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Spatiotemporal oscillations in a semiconductor etalon
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We show theoretically that competing optical nonlinearities in a semiconductor etalon, with trans-
verse effects included, result in complex spatiotemporal behavior. A theoretical framework is devel-
oped that explains many features of the oscillatory behavior. Numerical simulations exhibit kinks,
switching waves, whole-beam, and edge oscillations. Simulations compare favorably with recent
experiments.

PACS number(s): 42.65.—k

I. INTRODUCTION

Coupled nonlinear reaction-diffusion systems offer
much scope for complex spatiotemporal behavior. One
such system is the semiconductor Fabry-Perot etalon
having a refractive index dependent on photoexcited car-
rier density and temperature. These devices have at-
tracted much interest due to potential applications to
the fields of telecommunications and optical computing.
Recent experiments in InSb devices have revealed com-
plex oscillatory behavior of a reflected beam [1], posing
intriguing questions about the nature and form of the os-
cillations. Furthermore, there has been no direct experi-
mental evidence of transverse effects in the coupled InSb
system, although these must play a crucial role in the dy-
namics of oscillations. To date theoretical considerations
have concentrated on plane-wave approaches, which do
not include spatial effects and hence are inadequate in
describing oscillatory behavior.

We propose a theoretical technique that is useful in
explaining features of spatiotemporal behavior in certain
reaction-diffusion systems. We believe that this tech-
rrique is quite general and can be applied to explore dif-
ferent processes in two-component reaction-diffusion sys-
tems. Here we apply this technique to the model of an
InSb interferometer with competing nonlinearities. In
such a two-component system there are three important
length scales: namely, the two characteristic diffusion
lengths and the minimum modulation length of the in-
homogeneous parameters. The technique requires that
one diffusion length be much smaller than the other dif-
fusion length and the modulation length of the inhomo-
geneous parameters. Then at any instant and for each
spatial point it is possible to treat the other component
and the inhomogeneous parameters as axed parameters
of the equation with the smallest diffusion length. If
in addition the characteristic decay time of the variable
with the shortest diffusion length is much smaller than
the other decay time, then a further simplification occurs.
Then the dynamics of the fast variable can be considered

independently of the slow variables, as these do not have
time to respond to changes in the fast variable. It is then
possible to predict local dynamic behavior from a known
state of the complete system. These conditions are met
in the InSb system if the spot size of the incident beam
is large compared to the carrier diffusion length.

We apply the technique and gain useful insight into
features of the oscillatory behavior and particularly con-
centrate on transverse effects. We simulate the system
numerically in one transverse direction and show how
kink solutions, whole-beam oscillations, and pulse effects
evolve. Furthermore, we find that the edges of the carrier
profile may lose stability and oscillate at a much higher
frequency than expected, considering the thermal relax-
ation time of the system.

The paper is organized as follows. The InSb Fabry-
Perot system is introduced and the model explained. We
review previous results on kink solutions and regenera-
tive oscillations that are essential for the understanding
of the graphical technique. This technique is then ex-
plained using examples from numerical solution of the
full dynamical system. Finally we consider the response
to pulse inputs ("single-shot regime") and edge oscilla-
tions.

II. MODEL EQUATIONS
FOR THE FABRY-PEROT RESONATOR

In this section we introduce the equations (proposed
in [2]) which we will use to describe the processes in
a nonlinear Fabry-Perot resonator. The InSb etalon is
mounted on a heat sink and illuminated by a laser beam
of wavelength A. The optical properties of the etalon are
governed by the dependence of the refractive index on
photoexcited carrier density (N) and temperature (T)
through

n(N, T) = no(T ) —crt% + cry (T —T ),

where o.~ and oz- are positive constants. Since the radia-
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tion is not significantly absorbed in the cavity we assume
that it is possible to average N over the length of the
cavity. Then neglecting difFraction and restricting dif-
fusion to one transverse direction we obtain the follow-
ing reaction-difFusion system for the photoexcited carrier
density and temperature:

BN
Bt
BT
Bt

where

nI, (N, T, 2:)

Q(N, T, x) T
Cp

B2N
BZ2+ )

—Tp OT+K
7T Bx

(2a)

(2b)

T —T
a(T) = apexp

~ (4)

