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The normal method for calculating very precise eigenvalues for H2 and its isotopes is to solve the
Schrodinger equation using a reduced mass calculated from the bare nuclear mass with the mass-

independent Born-Oppenheimer potentials and with mass-dependent adiabatic and nonadiabatic correc-
tion terms that account for the finite mass of the nuclei. On the other hand, scattering calculations have
used reduced masses calculated from the masses of the separated atoms to solve the Schrodinger equa-
tion with mass-dependent adiabatic potentials, but with no explicit treatment of electronically off-

diagonal nonadiabatic corrections. We have extended the conventional bound-state methods based on
bare nuclear masses into the continuum by introducing an effective local potential to account for the
electronically off-diagonal nonadiabatic mass-dependent corrections. Good agreement is found with pre-
viously calculated eigenvalues of H& and D2. The scattering length for the ground state X 'Xg of H~ is

very sensitive to the nonadiabatic corrections, but is in good agreement with that previously calculated
using a reduced mass based on the separated atomic masses. Using quantum close-coupling methods, we

also find good agreement with previously calculated collision-rate coefficients in the T~O limit for col-
lisions of H with H and D with D.

PACS number(s): 34.10.+x, 34.20.Cf, 03.80.+ r, 34.50.—s

I. INTRODUCTION

One of the most carefully studied theoretical molecular
systems is the Hz molecule and its isotopic analogs. Ko-
los, Szalewicz, and Monkhorst [1] have produced highly
accurate Born-Oppenheimer (clamped-nuclei) ab initio
potentials for the H2 molecule and its isotopic analogs.
The clamped-nuclei potential originally used by Kolos
and Wolniewicz [2] is independent of the nuclear masses
and thus gives an isotope-independent Born-
Oppenheimer potential VBo(R ). In order to obtain
effective adiabatic isotope-dependent potentials V~Bo(R)
from the ab initio data of Kolos, Szalewicz, and Mon-
khorst [1], it is necessary to add mass-independent rela-
tivistic and radiative corrections [3—5] along with mass-
dependent adiabatic corrections [3,6]. To obtain accurate
rovibrational levels for the six isotopes of diatomic hy-
drogen, one takes the appropriate Vp QQ(R ), calculates its
eigenvalues, and adds on nonadiabatic corrections [6] due
to electronically off-diagonal interactions. The eigenval-
ues for total angular momentum J=0 are calculated
from the Schrodinger equation for the VA&o potential:

1 d + [E V~Bo(R ) ] 'g(R ) =0
2p dR'

where p is the reduced mass calculated from the bare nu-
clear masses of the two nuclei. Schwartz and LeRoy [7]
describe a recipe for preparing the effective adiabatic po-
tentials V&Bo(R) based on Refs. [1—6] and on the large-R
results of Deal [8] and of Bukta and Meath [9]. The cal-
culations presented in this paper use the V&Bo(R) poten-

tials described in detail by Schwartz and LeRoy [7] using
programs and input decks provided to us by LeRoy.

Full close-coupling calculations of the nuclear-spin re-
laxation rates and spin-exchange frequency shifts for
atomic hydrogen and deuterium in specific Zeeman sub-
levels of the two hyperfine components have been made
by Verhaar and collaborators [10—16]. They also
developed approximations based on the degenerate-
internal-state approximation (DIS) [16]. In these calcula-
tions the Schrodinger equation (1) was solved using the
reduced mass obtained from the atomic masses [12], with
no explicit attempt to investigate effects associated with
the R-dependent nonadiabatic interactions. The
justification for this was twofold: (1) use of the atomic
mass is asymptotically correct, as shown by the fact that
the bound-state energies nearest the continuum can be
fairly accurately reproduced by replacing the reduced
mass obtained using the bare nuclear mass by one ob-
tained using the atomic mass and neglecting nonadiabatic
interactions (see Table II); and (2) the work of Bunker
and co-workers [17,18] gives some justification for follow-
ing this procedure. Bunker, McLarnon, and Moss [18]
solve Eq. (1) with an effective vibrational mass

p, =p(1+P), where

O= ——g l«IP, ln)]'~~,„.
n

Here Pz is the momentum operator, l0) and ln )
represent the ground and excited electronic states, re-
spectively, and 50„ is the energy difference between states
0 and n In gener. al, P is an R-dependent function
representing the nonadiabatic effect of distant electronic
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states, but Bunker, McLarnon, and Moss [18] fit the ei-
genvalues of D2 by assuming that P was a constant. They
found that p„was much closer to the value calculated
from atomic masses than from bare nuclear masses.
However, Wolniewicz [6] comments that the procedure
of calculating the eigenvalues from the bare masses and
adding the calculated corrections due to the R-dependent
nonadiabatic interactions gives much better agreement
between the calculated and experimental vibrational
quanta than does the semiempirical nonadiabatic result
obtained by Bunker, McLarnon, and Moss [18].

