisin
and Percival [9], presented as Eq. (1.7) in the Introduc-
tion. Here we see its interpretation in terms of hetero-
dyne measurements on the output light. .

We turn now to the Fourier analysis of the heterodyne
photocurrent (2.45). Using an obvious notation we find
as expected

t+At
IS (t) = (At) ! /t I.(8) cos(§2s)ds

~9181(X,)e(t) + v Re[Ba(®)); (2.51a)
t+At
i) = (At) ! / I.(s) sin(2s)ds
~ —|B(Xptn/2)e(t) + v¥Im[Béa(?)],  (2.51b)

where Re and Im denote real and imaginary parts, re-
spectively. Defining a “complex current”

I2(t) = I (t) + 4™ (t) = vB8(al)e(t) + VABéa(t),
(2.52)

we find (using the method of Ref. [11]) that the two-time
correlation function

B +7)I%)*] = v*(al (t + 7)a(t)) +76(7)

gives the first-order coherence function G(*)(¢,¢+7) plus
the shot-noise term. The Fourier transform of this quan-
tity may be used to determine the spectrum of the source.
Also, the complex photocurrent allows the heterodyne
SSE (2.50) to be written in the same form as the homo-
dyne SSE (2.43):

(2.53)

~ Q ~
S100) = [~Jata =i + 28] igitoy.

(2.54)

Finally, it is worth noting that the heterodyne scheme
outlined here is completely equivalent to the so-called
eight-port homodyne detection [29]. In this scheme, half
of the output light is channeled into a balanced homo-
dyne measurement of X, and half into a measurement
of Xy4r/2. The former gives rise to the photocurrent
IS°5(t), while the latter gives ISi"(t), and the SSE obeyed
by the system is again given by (2.54).

III. APPLICATION TO A TWO-LEVEL ATOM
A. The optical Bloch equations

We are now in a position to apply the theory of the
Sec. II to a simple quantum system: a classically driven,
damped, detuned two-level atom. Denoting the upper
and lower states |2) and |1), respectively, we use the fol-

lowing operators:

& =2)(1| + |1)(2], (3.1a)

§=—il2) (1] +4]1)(2], (3.1b)

2=12)(2| - [1)(1], (3.1¢)

o =1)(2 = 3@ - i9). (3.1d)
The master equation for the atom is

p = —ilH, p| + vD[o]p, (3.2)
where v is the spontaneous emission rate and

a,. A,

where « is the Rabi frequency (proportional to the classi-
cal field amplitude by the dipole coupling constant) and
A is the atomic frequency minus the classical field fre-
quency. If we denote the averages of the operators &, g, 2
by z,y, z, respectively, the density operator for the atom
can be simply expressed in terms of the Bloch vector
(.’L‘ 'Y, %2 ) as

p(t) = 2[1 4+ z(t)2 + y(t)J + 2(t)2]. (3.4)

The master equation (3.2) can then be written in the
following succinct form:

&=—Ay— %x (3.50)
y=-—az+ Az — %y, (3.5b)
t=+ay—v(z+1). (8.5¢)
The stationary solution is
T —4Aa .
y = 200y (v +2a% +44%) 7. (3.6)
z —v2 —4A?
ss v

Anticipating the following subsections in which we un-
ravel the master equation as stochastic trajectories for
a state vector, we note that when p is pure, the Bloch
vector is confined to the unit sphere 22 +y?+22 =1. In
this case, it is possible to parametrize the state of the sys-
tem by two Euler angles on the unit sphere, (6, ¢). These
angles will obey coupled stochastic differential equations.
Nevertheless, the probability distribution of states on the
sphere surface p(¢,6,t) will obey a deterministic evolu-
tion equation derived from these stochastic equations.
Such an equation is equivalent to the master equation in
that

z(t) n 2 sin 0 cos ¢
y@t) | = / de / d¢ | sin@sing | p(¢,6,t). (3.7)
z(t) 0 0 cosf

However, different unravelings of the master equation will
give rise to different evolution equations for p(¢, 8,t). For
the three measurement schemes considered here, these
evolution equations are members of the class of two-
dimensional differential Chapman-Kolmogorov equations
[16].
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B. Direct photodetection

The state of a classically driven two-level atom con-
ditioned on direct photodetection of its resonance flu-
orescence has been considered in detail before [1, 4, 5].
The treatment here is thus restricted to formulating the
stochastic evolution in the manner presented above, and
giving a closed-form expression for the stationary prob-
ability distribution of states on the Bloch sphere, which
has not been done before.