Both carriers and heat difFuse in the x direction with dif-
fusion coefBcients D and z, respectively. r~ is the carrier
recombination time and is independent of N since we as-
sume trap recombination as the dominant recombination
mechanism (at Tp -77 K). Q(N, T) represents the heat
generated per unit volume and may be from two sources.
First there is nonradiative carrier recombination, which
yields

Q(N, T) = M N
(5)

[Note that Eqs. (1)—(5) are in the form proposed in [2].]
Second there could be absorption of radiation at the back
mirror since some experiments utilize a gold refiecting
layer to provide extra refl.ectivity. We could then assume
a contribution of the form

(1 —e ~')(1+ Ri,e ')(1 —By)I,(N, T, 2) =

I~„(x)
1+ I" sin [2+n(N, T)l/A]

is the cavity irradiance. The etalon is of length / and mir-
ror reflectivities Bf (front), and Ri, (back). The finesse
factor I' = 4R~(l —R~) z, where R~ = (ByRi, )i/~e
The intensity absorption coeflicient may depend on tem-
perature through

TABLE I. Experimental parameters.

Quantity
TQ

TcJ y +cL

O~
&T
~M

'TT

A

Rf
Rg
AQ

&eff
D

Value or range
77-85

77
1.6—5.0 x 10

6x10
300-600
70—500

5.43—5.71
100-500
0.36—0.5
0.36—0.95

2—80
0—1
10

0.01—0.1
0.096
5.8
200

0—30

Units
K
K
cm
K

cm

cm /s
cm s
J/g K
g/cm
pm
K

(i) Absorption at the back mirror must be treated as a
heat source averaged over the cavity. This is a reasonable
assumption if the length of the etalon is short compared
to the characteristic thermal length.

(ii) Carrier recombination at the surfaces of the InSb
is neglected. This efFect could be included by adding a
factor multiplying the incident irradiance in (2a) [5, 6].
As we intend to concentrate on transverse processes the
precise forms of the source and sink terms are not impor-
tant, as this is unlikely to afFect the qualitative behavior
of the system as a whole.

Even with the approximations noted above, this sys-
tem is still too complex to treat analytically and also dif-
Gcult to simulate numerically because of the large ratio
of reaction rates (r~/7~ 10 ). In the following sections
any numerical simulations are of the full system (2a) and
(2b) assuming heating due to (bulk) carrier recombina-
tion only. References to a Gaussian input assume the
profile

a,@I'(N, T)
) (6) I~„(z) = Ip exp( —x2/tiiz), (7)

where Iq is the "transmitted" irradiance and a.,g takes
account of any heating outside the etalon. This form of
heat source has been shown to lead to oscillatory behavior
in the plane-wave limit [3].

In Eq. (2b), we neglected the dependence of the lat-
tice temperature on the coordinate z along the beam
direction. This is an acceptable approximation if the
InSb layer is in contact with a perfect heat sink through
a thin thermal resistance [4], as is indeed the case ex-
perimentally. Then we may replace the term describing
thermal difFusion in z (r B T/Bz ) with the decay term

(T —Tp)/rz used —in (2b). 7z plays the role of a ther-
mal relaxation time and defines a corresponding difFusion
length l~ = +K~~. This approximation leads to the fol-
lowing consequences:

where Ip is the peak irradiance and m the spot size. Typi-
cal experimental parameters are tabulated in Table I and
we will use these parameters throughout. In the experi-
ments performed to date there are many parameters that
are not known precisely. In particular, the heat sources
have not been quantified. Therefore we do not attempt
quantitative agreement with experiments. We assume
that the system will behave similarly in two transverse
dimensions although the efFective difFusion rate will be
difFerent.

III. THEORETICAL AND NUMERICAL
TREATMENT

Before considering the complex spatiotemporal behav-
ior of the InSb system we will present some previous re-
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suits. Having presented the theoretical framework re-
quired we will build upon this to propose a technique for
explaining the complex behavior of the system.

We begin by considering the one-component bistable
system, which evolves according to

ug ——f(u, A), (8)

where f depends on both u and the set of parameters A.
There may be any number of roots of (8) satisfying the
steady-state condition

f (u, A) = 0. (9)

A common realization of f is the S shaped curve obtained
by plotting the solution of Eq. (9) against one of the
parameters (Aq, say). An example is given in Fig. 1(a)
where the system is bistable in the range Az & A~ ( A&.