We address the question of the effect of the R-
dependent nonadiabatic (NA) corrections in a scattering
calculation and show that the effect of these interactions
can be included to a good approximation by a local
effective-potential operator. Following Refs. [1—7] we
solve Eq. (1) using the bare mass p, but add a term
VNA(R) to V~Bo(R) to represent the effect of the interac-
tion with distant electronic states. We use this method to
calculate the eigenvalues and scattering lengths of the
ground X 'X+ state of H2 and D2. We also repeat the
multichannel close-coupling calculations for ground-state
collision-rate coefficients of H+H and D+D collisions,
replacing the ground-state potential in Eq. (1) by the
same effective potential, V~Bo(R)+ VN&(R ).

We first describe and parametrize the local nonadiabat-
ic operator, and then calculate the scattering lengths and
J=0 vibrational eigenvalues of H2 and Dz. Finally, we
brieAy review the theory and calculations of spin relaxa-
tion rates for Hz and its isotopic analogs.

II. THEORY

Wolniewicz [6] calculated the nonadiabatic interaction
for the X 'X+ state due to distant states of 'X+ and 'H

symmetry (ungerade states also contribute to mixed iso-
tope states, such as HD). Only the 'Xg+ states contribute
to the shift of J=0 eigenvalues in H2 and D2, causing ei-
genvalue shifts of up to 5 cm ' in H2. However, the
nonadiabatic corrections given by Wolniewicz and used
by Schwartz and LeRoy [7] are vibrational averages for
each specific level and are thus inapplicable to the contin-
uum. Thus, we decided to develop an effective local
operator to approximate the second-order nonadiabatic
interactions. It is reasonable to expect that this R-
dependent interaction is dominated by the rapid variation
of the electronic wave function near the avoided crossing
that gives rise to the double minimum feature in the
E,F 'X~ state. Therefore, we began with an initial
Gaussian trial function that mimics the shape of the max-
imum in the E,F 'X+ state and adjusted the amplitude to
obtain a good fit to the J =0 eigenvalues of H2. The trial
function was then generalized to obtain further improve-
ments in those eigenvalues. Figure 1 shows a plot of the
X'X+ and the Z, F 'X+ V~ao(R) potentials along with
the determined effective local operator. Table I tabulates
the function we use, which was fit as a cubic spline and
exponentially extrapolated outside its tabulated range.
Table II shows the calculated differences 6 in the J =0
eigenvalues of H2 relative to those calculated by Schwartz
and LeRoy [7] for three different calculations. The calcu-

I
l

I I I
l

I I I
)

I I I
i

I I I

-0.7

g -0.8
cg

~ -0.9

g -1.0

\

NA

E,F Z
6

4

-1.. 2 I I i I I I I I I I I I I I ~ L I I I I 0
0 2 4 6 8 30

Radius (a )

FIG. 1. Figure of the X 'Xg+ (solid line) and E,F 'X+ (short-
dashed line) double minimum state, where the abscissa is given
in units of the bohr radii ao=0. 5291772490X10 ' m. The
asymmetric effective local operator VN„(dash-dotted line),
which describes the off-diagonal nonadiabatic interactions, is
shown relative to the right-hand energy scale. Note that VN&
has its maximum near the hump in the E,F 'Xg state.

TABLE I. Effective local operator VN&(R) used in our calcu-
lations.