Consider a two-level atom situated in an experimental
apparatus such that the light it emits is all collected and
enters a detector (in principle this could be achieved by
placing the atom at the focus of a large parabolic mirror).
The annihilation operator for the field at the photodetec-
tor is effectively ,/yo. From the theory in Secs. IIB and
IITI A, the state vector of the atom conditioned on the
photodetector count obeys the following SSE:

g
dlbe(t)) = [ch(t) <m - 1>
—dt (%[010 — (ol () - zH)} [e(t)),

(3.8)

where H is as defined in Eq. (3.3) and the photocount in-
crement dN,(t) satisfies E[dN.(t)] = v(cto).(t)dt. With
the conditioned subscript understood, we can write the
conditioned state in terms of the Euler angles (¢,6) as
defined in the preceding subsection. These parameters
then obey the following coupled nonlinear stochastic dif-
ferential equations (SDE’s):

0
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do(t) = Ag[6(2), 6(t)]dt, (3.92)
do(t) = Aglo(t), 8(t)|dt + % sin (t)dt + [7 — 8(t)]dN (¢),

(3.9b)
where the Hamiltonian drift terms are defined by
Ay(4,0) =—acotfcosg + A, (3.10a)
Ag(#,0) = —asin ¢, (3.10b)
and
E[dN(t)] = vy cos?[0(t)/2]dt. (3.11)

Now to write these SDE’s as a differential Chapman-
Kolmogorov equation for the probability distribution
p(¢,0,t) we need the following non-negative function to
exist:

W(#,816,6) = lim p(#,0',t + Atls,0,1)/At,  (3.12)

where p(¢’, 0',t + At|¢, 6, t) has its obvious meaning [16],
and (¢', ') is finitely separated from (¢, 8). In the above
equations (3.9a) and (3.9b), the jump process is particu-
larly simple: it always takes the state to the south pole
(level |1) of the atom), with probability E[dN(t)]. Thus
we have
/

W(&',6'6,6) = §—(7r——2ﬂ_9—)'ycos2[0/2], (3.13)
where the § function is defined so as to give unity when
integrated on a finite interval closed below at zero. From
this, the equation for p(¢,8,t) under direct photodetec-
tion is seen to be

$(6,6,t) = {——A¢(¢,0) - 535 [46(6,6) + T sin6] — 70052(9/2)}p(¢,0,t)

o¢
76(7r -0)

27 ™
+ ————/ d¢’/ do’ cos®(6'/2)p(¢', ', 1).
2r Jo 0

In practice, it is easier to find the steady-state solu-
tion of this equation by returning to the SSE (3.8), and
ignoring normalization terms. We consider the evolution
of the system following a photodetection at time t = 0 so
that |4(0)) = |1). Assuming that no further photodetec-
tions take place, and omitting the normalization terms
in Eq. (3.8), the state evolves via

L1 = — (Lo'o +iH) [et). (3.15)

Writing the unnormalized conditioned state vector as
[$e(®)) = &1(8)I1) + &2(1)]2), (3.16)

we easily find the solution satisfying &;(0) = 6,1 to be

v/4+iA/2 i

¢é1(t) = cos((t) + c in (t, (3.17a)

(3.14)
r
éa(t) = _zaT/Z sin(¢), (3.17b)
where
2 1/2
-3+ )] 029

is a complex number which reduces to half the detuned
Rabi frequency as v — 0. From these we can define the
time-dependent angle variables

B(t) = arg[e1 (t)&5(2)],
8(t) = 2arctan(|é; (£) /&2(t)]).