Az is typically an external parameter —for example, the
incident irradiance in an optically bistable system. In
the bistable region the state depends on previous history
(this leads to the well-known hysteresis effect [7]). This
property may be used to provide memory functionality
in a single device. Another feature of these systems is
that near the critical points (Af, Az) there is very slow
response. This is known as critical Slowing down and
is a limitation in marginal switching situations. In two-

component systems this is not such an important effect.
Inclusion of diffusion gives the equ'ation

0 u
uq ——f (u, A) + D„ (10)

where D„ is the difFusion coeKcient of the species u.
Equation (10) has a nonhomogeneous solution even if A
and D„are homogeneous. This separatrix solution has
the following properties:

lim u = u+,
2:—++OO

lim u=u

=0,

f(u', A)du'

where u and u+ are the two stable zeroes of (9) cor-
responding to A in the bistable region [Fig. 1(a)]. The
two states are joined by a region of approximate width
QD„as shown in Fig. 1(b). This kink solution is in-
dependent of transverse coordinate and hence will move
with constant velocity. Assuming a solution of the form
u(x —Ut)—:u(() yields

Of particular interest is the case when the kink is sta-
tionary, which requires

f(u', A)du' = 0.

For simple forms of f the velocity can be found analyti-
cally but in general numerical methods have to be used.
Another approach is to recast (8) in the form typical of
a system moving in a conservative field:

dU
ug = —

)du

where

U(u) = — f (u, A) du

FIG. 1. (a) An S-shaped curve for g(u, A ) = 0 showing
bistability in the range A& ( A& & A&. Two states are in-
dicated within the bistable region. (b) Spatial kink solution
between the two states depicted in (a).

is the potential. The velocity is then a function of the
difference in potentials —the system moves to the most
favorable state (lowest potential). When the potentials
of the two states are equal the kink is stationary.

One-dimensional systems have been studied theoreti-
cally and experimentally using the above approaches (see,
for example, references in Fife [7].) Harding and Ross [8]
have experimentally investigated the dynamics of kink
solutions in a ZnSe system with a thermal nonlinearity.

The next step in complexity is to consider a coupled
reaction system:

u, = J:(u, v, A),

v~
——g(u, v, A).
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The state of the system evolves in the phase space (u, v)
and a convenient approach is the use of nullcline dia-
grams. The nullclines

f(u, v, A) =0 and g(u, v, A) =0
may be plotted in the u, v plane and an example is shown
in Fig. 2, which shows one f and two g corresponding to
different parameters. Intersections of the f and g null-
clines correspond to steady-state solutions of both sub-
systems and hence of the complete system (15). In the
example shown the system is in the bistable regime for
the solid g nullcline and there are three steady-state so-
lutions, two stable and one unstable. Local evolution of
a state can be inferred in the following way. On each side
of the curves f = 0 and g = 0 the sign of the derivatives
du/dt and dv/dt changes. Hence u and v will increase
or decrease depending on where the current state of the
system is in relation to the nullclines. In some parameter
regions there may be no stable states and this is indeed
the case for the dotted g nullcline in Fig. 2, the result
being that the system oscillates. In general the path in
phase space is not easy to predict [9]. However, when
one subsystem reacts much faster than the other (as in
the InSb interferometer), the system will trace a path
close to the N nullcline under the influence of any (slow)
changes in T. In some parameter ranges a reduction in
the slow variable may pull the state off the N nullcline
and it will jump very quickly to the next available N
state. An example is shown in Fig. 3, where there is fast
initial movement from S to the N-nullcline. This is fol-
lowed by a slow reduction in temperature until at point A
the stability is lost causing a jump to state B, which oc-
curs in a time of the order of the carrier relaxation time.
Point B is below the T nullcline and hence the tempera-
ture will slowly rise and the state follows the N nullcline
towards point C. At point C there is a jump to point D
and the process repeats. These regenerative oscillations
have been proposed [10] and studied theoretically and ex-
perimentally [ll, 12 in optically bistable semiconductor
systems. In most cases the plane-wave (homogeneous)
description is used and in some cases the fast subsystem

FIG. 2. The nullclines f(u, v, A) = 0 and g(u, v, A) = 0.
For the solid g nullcline there are two stable and one unsta-
ble state. For the dotted g nullcline the stationary state is
unstable and the system oscillates.