Radius (units of ao)

1.565
1.730
1.880
2.050
2.225
2.460
2.650
2.830
3.050
3.270
3.520
3.810
4.090
4.470
5.055
5.502
5.950
6.397

VNAd (cm )

—0.703 50
—1.978 64
—3.217 10
—4.404 30
—5.474 59
—6.344 71
—6.930 34
—7.233 60
—7.220 30
—6.911 86
—6.165 50
—5.079 47
—4.106 48
—2.797 84
—1.382 30
—0.762 13
—0.420 20
—0.231 67

lation labeled "bare" uses p=m /2 with Verso(R) only;
the one labeled "atomic" uses p=mH/2 with V~BQ(R
only; and the one labeled NA uses p =m /2 with

V/BQ ( R ) + VN~ ( R ) . Here m~ and mH are the respective
proton and hydrogen atom masses. One should note that
the calculation using the atomic mass provides a very
good approximation to the full nonadiabatic calculation
for the last vibrational eigenstate. All masses and conver-
sion factors are consistent with the 1986 recommended
values [19,20]. In order to check the accuracy of our
effective local operator we performed a similar set of ei-
genvalue calculations for D2, which use the correspond-
ing masses for D. These are given in Table III. The
effective local operator used for the D2 calculations is
identical to that used for the Hz calculations, but has
been scaled by the mass of the deuteron relative to the
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TABLE II. Differences between the calculated H2 eigenval-
ues and the eigenvalues obtained by Schwartz and LeRoy (Ref.
[7]). In column I are the results of Schwartz and LeRoy;
columns 2 through 4 are the current calculations using the bare
nuclear mass and VABQ(R)+ VN&(R), the atomic mass and

VAQQ ( R ), and the bare nuclear mass and VABQ (R ), respectively.

Quantum
number

Calculated
eigenvalues (cm ' )'

~atomic ~bare

(cm ') {cm ')

0
1

3
4
5
6
7
8
9
10
11
12
13
14

—36 118.074
—31 956.927
—28 031.088
—24 335.689
—20 867.698
—17 626.119
—14 612.257
—11 830.105

—9286.901
—6993.907
—4967.499
—3230.727
—1815.600
—766.456
—144.606

—0.003
—0.003
—0.001

0.015
0.009

—0.009
—0.001

0.006
0.000
0.005
0.009
0.008

—0.004
0.008
0.001

—0.086
—0.292
—0.482
—0.607
—0.722
—0.804
—0.768
—0.704
—0.623
—0.511
—0.410
—0.299
—0.188
—0.105
—0.051

0.502
1.363
2.115
2.809
3.391
3.883
4.364
4.738
4.979
5.082
4.982
4.653
4.033
3.007
1.457

'Reference [7].

TABLE III. Same as Table II except for D2.

Quantum
number

Calculated
eigenvalues (cm ')'

~atomic ~bare
(cm ') (cm ')

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

'Reference [7].

—36 748.349
—33 754.742
—30 880.242
—28 122.759
—25 480.643
—22 952.701
—20 538.231
—18 237.066
—16049.615
—13 976.943
—12 020.847
—10 183.972
—8469.946
—6883.561
—5430.997
—4120.111
—2960.825
—1965.632
—1150.258
—534.551
—143.336

—1.648

0.005
0.006
0.012
0.023
0.002
0.005
0.031
0.029
0.003
0.008
0.028
0.028
0.020
0.009
0.002
0.017
0.004
0.005
0.004
0.013
0.009
0.000

—0.020
—0.094
—0.161
—0.213
—0.289
—0.329
—0.343
—0.365
—0.395
—0.370
—0.329
—0.300
—0.272
—0.264
—0.220
—0.168
—0.144
—0.092
—0.065
—0.033
—0.018
—0.003

0.189
0.506
0.799
1.075
1.296
1.523
1.745
1.928
2.072
2.237
2.384
2.482
2.540
2.532
2.511
2.444
2.282
2.073
1.747
1.315
0.735
0.061

mass of the proton. The largest difference in our nonadi-
abatic calculation for Hz and D2 eigenvalues, relative to
those calculated by Schwartz and LeRoy, are, respective-
ly, 0.015 and 0.031 cm ', as compared with an estimated
uncertainty of 0.015 cm ' in the eigenvalues of Schwartz
and LeRoy. Therefore, the effective local operator is a
good approximation for including nonadiabatic correc-

TABLE IV. Calculated scattering lengths (in units of ao) for
the bare nuclear mass and V~Bo{R), respectively. There are no
estimates for nonadiabatic interactions for the b 'X„+ state.

Scattering length (units of ao)

System'

H2(b X„+)
D2(b X„+)

'Reference [7].

NA

0.3159
12.97

Atomic

0.3045
12.97
1.340

—6.867

Bare

0.4539
13.11

1.343
—6.858

tions in the eigenvalue calculation. On the other hand,
using the atomic mass to approximate the nonadiabatic
corrections give significantly poorer eigenvalues, as previ-
ously reported by Wolniewicz [6].