(3.19a)
(3.19b)

Note that it has not been necessary to introduce normal-
ization. Now we denote the probability that there have
been no photodetections in the interval (0,t) by S(t).
The decrease in this survival probability from ¢ to ¢ + d¢
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is equal to the probability for a photodetection to occur
(given that none have occurred so far) times the proba-
bility that none have occurred so far:

dS(t) = —E[dN(£)]S(t). (3.20)

With the initial condition S(0) = 1, the solution is thus

S(t) = exp {—'y /Ot ds cos2[0(s)/2]} .

It can be verified that S(¢) is also given by the modulus
squared of the unnormalized state:

5(t) = (De(®)|9e(t)) = &1 ()]* + |22(8)1?,

as expected since the decay in the norm of the condi-
tioned state is due to the discarding of that component
which arises from a photodetection having taken place.

Since whenever a photodetection does occur, the sys-
tem returns to its state at ¢ = 0, the stationary prob-
ability distribution on the Bloch sphere is confined to
the curve parametrized by [¢(t),0(t)], weighted by the
survival probability S(t). Explicitly,

(3.21)

(3.22)

pss(6,0) = { /0 " dt S(8)5(0 — 6(2))5(6 — ¢(t>)}

x {/Ow dtS(t)}_

In Fig. 2 we plot this probability distribution on the
Bloch sphere for a = 3y, A = v/2. Here, as in subse-
quent subsections, we use an equal-area projection of the
sphere onto the cos 8, ¢ plane. The solid curve (call it I")
is a truncated representation of the one-dimensional sub-
manifold to which pss(¢, ) is confined. The probability

(3.23)

do(t) = Ag[o(t), 6(t)]dt + cos (2 )ﬂigg
1 + cos 9(t)

do(t) = Ao[9(2), O()]dt + —5 o=

sin ¢(t) cos G(t)y dt —

density itself is approximated by a discrete distribution:
the weight assigned to each small section of T is repre-
sented by the height of the line segment drawn orthogo-
nal to I' from the middle of that section. In fact, these
line segments are drawn at regular intervals in time [the
argument of the integral in (3.23)], so that their heights
are simply given by S(¢). This figure thus also contains
all of the information about the evolution of the atom
following a photodetection and the waiting time distri-
bution between photodetections. Using this distribution
(with time increment dt = 10~2y71) to calculate the av-
erage of the steady-state Bloch vector confirms the an-
alytic result (3.6) to four decimal places; in this case
(z,y, 2)ss = (—0.3,0.3,0.1).

C. Homodyne detection

In this subsection we consider homodyne detection of
the light emitted from the atom. Say the local oscillator
has phase ¢ relative to the driving field (which is in phase
with £). Then, from Eq. (2.39), the system obeys the
following SSE:

dje(t)) = { - (%afa + iH) dt

+ I}ydt(e—i“’a + eot).(t)

+ﬁdw<t>]e—wo}lwc<t>>, (3.24)

where dW (t) is a real infinitesimal Weiner increment.
Transforming to the Euler angles gives the following set
of SDE’s:

1+ cos6(t)

000 sin @(t)/FdW (3.25a)

{1 1[1 + cos (t)] cos 6(t) cos? (,{S(t)} ydt + cosg(t)[1 + cos 8(t)]/FdW,

(3.25b)

where ¢(t) = ¢(t) + ¢. In this case the noise terms are diffusive rather than jump processes, so that the probability

distribution obeys a Fokker-Planck equation

— RN REEER

0.5

cosf
0
T

-0.5
T

FIG. 2. Equal-area projection of the
b Bloch sphere showing the stationary proba-
bility distribution of the state vector for a
1 driven, damped, detuned atom whose fluo-
rescence is subject to direct photodetection.
1 For detailed explanation, see text. The pa-
rameters here are (in units of the spontaneous
emission rate v) driving o = 3 and detuning
L A =0.5.
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. _ 19] 1+ cosé
p(9,6,t) = { ~ 5 [A¢(¢, 6) + v cos T " cosd

_ 10 [l+cosb ag] 10%
2062 |T—cosg ™ 2862

& (1 + cos §)2
5406 "

sin 8

where ¢~) = ¢+ ¢. The steady-state solution to this equa-
tion can be approximated numerically by a long-time av-
erage of trajectories on the Bloch sphere generated by
the SDE’s (3.25a) and (3.25b).