CD

CD

E
CDI—

Concentration N

FIG. 3. The result of a numerical simulation overlayed
on the nullcline figure. From the initial point S the system
settles into an oscillatory motion.

is eliminated adiabatically. This is appropriate as long
as the transverse effects may be neglected.

Now consider a two-component homogeneous reaction-
diffusion system:

t9 8
ug ——f (u, v, A) + D„

0 v
vg ——g(u, v, A) + D„

In the bistable region the nullclines can be as shown in
Fig. 4(a). As before for a kink solution —we assume a
state A = (N, T ) at 2: = —oo and B = (Ni„Ti,) at
x = +oo. It has been shown that either one or three
traveling-wave solutions exist, depending on the ratio of
characteristic velocities of the two subsystems [13, 14].
In a system with a large difFerence in reaction rates it is
possible to decouple the equations and assume that the
kink in the fast variable is only under the influence of
the (local) state of the slow variable. To show this, a
numerical simulation of the InSb system was performed
with parameters corresponding to Fig. 4(a). The input
intensity was constant in time and space and the ini-
tial proflle set to (N, T) = (N, T ) for x ( 50liv and
(N, T) = (Ng, Tb) for z ) 50l~. The results are shown
in Fig. 4(b) where each carrier profile is separated by
At = 10'~. Note that a kink forms between the values
N~ and N, . This moves rapidly and is almost unafFected

by the very small change in temperature. On a much
longer time scale the temperature decreases (2: ) 50l~)
and N reduces accordingly, following the nullcline from
C to A. The important consequence is that the N kink
can be considered as a one-component solution between
Ni, and N, (or N, and N ), treating the temperature
as a Bxed parameter. Experiments are underway to ex-
amine these effects, although no convincing results have
appeared.

Finally we consider the analysis of Nishiura and
Mimura [15], who investigated a homogeneous reaction-
diffusion system recast into the form
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First consider the features of the whole-beam oscilla-
tions found numerically. In Fig. 6 the evolution of central
N, T and reHected power is shown and oscillations are ev-
ident. Figure 7(a) is a contour plot of carrier density as
a function of 2: and time. Similarly, Fig. 7(b) shows the
evolution of the temperature. As the time t = t is ap-
proached the system is in the "lower" N state and is cool-
ing. At t = t the center of the carrier profile switches to
the upper state and the switched-up region rapidly ex-
pands. The carrier profiles around the switch-up point
are shown in Fig. 8(a), where each profile is separated by
a time of 41.67~~. During the switch process the tem-
perature changes by less than 0.01'. The region of high
carrier density adds extra heat due to carrier recombi-
nation and hence the temperature rises. As the temper-
ature increases the switched-up region contracts until it
finally collapses at t = tb [Fig. 8(b)). After collapse the
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FIG. 6. Evolution of (a) central carrier density, (b) tem-
perature (at the beam center), and (c) reflected power show-

ing whole-beam oscillations. Parameters: A = 5.618 pm,
D = 10 cm /s, r = 0.01 cm /s, Ry = Rz = 0.5, detun-
ing=1.451 42, To ——77 K, o.~ ——1 x 10 cm, aT = 6 x 10
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FIG. 7. Contour plot of (a) carrier density and (b) tem-
perature as a function of position and time showing whole-
beam oscillations.
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the limit when the carrier diffusion length is much less
than the characteristic thermal diffusion length and the
spot size. It is worth noting that as the spot size (or
the thermal length lT ) decreases, the approximation of
infinitely narrow kink widths will break down. In this
limit the I-T technique fails to yield an adequate quan-
titative description of the oscillations. For example, it
does not predict the correct position of the kinks. Nev-
ertheless, the qualitative behavior remains the same.

The system can be modeled by solving the thermal
diffusion equation and defining the carrier density from
the method above. This would be very fast compared to
solving the complete system and only loses information
about the (fast) switch-on process.
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sian beam. This was possibly observed experimentally
by Grigor'yants [1] following an earlier consideration in
the plane-wave limit [19]. In this regime a small tran-

PI&G. 15. Single-shot response. Prom the initial position
(A) a drop in intensity produces H C. Restoration of i—n-
tensity yields position D and cooling eventually leads to a
switch-on at E.
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sient pulse (or drop) in intensity may yield a large output
pulse, typically of much greater duration. In Fig. 15 the
initial profile (A) has a central switched-up region with
kinks at Z. A reduction in intensity moves all points on
the beam curve to lower intensities (curve B), which is
completely above the zero-velocity line. The upper state
must collapse and this happens on the carrier time scale.
Following collapse the system cools and the beam curves
move downwards: B ~ C. When the intensity is re-
stored the beam curve switches to D while still cooling
towards E, where once Tj is reached, the upper state will
appear. The pulse duration may be quite short since the
switch-off is very rapid. A similar process occurs for a
sudden increase in irradiance.