We have calculated the scattering length A, on the
X 'X+ potential for various choices of the reduced mass
and the effective local operator. These are given in Table
IV, along with the scattering length A3 for the X„state.
The X 'X+ scattering lengths for H+H and D+D col-
lisions differ by about 0. 15ao between the bare mass and
NA calculations. The percentage error is much larger for
H+H because of the much smaller magnitude of the
scattering length. Our scattering length for H+H col-
lisions calculated using the bare ~asses and V~BQ+ VNA

agrees well with that calculated using the atomic mass
and VABQ only. It also agrees well with the scattering
length of 3]=0.32ao reported by Stoof, Koelman, and
Verhaar [16], and calculated from the earlier V~Bo po-
tentials of Refs. [6,9,21,22]. This indicates that the
choice of using the atomic masses without any explicit
treatment of the R-dependent nonadiabatic corrections
seems justified for scattering calculations.

We have also calculated the scattering length A3 for
the ground X„potential, using the two choices of
masses, but without any nonadiabatic corrections, which
are not known for this state. The two values from the
bare mass and atomic mass calculations agree well with
one another and with the value 33=1.34ao reported by
Stoof, Koelman, and Vehaar [16). This implies the ab-
sence of significant nonadiabatic effects for this state.

In order to judge the role of R-dependent nonadiabatic
effects on ground-state spin relaxation rates, we have also
carried out full quantum scattering close-coupling calcu-
lations of these rates for H+H and D+D collisions us-

ing methods that are equivalent to those described by
Stoof, Koelman, and Verhaar [16]. Three different sets of
calculations were done in the limit of zero magnetic field
using the assumptions of the bare mass, atomic mass, and
NA calculations described above. In the NA calculation,
VABQ for the X ' X~+ state was replaced by VABQ + VNA .
The full close-coupling equations were set up in a nu-
clear glu symmetrized basis ~FMf, fbi ), where
F=S, +S„+I,+ Ib +1. S& and Ik are the respective spin
and nuclear angular momenta of atom k =a, b, 1 is the
relative angular momentum of nuclear motion, and F is
the total angular momentum. The S matrix obtained in
this basis is then transformed by a unitary transformation
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to the f,m, fbml, lp) basis, and the event rates calculat-
ed for the specific processes, f,m, fbmb ~f,'m,'fbmb.

There are two mechanisms for these hyperfine chang-
ing collisions, a spin-dipole and a spin-exchange process.
The spin-dipole mechanism depends on the spin-spin in-
teraction, which splits the degeneracy of the Q=O and 1

components of the X„state, where 0 is the projection of
spin on the internuclear axis. Since this mechanism de-
pends on the X„potential, we calculate nearly identical
rate coeKcients for spin-dipolar processes using bare
mass, atomic mass, and NA calculations. These agree
well with the graphical results for H+H [16] and D+D
[14,15].

On the other hand, the spin-exchange mechanism de-
pends on the phase differences between scattering on the
X„and X'X+ states. In particular, Stoof, Koelman,

and Verhaar [16] show that within the framework of
their DIS approximation the rate coefticients for spin-
exchange processes for H+ H that go by s-wave collisions
in the T~O limit are proportional to (3, —A3) . This
difference is very sensitive to the nonadiabatic corrections
in the H+H case. In fact, we find that exchange process-
es calculated for H+H by the bare method to be about
30%%uo lower than those calculated by the NA method.
However, spin-exchange rates calculated by the atomic
mass and NA methods agree well with one another, and

also agree well with the previous calculations for H+H
[16]and D+D [14,15].

On the basis of these calculations, we believe that the
approximation of the "atomic" calculation, in which the
atomic masses are used with the VAQQ potentials, are
adequate to represent the low-temperature collision-rate
coeScient for ground-state collisions, even though this
approximation neglects the R dependence of the nonadia-
batic corrections. We do wish to comment that this
method is expected to locate incorrectly the position of
shape resonances since the eigenvalues are not accurately
calculated. This could affect the cross section at higher
temperatures or in a strong magnetic field, where shape
resonance effects may be important [23]. An alternate
procedure to the one we use would be to develop an
effective local operator which corrects the constant-
atomic-mass approximation. In this way, the theory
would have the correct asymptotic scattering properties
and would also locate the eigenvalues more accurately.
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