In Fig. 3 we plot this approximation to the stationary
probability distribution for two values of ¢ = 0. The
average is taken over a time of 5 x 10%y~1, and a total of
20000 points are plotted (one every 0.025y~1). The two
values of ¢ are 0 and /2, corresponding to measuring the
quadrature of the spontaneously emitted light in phase
and in quadrature with the driving field, respectively. In
both plots we take v2o = 7y and A = 0, so that the
true distributions are symmetrical about the line ¢ =
+m/2. The effect of the measurement is dramatic and
readily understandable. In terms of the Euler angles, the
homodyne photocurrent from Eq. (2.40) is

Le(t) = 18Iy sin 6(t) cos §(t) + v/7E(t)].

When the local oscillator is in phase (¢ = 0), the deter-
ministic part of the photocurrent is proportional to z(t).
Under this measurement, the atom tends towards states
with well-defined Z. The eigenstates of £ are stationary
states of the driving Hamiltonian and so this leads to
the probability distribution in Fig. 3(a), which has two

(3.27)

sinécosgg] _ 9 [Ae(¢,9)+’7 S

sin ¢ cos qg] }P(¢v 6,t),

H. M. WISEMAN AND G. J. MILBURN 47

_ 1+ cosé

1+—COS9 (1 — cos 6 cos? q~$>:|

o0 in 6

[(1 + cos 6)?2 cos? qg]

(3.26)

f

circumequatorial peaks near ¢ = 0 and 7. The steady-
state Bloch vector (3.6) points slightly southwards and
in the ¢ = m/2 direction, so the two peaks are actu-
ally shifted somewhat in that direction also. In con-
trast, measuring the ¢ = 7/2 quadrature tries to force
the system into an eigenstate of §. However, such an
eigenstate will be rapidly spun around the sphere by the
driving Hamiltonian. This effect is clearly seen on the
steady-state distribution in Fig. 3(b), which is spread
around the ¢ = =£m/2 great circle. As before, the
¢ = +7/2 side is weighted somewhat more heavily. The
analytic result (3.6) for the steady-state Bloch vector is
(z,y,2)ss = (0,72, —2)/100.

The above explanation for the stationary probability
distributions are also useful for understanding the noise
spectra of the quadrature photocurrents in Eq. (3.27).
The spectrum of resonance fluorescence of a two-level
atom has three peaks, the central one at the atomic fre-
quency, and the two sidebands (of half the area) displaced
by the Rabi frequency [31]. It is well known [30] that
the spectrum of the in-phase homodyne photocurrent
gives the central peak, while the quadrature photocur-
rent gives the two sidebands. This is readily explained
qualitatively from the evolution of the atomic state under

cosé

FIG. 3. Stationary probability distribu-

tion of the state vector of an atom whose flu-

orescence is subject to homodyne detection.
The distribution is approximated by an en-
semble of 20 000 points on the Bloch sphere.

The phase of the local oscillator relative to

cosf

the phase of the driving field (¢) is 0 in (a)
and 7/2 in (b). Here, « = v and A = 0.
For further details, see text.




47 INTERPRETATION OF QUANTUM JUMP AND DIFFUSION . .. 1663

homodyne measurements. When £ is being measured, it
varies slowly, remaining near one eigenvalue on a time
scale like y~1. This gives rise to a simply decaying au-
tocorrelation function for the photocurrent (3.27), or a
Lorentzian with width scaling as < in the frequency do-
main. When § is measured, it undergoes rapid sinusoidal
variation at frequency o, with noise added at a rate +.
This explains the side peaks.