8. Edge oscillations

The numerical simulations have revealed that the edges
of the switched-on region (corresponding to the high-N
state) may lose their stability and start to oscillate. The
frequency of these oscillations is much higher than that
of the whole-beam oscillations described in the previous
sections. When the whole-beam oscillations also exist,
the pulsations of the edges develop soon after the ap-
pearance of the upper state, their amplitude increases
and they disappear with the collapse of the upper state
(Fig. 16).

In cases when the whole-beam oscillation does not oc-
cur we have observed both symmetric and antisymmetric
pulsations of the edges. An example of edge oscillations
with no associated whole-beam oscillations is given in
Fig. 17(a). We defer for a planned forthcoming publi-
cation a more extensive examination of the edge oscilla-
tions. We will, however, note that this phenomenon cor-
responds to almost tangential orientations of the beam
curve to the zero-velocity curve in the I-T representa-
tion [Fig. 17(b)]. Hence the position of the kinks is very
sensitive to the temperature. Note that the beam curve
does not quite intersect the zero-velocity curve; this is

probably due to our assumptions of in6nitesimally small
kink width.

It could be that both whole-beam and edge oscillations
are manifestations of layer oscillations [16] under the con-
straints of the inhomogeneous input profile. The possi-
bility of high-frequency edge oscillations in this system is
intriguing since this may explain similar oscillations ob-
served experimentally [1],where the frequency was much
higher than would be expected from the thermal time.

C. Numerical method
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equations classiGes the system as a stiff set of equations.
For efficient numerical integration this stifFness required
using an implicit integration scheme. In particular, we
used the backward differentiation formulas of Gear [20]
with variable order and variable time-step control.

We approximated the spatial derivatives using finite
difFerences on a uniform mesh with Neumann- or no-
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FIG. 16. Contour plot of carrier concentration evolving in
time as a function of x. The central portion switches up and
the edges lose stability producing oscillations.

FIG. 17. (a) Contour plot of carrier concentration evolv-
ing in time as a function of x. There are only edge oscillations
and no whole-beam oscillations. (b) I Trepresentation for-
the edge oscillations showing that the beam curve is almost
tangential to the zero-velocity curve.
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flux-type boundary conditions. When using an implicit
method a system of nonlinear algebraic equations must
be solved at each step. The nature of this differencing
scheme leads to a banded algebraic system with the band
width determined by the order of the approximation to
the derivatives. On each time step we solved the system
using Newton's method with a banded matrix solver.

It was quite possible to use this method with our avail-
able computer power (Meiko i860 computing surface).
However, a two-dimensional code will be on the verge
of practicability.

IV. CONCLUSIONS

We have theoretically and numerically investigated os-
cillations in an InSb bistable etalon with competing non-
linearities. We have developed a method that explains
many features of the oscillations, in particular the prop-
agation of kink solutions. This relies on the stiK nature
of the InSb system, where the time constants are radi-
cally different and the fast subsystem diffuses to a lesser
extent than the slow subsystem. The method is use-
ful when attempting to find parameter ranges that yield

oscillations. The full system has been solved numeri-
cally in one transverse dimension and the properties of
kink solutions, whole-beam and edge oscillations investi-
gated. The numerical simulations confirm the theoretical
approach. For small spot sizes (of the order of the carrier
diffusion length), kink solutions are no longer applicable
and the numerical approach has to be used exclusively.
The oscillations must be similar in two transverse di-
mensions and two-dimensional simulations are underway
to confirm this. We have shown that layer oscillations
are possible even in this highly inhomogeneous system,
Because we are limited to one transverse dimension we
do not attempt quantitative agreement with experiment.
Qualitatively there is good agreement. We are able to ex-
plain the high-frequency oscillations observed experimen-
tally as either edge oscillations or a very small thermal
decay time.
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