D. Heterodyne detection

If the atomic fluorescence enters a perfect heterodyne
detection device, then from Eq. (2.50), the system

|

evolves via the SSE

et + dt)) = { 1- (%a*a + z'H) dt

+ [ydt(oh)e(t) + vFAWa(t)] 0} [e(t)),
(3.28)

where dWq(t) is a complex infinitesimal Weiner incre-
ment with independent real and imaginary parts. This
SSE is equivalent to the following coupled SDE’s for the
angles on the Bloch sphere:

dp(t) = Ag[p(t), 0(t)]dt — %‘;‘;—s(g@ \/g [dW, sin ¢(t) — AWy cos p(t)], (3.29a)
db(t) = Ag[p(t),0(t)]dt + 1;—:35(5)&2 {1 — %[1 + cos 8(t)] cos 6(t) }7 dt
+ [1 + cos 0(::)]\/2 [cos p(t)dW; + sin ¢(t)dWs], (3.29b)
where dW; = v/2Re (dW) and dW, = v/2Im (dW). The Fokker-Planck equation for p(¢, ,t) is then
56,0,6) = { - 2 [A40(6,0)] — o | 40(8,0) + 7T ERE (12 122050 )
- %%y [if—z‘;:“;] - %6%2-7 [(1 + cos 6)?] }p(¢,0,t). (3.30)

As for the homodyne detection case, we approximate the
steady-state probability distribution by a time ensem-
ble of points on the Bloch sphere found from the above
SDE’s. The result (using the same parameters as in the
preceding subsection) is shown in Fig. 4. In this case, the
stationary probability distribution is spread fairly well
over the entire Bloch sphere. This can be understood as
the result of the two competing measurements (£ and 3)
combined with the driving Hamiltonian causing rotation
around the z axis. The complex photocurrent as defined
in Eq. (2.52) is given simply in the Euler angles by

I2(8) = B{Sysin0(t) explig(t)] + vTE2 (D)} . (331)

The spectrum of this photocurrent gives the complete
Mollow triplet, as y is rotated at frequency « while x
simply diffuses.

IV. DISCUSSION

In this paper we have examined three ways by which
the quantum optical master equation (2.13) can be “un-
raveled” into stochastic quantum trajectories for state
vectors. The first (which we have associated with direct
photodetection) involves discontinuous quantum jumps
in the system state, while the other two (homodyne and
heterodyne detection) lead to continuous quantum tra-

0.5
T

cosf
0
T

-0.5
T

FIG. 4. Stationary probability distribu-
i tion of the state vector of an atom whose flu-
orescence is subject to heterodyne detection.
Other details are as in Fig. 3.
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jectories with diffusive noise. In the sense that the den-
sity operator obtained from the ensemble average of the
state vectors produced by any of the three stochastic
Schrédinger equations obeys the original master equa-
tion, they are equivalent. However, the individual quan-
tum trajectories have a quite different nature in each
case. The “direct” SSE (2.31) has already been put to ex-
tensive use [2-7,12,14,32], usually with the attitude that
it is merely an algorithm for simulating irreversible evo-
lution which avoids the use of density operators. The
“homodyne” SSE (2.39), discovered by Carmichael [3],
has been discussed extensively previously [11], along with
its interpretation. What we call the “heterodyne” SSE
(2.50) was first put forward by Gisin and Percival [9], as
a “.. model for the motion of an [individual] quantum
system in interaction with its environment.” Referring to
the “direct” SSE, Gisin and Percival go on to say that
it “... provides a different insight [into the behavior of
individual systems], and it remains to be seen which, if
any, is preferable.”

The main thrust of this paper is that it does not re-
main to be seen which model is preferable. We have
shown that, under the conditions outlined in Sec. IT A,
all three models have an equally valid interpretation in
terms of representing the evolution of an individual quan-
tum system. The relevant model for a given experimen-
tal situation depends on the method by which informa-
tion is to be extracted from the light leaving the system.
That is to say, the state of a quantum system is always
conditioned on (and in fact can be identified with) our
knowledge of the system obtained from a measuring ap-
paratus which effectively behaves classically. This lesson
is almost as old as quantum mechanics. In the words of
Bohr [33], “... these conditions [which define the possible
types of predictions regarding the future behavior of the
system] constitute an inherent element of the description
of any phenomenon to which the term “physical reality”
can be properly attached.” The state vectors produced
by the SSE’s considered here are as real as anything in
the quantum world.

In spite of the above remarks about the equality of all
measurement schemes, it must be admitted that the di-
rect and heterodyne SSE’s are in a sense more natural
ways to unravel the master equation than the homodyne
SSE. The homodyne SSE requires the specification of the
phase of the local oscillator and so is not unique. In the
case of the driven two level atom, there were two natu-
ral choices (in phase and in quadrature with the driving
field), but in other systems this may not be the case.
The direct SSE results from measuring the intensity of
the outgoing light, while the heterodyne SSE results from
measuring its electric-field amplitude and phase. The for-
mer emphasizes the quantum nature of the dissipation
(jumps due to individual photodetections), while the lat-
ter presents a more classical (diffusive) behavior. It might
be expected that the heterodyne SSE would be a more
general model, perhaps applicable to field measurements
where photon detection is impractical (such as with mi-
crowaves).

It should be emphasized that the above SSE’s are only
derivable for perfect photodetectors, for which our knowl-

edge of the system is maximal. For less than perfect de-
tectors (which is the case in practice), quantum trajec-
tories of the conditioned system state still exist, but the
evolution equations will contain terms which do not pre-
serve the purity of states [see, for example, Eq. (2.27)].
Thus it would be necessary to use a density matrix (indi-
cating less than maximal knowledge) rather a state vec-
tor to represent the system. This makes the computation
of a simulated measurement more difficult, and so it is
for convenience only that we use perfect detectors. How-
ever, for some measurement schemes not considered here
(e.g., spectral detection [34]), the density operator must
be used even with perfect photodetectors. There is also
a question as to how accurately one must know the out-
put of the photodetector in order to reproduce well the
conditioned system state. For direct photodetection the
only issue is when the photodetections occur; for homo-
dyne and heterodyne detection, the question is to how
many significant figures the current is known. This issue
remains to be investigated.

So far, we have discussed the first two master equation
unravelings discussed in the Introduction and concluded
that under some conditions they have a meaningful inter-
pretation. The third unraveling, due to Teich and Mahler
[13], has not been mentioned because it does not appear
to correspond to any measurement scheme. Indeed, Teich
and Mahler do not consider any measurement scheme,
but treat their quantum jumps as objective processes
“... connected with the spontaneous emission of a pho-
ton.” It could be argued that we have not looked at
enough measurement schemes. For instance, Teich and
Mahler refer to the different frequencies of their scat-
tered photons, so perhaps their scheme corresponds to
spectral detection. However, this is not the case. We
have examined spectral detection of the resonance fluo-
rescence of a two-level atom in the high driving limit and
found that the conditioned system state undergoes jumps
between the atomic dressed states [34], as predicted by
the dressed-atom model [35]. Teich and Mahler’s model
in the same limit predicts jumps between the diagonal
states, which are completely different (in fact they are or-
thogonal to the dressed states in the Bloch sphere sense).

As well as having no apparent relation to experiment,
the scheme of Teich and Mahler seems to be internally
inconsistent. In their model, a system at steady state will
always be in one of the diagonal states of the steady-state
density operator and will jump between these states. Pre-
sumably an observer should be able to know which state
the system is in, otherwise the meaning of the preceding
claim is unclear. This state (call it |u)) is thus objec-
tive knowledge. Another observer who does not know
that the system has reached steady state will then treat
|1) as the initial state of the system which (according
to this second observer) will then relax to steady state
by smooth evolution of the diagonal states accompanied
by jumps between these changing states. It is easy to
verify for a simple system (such as the two-level atom)
that the diagonal states do change during this relaxation
process, so that one observer’s diagonal states are differ-
ent from another’s. This appears to contradict Teich and
Mabhler’s claim that their model represents the stochastic
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dynamics of individual quantum systems.

In summary, we have presented three SSE’s which en-
able the master equation dynamics to be solved using
state vectors and which in addition can be interpreted as
giving the evolution of the state of the system conditioned
on the results of measurements. The SSE’s give an insight
into the behavior of an individual quantum system under
different measurement schemes. They also allow the re-
sults of experiments to be simulated directly, and suggest
new ways of understanding these results. These features
were illustrated with a canonical quantum optical prob-
lem, the two-level atom. Applications for these SSE’s
include proposed experiments to test quantum measure-
ment theory (for example [36]). In any such proposal,
it is necessary to specify the measurement scheme, and
use the appropriate dynamical model of state reduction.
The SSE’s presented here may also find use in models
of feedback on quantum and semiclassical systems. Fi-
nally, they are valuable because they reemphasize one of
the old lessons of quantum mechanics: that the state of
open quantum systems can only be defined relative to the
information we have about them.
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APPENDIX A: WHY THE THERMAL
TERMS IN THE MASTER EQUATION
WERE IGNORED

From the expression for I(z,t) (2.16), it is evident that
the case of the thermal bath could not be treated in the
theory of optical measurements presented in this paper.
This is because N in Eq. (2.11) represents the average
number of photons per bath mode. Since we are dealing
with a continuum of modes, the total photon flux is in-
finite. Obviously this is an idealization, and in any case
the bandwidth of a real photodetector will not be infinite.
Nevertheless, if the master equation appropriate to the
thermal bath (2.12) were to apply, then the photon flux
due to the thermal bath would be far greater than that
due to the system for N finitely large. In that case, the
occurrence of a photodetection effectively conveys no in-
formation about the system evolution. Photodetections
will occur very rapidly, and will have Poissonian statistics
on the time scale of the system. To lowest order, the sys-
tem will evolve according to the master equation (2.12)
at all times, and the concept of a quantum trajectory of
the conditioned state is useless. Of course, it is possi-
ble to consider the case where, for instance, one end of
a cavity is illuminated by broadband thermal light, giv-
ing rise to the usual master equation, but that the other
end is illuminated by a vacuum and is subject to pho-
todetection. The presence of this second mirror changes
the total master equation for the system to one appro-
priate to a lower temperature. Finally, it is important
to note that the above comments regarding the difficul-

ties of treating photodetection in a thermal bath apply
equally to a broadband squeezed vacuum [18].
APPENDIX B: DERIVATION OF EQ. (2.32)

Consider the following two-time correlation function
for the photocount increment:

E[dN.(t + T)dN(t)]. (B1)
Here dN,(t) satisfies

E[dN(t)] = Tr [T pc(t)] dt = Pe(t)dt, (B2)

ch(t)2 = ch(t)’ (B3)

where J is the superoperator which gives the change in
the system when dN (¢) = 1 via pc(t+dt) = T pc(t)/ P.(t).
In the case of the VOME (2.30), the action of the jump
superoperator is defined by Jp = ynapa’. First we con-
sider the case when 7 > 0 (that is, 7 > dt, where dt is
the minimum time step considered). Now dN(¢) is either
zero or one. Thus, since if dN(t) = 0 the function (B1)
is automatically zero, we have

E[dN.(t + T)dN(¢)]

= Prob[dN (t) = 1]E [dNc(t + 7)|an(e)=1] »

(B4)
where the subscript to the vertical line is the condition
for which the subscript ¢ on dN,(t + 7) exists. This can
be rewritten as

[yn(a'a)(t)dt]Tr {yna'adtE [pc(t + T)lany=1]}, (B5)

where (a'a)(t) = Trlap(t)at]. Now from the action of

J and the fact that p(t) = E[p.(t)] obeys the master

equation p(t) = Lyp(t), we have

E [pe(t + 7)lan()=1] = exp[Lo(r — dt)]ap(t)a’/(a'a)(t).
(B6)

Thus to leading order in dt,

E[dN.(t + 7)dN(t)] = v*n*dt*Tr{a'ae " [ap(t)a’]}
forT > 0. (B7)

Now for 7 = 0 we have
E[dN(t)dN(t)] = E[dN(t)] = yndtTr(a'ap(t)]. (B8)

For short times this term will be dominant, and dN (t)/dt
can be treated as é-correlated noise for a suitably defined
6 function. Thus we can write

E [dé\ZC(HT)d_thX(t)]

= v*n?Tr{a'ae’*"[ap(t)a’]} + vnTr[a’ap(t)]6(7),

(B9)
which is the desired result.
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